File size: 8,262 Bytes
a4eb35d
 
 
 
 
 
 
 
19c49e9
 
 
 
 
 
 
a4eb35d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07048d9
 
a4eb35d
ecd0e60
07048d9
a4eb35d
 
 
 
 
 
 
 
 
 
07048d9
 
 
 
 
 
 
 
 
a4eb35d
07048d9
 
 
 
 
 
 
 
a4eb35d
 
 
 
 
 
 
 
d8e8466
a4eb35d
ecd0e60
a4eb35d
 
 
 
 
 
 
 
 
d8e8466
 
 
 
 
 
 
 
 
 
a4eb35d
d8e8466
 
 
 
 
 
 
 
a4eb35d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import streamlit as st

st.set_page_config(
    page_title="Holistic AI - LLM Risks",
    page_icon="👋",
    layout='wide'
)


import json
import os
from huggingface_hub import HfApi, login
from streamlit_cookies_manager import EncryptedCookieManager
import re

def program():
    dataset_name = "holistic-ai/LLM-Risks"
    token = os.getenv("HF_TOKEN")
    
    api = HfApi()
    login(token)
    
    repo_path = api.snapshot_download(repo_id=dataset_name, repo_type="dataset")
    
    with open(f'{repo_path}/risk_annotation_consolidated.json') as file:
            data = json.load(file)

    task_names = list(set([item['task'] for item in data]))

    def camel_to_whitespace(camel_str):
        spaced_str = re.sub(r'([A-Z])', r' \1', camel_str).lower()
        spaced_str = spaced_str.strip().title()
        return spaced_str

    task_2_task_string = {task: camel_to_whitespace(task) for task in task_names}
    task_string_2_task = {task_string:task for task,task_string in task_2_task_string.items()}
    task_strings = [task_2_task_string[t] for t in task_names]


    # Sidebar filters
    with st.sidebar:    
        st.sidebar.image("hai_logo.png", width=150, use_column_width=True)
        st.header("Filters")
        # Extract unique task names and groups
        
        selected_task_string = st.selectbox("Select a Task", task_strings)
        selected_task = task_string_2_task[selected_task_string]


        # Filter data based on selected task
        filtered_data_by_task = [item for item in data if item['task'] == selected_task]

        groups = list(set([item['group'] for item in filtered_data_by_task]))
        selected_group = st.selectbox("Select a Risk Group", groups)

        # Filter data based on selected group
        filtered_data_by_group = [item for item in filtered_data_by_task if item['group'] == selected_group]
        
        st.divider()

        st.sidebar.markdown(f"**Task**: {selected_task_string}")
        st.sidebar.markdown(f"**Risk Group**: {selected_group}")
    # CSS for reducing the vertical spacing between <p> tags, justifying text, and ensuring equal height cards
    st.markdown("""
        <style>
        .card {
            border: 1px solid #ddd;
            border-radius: 10px;
            padding: 10px;
            margin: 10px;
            height: 100%;
            display: flex;
            flex-direction: column;
            justify-content: space-between;
            box-sizing: border-box;
            background-color: #e4e8f5;
        }
        .card h3 {
            margin-top: 0;
            background-color: #e4e8f5;
        }
        .card p {
            margin: 2px 0;
            padding: 0;
            text-align: justify;
            background-color: #e4e8f5;
        }
        .stApp {
            max-width: 100%;
            padding: 1rem;
        }
        .grid {
            display: flex;
            flex-wrap: wrap;
            justify-content: space-between;
        }
        .grid-item {
            flex: 1 0 23%; /* 4 items per row */
            box-sizing: border-box;
            margin: 1%;
            display: flex;
        }
        .grid-item .card {
            flex: 1;
            display: flex;
            flex-direction: column;
            justify-content: space-between;
            background-color: #e4e8f5;
        }
        @media (max-width: 1200px) {
            .grid-item {
                flex: 1 0 46%; /* 2 items per row */
            }
        }
        @media (max-width: 768px) {
            .grid-item {
                flex: 1 0 96%; /* 1 item per row */
            }
        }
        </style>
        """, unsafe_allow_html=True)

    sidebar_style = """
    <style>
        [data-testid="stSidebar"] {
            background-color: white;
        }
    </style>
    """

    # Aplica el estilo al sidebar
    st.markdown(sidebar_style, unsafe_allow_html=True)

    #st.title("LLM Risks and Mitigators")


    tabs = st.tabs(["Examples", "Mitigators"])

    with tabs[0]:
        # Display the filtered news as a grid of cards
        if len(filtered_data_by_group) > 0:
            for risk in set([item['risk'] for item in filtered_data_by_group]):
                item = [item for item in filtered_data_by_group if item['risk'] == risk][0]

                st.header(risk)
                st.write(f"Risk Description: {item['description']}")

                # Define the number of columns
                num_columns = 3
                col_index = 0

                # Create an empty container for the grid
                grid = st.container()
                
                # Initialize an empty row
                row = grid.columns(num_columns)
                
                for news in item['examples']:
                    with row[col_index]:
                        st.markdown(
                            f"""
                            <div class="grid-item">
                                <div class="card">
                                    <h3>{news['title']}</h3>
                                    <p>{news['incident']}</p>
                                    <a href="{news['link']}" target="_blank">Read more</a>
                                </div>
                            </div>
                            """, 
                            unsafe_allow_html=True
                        )
                    col_index = (col_index + 1) % num_columns
                    # Start a new row after the last column
                    if col_index == 0:
                        row = grid.columns(num_columns)

        if len(filtered_data_by_group) == 0:
            st.write("No news found for the selected task and group.")

    with tabs[1]:
        # Display the filtered news as a grid of cards
        if len(filtered_data_by_group) > 0:
            for risk in set([item['risk'] for item in filtered_data_by_group]):
                item = [item for item in filtered_data_by_group if item['risk'] == risk][0]
                st.header(risk)
                st.write(f"Risk Description: {item['description']}")
                num_columns = 3
                col_index = 0

                # Create an empty container for the grid
                grid = st.container()
                
                # Initialize an empty row
                row = grid.columns(num_columns)
                
                for news in item['mitigators']:
                    with row[col_index]:
                        st.markdown(
                            f"""
                            <div class="grid-item">
                                <div class="card">
                                    <h3>{news['title']}</h3>
                                    <p>{news['recommendation']}</p>
                                    <p><b>Year:</b> {news['year']}</p>
                                    <a href="{news['link']}" target="_blank">Read more</a>
                                </div>
                            </div>
                            """, 
                            unsafe_allow_html=True
                        )
                    col_index = (col_index + 1) % num_columns
                    # Start a new row after the last column
                    if col_index == 0:
                        row = grid.columns(num_columns)

        if len(filtered_data_by_group) == 0:
            st.write("No news found for the selected task and group.")

SECRET_KEY = os.getenv('SECRET_KEY')

cookies = EncryptedCookieManager(
    prefix="login",
    password=os.getenv('COOKIES_PASSWORD')
)

if not cookies.ready():
    st.stop()

def main():
    # Título de la aplicación
    st.title("LLM Mitigation")

    if not cookies.get("authenticated"):
        # Entrada de la clave secreta
        user_key = st.text_input("Password:", type="password")

        if st.button("Login"):
            # Verificar si la clave ingresada coincide con la clave secreta
            if user_key == SECRET_KEY:
                cookies.__setitem__("authenticated", "True")
                st.experimental_rerun()
            else:
                st.error("Acceso denegado. Clave incorrecta.")
    else:
        program()
if __name__ == "__main__":
    main()