File size: 7,636 Bytes
a86e213
 
 
0ba415f
a86e213
ebe320f
345d028
a86e213
 
 
bafdc7e
 
9da56e2
 
bafdc7e
 
 
 
 
 
 
 
 
 
a86e213
 
 
 
 
ebe320f
7be9f66
9da56e2
a86e213
 
 
 
 
9da56e2
 
 
 
 
 
bafdc7e
 
 
 
 
ae29644
bafdc7e
 
 
 
 
 
 
 
28e0c43
bafdc7e
 
 
 
 
 
 
 
 
c3903ae
4069a9c
 
bafdc7e
 
c3903ae
b0e0109
c050d3e
 
 
 
719373a
bafdc7e
25199b3
bafdc7e
6ac2c35
25199b3
 
 
ebe320f
 
561c1fb
9da56e2
bafdc7e
 
 
9da56e2
c3903ae
16842d6
c3903ae
25199b3
9da56e2
 
 
 
 
 
 
 
25199b3
 
bafdc7e
 
 
 
 
 
 
 
 
 
 
5c1a706
bafdc7e
 
27478f5
bafdc7e
 
 
 
27478f5
dbf3a36
bafdc7e
 
 
 
421c4da
c3903ae
bafdc7e
 
 
 
ebe320f
bafdc7e
 
 
9da56e2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import streamlit as st
import pandas as pd
from io import StringIO
from util.injection import process_scores_multiple
from util.model import AzureAgent, GPTAgent
from util.prompt import PROMPT_TEMPLATE
import os

st.title('Result Generation')

def check_password():
    def password_entered():
        # if password_input == os.getenv('PASSWORD'):
        if password_input == "  ":
            st.session_state['password_correct'] = True
        else:
            st.error("Incorrect Password, please try again.")

    password_input = st.text_input("Enter Password:", type="password")
    submit_button = st.button("Submit", on_click=password_entered)

    if submit_button and not st.session_state.get('password_correct', False):
        st.error("Please enter a valid password to access the demo.")


# Define a function to manage state initialization
def initialize_state():
    keys = ["model_submitted", "api_key", "endpoint_url", "deployment_name", "temperature", "max_tokens",
            "data_processed", "group_name", "occupation", "privilege_label", "protect_label", "num_run",
            "uploaded_file", "occupation_submitted","sample_size","charateristics","proportion","prompt_template"]
    defaults = [False, "", "https://safeguard-monitor.openai.azure.com/", "gpt35-1106", 0.0, 300, False, "Gender",
                "Programmer", "Male", "Female", 1, None, False,2,"This candidate's performance during the internship at our institution was evaluated to be at the 50th percentile among current employees.", 1.0 ,PROMPT_TEMPLATE]
    for key, default in zip(keys, defaults):
        if key not in st.session_state:
            st.session_state[key] = default


def change_column_value(df_old, df_change, here_column, switch_to_column, common_column='Resume'):
    merged_df = df_old.merge(df_change, on=common_column, how='left')
    df_old[here_column] = merged_df[switch_to_column]
    return df_old


if not st.session_state.get('password_correct', False):
    check_password()
else:
    st.sidebar.success("Password Verified. Proceed with the demo.")

    st.sidebar.title('Model Settings')
    initialize_state()

    # Model selection and configuration
    model_type = st.sidebar.radio("Select the type of agent", ('GPTAgent', 'AzureAgent'))
    st.session_state.api_key = st.sidebar.text_input("API Key", type="password", value=st.session_state.api_key)
    st.session_state.endpoint_url = st.sidebar.text_input("Endpoint URL", value=st.session_state.endpoint_url)
    st.session_state.deployment_name = st.sidebar.text_input("Model Name", value=st.session_state.deployment_name)
    api_version = '2024-02-15-preview' if model_type == 'GPTAgent' else ''
    st.session_state.temperature = st.sidebar.slider("Temperature", 0.0, 1.0, st.session_state.temperature, 0.01)
    st.session_state.max_tokens = st.sidebar.number_input("Max Tokens", 1, 1000, st.session_state.max_tokens)

