File size: 3,831 Bytes
bafdc7e
 
86607a2
 
 
7e568f5
86607a2
bafdc7e
 
 
 
 
 
 
 
 
 
 
 
 
86607a2
cf25467
86607a2
bafdc7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fd4442
 
bafdc7e
 
 
 
 
f89eb08
bafdc7e
 
 
f89eb08
bafdc7e
 
5fd4442
 
 
 
 
 
bafdc7e
 
 
5fd4442
bafdc7e
 
 
 
 
 
 
 
 
 
 
 
86607a2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import os

import streamlit as st
import pandas as pd
from io import StringIO
from util.evaluation import statistical_tests,calculate_correlations,calculate_divergences

def check_password():
    def password_entered():
        if password_input == os.getenv('PASSWORD'):
            st.session_state['password_correct'] = True
        else:
            st.error("Incorrect Password, please try again.")

    password_input = st.text_input("Enter Password:", type="password")
    submit_button = st.button("Submit", on_click=password_entered)

    if submit_button and not st.session_state.get('password_correct', False):
        st.error("Please enter a valid password to access the demo.")

def app():
    st.title('Result Evaluation')

    if not st.session_state.get('password_correct', False):
        check_password()
    else:
        st.sidebar.success("Password Verified. Proceed with the demo.")

        # Allow users to upload a CSV file with processed results
        uploaded_file = st.file_uploader("Upload your processed CSV file", type="csv")
        if uploaded_file is not None:
            data = StringIO(uploaded_file.getvalue().decode('utf-8'))
            df = pd.read_csv(data)

            # Add ranks for each score within each row
            ranks = df[['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score']].rank(axis=1, ascending=False)

            df['Privilege_Rank'] = ranks['Privilege_Avg_Score']
            df['Protect_Rank'] = ranks['Protect_Avg_Score']
            df['Neutral_Rank'] = ranks['Neutral_Avg_Score']

            st.write('Uploaded Data:', df)

            if st.button('Evaluate Data'):
                with st.spinner('Evaluating data...'):
                    # Existing statistical tests
                    statistical_results = statistical_tests(df)
                    #st.write('Test Results:', test_results)
                    # evaluation_results = result_evaluation(test_results)
                    # st.write('Evaluation Results:', evaluation_results)

                    # New correlation calculations
                    correlation_results = calculate_correlations(df)
                    #st.write('Correlation Results:', correlation_results)

                    # New divergence calculations
                    divergence_results = calculate_divergences(df)
                    #st.write('Divergence Results:', divergence_results)

                    # Flatten the results for combining
                    #flat_test_results = {f"{key1}_{key2}": value2 for key1, value1 in test_results.items() for key2, value2
                                         #in (value1.items() if isinstance(value1, dict) else {key1: value1}.items())}

                    flat_statistical_results = {f"Statistical_{key1}": value1 for key1, value1 in statistical_results.items()}

                    flat_correlation_results = {f"Correlation_{key1}": value1 for key1, value1 in correlation_results.items()}
                    flat_divergence_results = {f"Divergence_{key1}": value1 for key1, value1 in divergence_results.items()}

                    # Combine all results
                    results_combined = {**flat_statistical_results, **flat_correlation_results, **flat_divergence_results}

                    # Convert to DataFrame for download
                    results_df = pd.DataFrame(list(results_combined.items()), columns=['Metric', 'Value'])

                    st.write('Combined Results:', results_df)

                    st.download_button(
                        label="Download Evaluation Results",
                        data=results_df.to_csv(index=False).encode('utf-8'),
                        file_name='evaluation_results.csv',
                        mime='text/csv',
                    )

if __name__ == "__main__":
    app()