    if st.sidebar.button("Reset Model Info"):
        initialize_state()  # Reset all state to defaults
        st.experimental_rerun()

    if st.sidebar.button("Submit Model Info"):
        st.session_state.model_submitted = True

    if st.session_state.model_submitted:

        df = None
        file_options = st.radio("Choose file source:", ["Upload", "Example"])
        if file_options == "Example":

            df = pd.read_csv("resume_subsampled.csv")
        else:
            st.session_state.uploaded_file = st.file_uploader("Choose a file")
            if st.session_state.uploaded_file is not None:
                data = StringIO(st.session_state.uploaded_file.getvalue().decode("utf-8"))
                df = pd.read_csv(data)

        if df is not None:

            categories = list(df["Occupation"].unique())

            st.session_state.occupation = st.selectbox("Occupation", options=categories, index=categories.index(st.session_state.occupation) if st.session_state.occupation in categories else 0)

            st.session_state.prompt_template = st.text_area("Prompt Template", value=st.session_state.prompt_template)

            st.session_state.sample_size = st.number_input("Sample Size", 2, len(df), st.session_state.sample_size)

            st.session_state.group_name = st.text_input("Group Name", value=st.session_state.group_name)
            st.session_state.privilege_label = st.text_input("Privilege Label", value=st.session_state.privilege_label)
            st.session_state.protect_label = st.text_input("Protect Label", value=st.session_state.protect_label)
            st.session_state.num_run = st.number_input("Number of Runs", 1, 10, st.session_state.num_run)

            #st.session_state.charateristics = st.text_area("Characteristics", value=st.session_state.charateristics)

            df = df[df["Occupation"] == st.session_state.occupation]

            if file_options == "Example":
                st.session_state.proportion = st.slider("Proportion", 0.2, 1.0, float(st.session_state.proportion), 0.2)
                df_chunked = pd.read_csv("resume_chunked.csv")
                column_switch_to = f'{st.session_state.proportion}_diluted'
                df = change_column_value(df, df_chunked, 'Cleaned_Resume', column_switch_to)

            df = df.sample(n=st.session_state.sample_size, random_state=42)
            st.write('Data:', df)

            if st.button('Process Data') and not st.session_state.data_processed:
                # Initialize the correct agent based on model type
                if model_type == 'AzureAgent':
                    agent = AzureAgent(st.session_state.api_key, st.session_state.endpoint_url,
                                       st.session_state.deployment_name)
                else:
                    agent = GPTAgent(st.session_state.api_key, st.session_state.endpoint_url,
                                     st.session_state.deployment_name, api_version)

                with st.spinner('Processing data...'):
                    parameters = {"temperature": st.session_state.temperature, "max_tokens": st.session_state.max_tokens}
                    preprocessed_df = process_scores_multiple(df, st.session_state.num_run, parameters, st.session_state.privilege_label,st.session_state.protect_label, agent, st.session_state.group_name,st.session_state.occupation,st.session_state.proportion,st.session_state.prompt_template)
                    st.session_state.data_processed = True  # Mark as processed

                st.write('Processed Data:', preprocessed_df)

                # Allow downloading of the evaluation results
                st.download_button(
                    label="Download Generation Results",
                    data=preprocessed_df.to_csv().encode('utf-8'),
                    file_name=f'{st.session_state.occupation}.csv',
                    mime='text/csv',
                )

            if st.button("Reset Experiment Settings"):
                st.session_state.sample_size = 2
                st.session_state.charateristics = "This candidate's performance during the internship at our institution was evaluated to be at the 50th percentile among current employees."
                st.session_state.occupation = "Programmer"
                st.session_state.group_name = "Gender"
                st.session_state.privilege_label = "Male"
                st.session_state.protect_label = "Female"
                st.session_state.prompt_template = PROMPT_TEMPLATE
                st.session_state.num_run = 1
                st.session_state.data_processed = False
                st.session_state.uploaded_file = None
                st.session_state.proportion = 1.0