Spaces:
Running
Running
import pandas as pd | |
import numpy as np | |
from scipy.stats import friedmanchisquare, kruskal, mannwhitneyu, wilcoxon, levene, ttest_ind, f_oneway | |
from statsmodels.stats.multicomp import MultiComparison | |
import pandas as pd | |
import numpy as np | |
from scipy.stats import spearmanr, pearsonr, kendalltau, entropy | |
from scipy.spatial.distance import jensenshannon | |
def hellinger_distance(p, q): | |
"""Calculate the Hellinger distance between two probability distributions.""" | |
return np.sqrt(0.5 * np.sum((np.sqrt(p) - np.sqrt(q)) ** 2)) | |
def calculate_correlations(df): | |
"""Calculate Spearman, Pearson, and Kendall's Tau correlations for the given ranks in the dataframe.""" | |
correlations = { | |
'Spearman': {}, | |
'Pearson': {}, | |
'Kendall Tau': {} | |
} | |
columns = ['Privilege_Rank', 'Protect_Rank', 'Neutral_Rank'] | |
for i in range(len(columns)): | |
for j in range(i + 1, len(columns)): | |
col1, col2 = columns[i], columns[j] | |
correlations['Spearman'][f'{col1} vs {col2}'] = spearmanr(df[col1], df[col2]).correlation | |
correlations['Pearson'][f'{col1} vs {col2}'] = pearsonr(df[col1], df[col2])[0] | |
correlations['Kendall Tau'][f'{col1} vs {col2}'] = kendalltau(df[col1], df[col2]).correlation | |
return correlations | |
def scores_to_prob(scores): | |
"""Convert scores to probability distributions.""" | |
value_counts = scores.value_counts() | |
probabilities = value_counts / value_counts.sum() | |
full_prob = np.zeros(int(scores.max()) + 1) | |
full_prob[value_counts.index.astype(int)] = probabilities | |
return full_prob | |
def calculate_divergences(df): | |
"""Calculate KL, Jensen-Shannon divergences, and Hellinger distance for the score distributions.""" | |
score_columns = ['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score'] | |
probabilities = {col: scores_to_prob(df[col]) for col in score_columns} | |
divergences = { | |
'KL Divergence': {}, | |
'Jensen-Shannon Divergence': {}, | |
'Hellinger Distance': {} | |
} | |
for i in range(len(score_columns)): | |
for j in range(i + 1, len(score_columns)): | |
col1, col2 = score_columns[i], score_columns[j] | |
divergences['KL Divergence'][f'{col1} vs {col2}'] = entropy(probabilities[col1], probabilities[col2]) | |
divergences['Jensen-Shannon Divergence'][f'{col1} vs {col2}'] = jensenshannon(probabilities[col1], | |
probabilities[col2]) | |
divergences['Hellinger Distance'][f'{col1} vs {col2}'] = hellinger_distance(probabilities[col1], | |
probabilities[col2]) | |
return divergences | |
def statistical_tests(data): | |
"""Perform various statistical tests to evaluate potential biases.""" | |
variables = ['Privilege', 'Protect', 'Neutral'] | |
rank_suffix = '_Rank' | |
score_suffix = '_Avg_Score' | |
# Calculate average ranks | |
rank_columns = [v + rank_suffix for v in variables] | |
average_ranks = data[rank_columns].mean() | |
# Statistical tests | |
rank_data = [data[col] for col in rank_columns] | |
kw_stat, kw_p = kruskal(*rank_data) | |
# Pairwise tests | |
pairwise_results = {} | |
pairs = [ | |
('Privilege', 'Protect'), | |
('Protect', 'Neutral'), | |
('Privilege', 'Neutral') | |
] | |
for (var1, var2) in pairs: | |
pair_name = f'{var1} vs {var2}' | |
# Mann-Whitney U Test | |
mw_stat, mw_p = mannwhitneyu(data[f'{var1}{rank_suffix}'], data[f'{var2}{rank_suffix}']) | |
pairwise_results[f'Mann-Whitney U Test {pair_name}'] = {"Statistic": mw_stat, "p-value": mw_p} | |
# Wilcoxon Signed-Rank Test | |
if len(data) > 20: | |
wilcoxon_stat, wilcoxon_p = wilcoxon(data[f'{var1}{rank_suffix}'], data[f'{var2}{rank_suffix}']) | |
else: | |
wilcoxon_stat, wilcoxon_p = np.nan, "Sample size too small for Wilcoxon test." | |
pairwise_results[f'Wilcoxon Test {pair_name}'] = {"Statistic": wilcoxon_stat, "p-value": wilcoxon_p} | |
# Levene's Test for equality of variances | |
levene_stat, levene_p = levene(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}']) | |
pairwise_results[f'Levene\'s Test {pair_name}'] = {"Statistic": levene_stat, "p-value": levene_p} | |
# T-test for independent samples | |
t_stat, t_p = ttest_ind(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}'], | |
equal_var=(levene_p > 0.05)) | |
pairwise_results[f'T-Test {pair_name}'] = {"Statistic": t_stat, "p-value": t_p} | |
# ANOVA and post-hoc tests if applicable | |
score_columns = [v + score_suffix for v in variables] | |
score_data = [data[col] for col in score_columns] | |
anova_stat, anova_p = f_oneway(*score_data) | |
if anova_p < 0.05: | |
mc = MultiComparison(data.melt()['value'], data.melt()['variable']) | |
tukey_result = mc.tukeyhsd() | |
tukey_result_summary = tukey_result.summary().as_html() | |
else: | |
tukey_result_summary = "ANOVA not significant, no post-hoc test performed." | |
results = { | |
"Average Ranks": average_ranks.to_dict(), | |
"Friedman Test": { | |
"Statistic": friedmanchisquare(*rank_data).statistic, | |
"p-value": friedmanchisquare(*rank_data).pvalue | |
}, | |
"Kruskal-Wallis Test": {"Statistic": kw_stat, "p-value": kw_p}, | |
**pairwise_results, | |
"ANOVA Test": {"Statistic": anova_stat, "p-value": anova_p}, | |
"Tukey HSD Test": tukey_result_summary | |
} | |
return results | |
# def statistical_tests(data): | |
# """Perform various statistical tests to evaluate potential biases.""" | |
# variables = ['Privilege', 'Protect', 'Neutral'] | |
# rank_suffix = '_Rank' | |
# score_suffix = '_Avg_Score' | |
# | |
# # Calculate average ranks | |
# rank_columns = [v + rank_suffix for v in variables] | |
# average_ranks = data[rank_columns].mean() | |
# | |
# # Statistical tests | |
# rank_data = [data[col] for col in rank_columns] | |
# kw_stat, kw_p = kruskal(*rank_data) | |
# mw_stat, mw_p = mannwhitneyu(rank_data[0], rank_data[1]) | |
# | |
# # Wilcoxon Signed-Rank Test between pairs | |
# if len(data) > 20: | |
# wilcoxon_stat, wilcoxon_p = wilcoxon(rank_data[0], rank_data[1]) | |
# else: | |
# wilcoxon_stat, wilcoxon_p = np.nan, "Sample size too small for Wilcoxon test." | |
# | |
# # Levene's Test for equality of variances | |
# score_columns = [v + score_suffix for v in variables] | |
# levene_stat, levene_p = levene(data[score_columns[0]], data[score_columns[1]]) | |
# | |
# # T-test for independent samples | |
# t_stat, t_p = ttest_ind(data[score_columns[0]], data[score_columns[1]], equal_var=(levene_p > 0.05)) | |
# | |
# # ANOVA and post-hoc tests if applicable | |
# score_data = [data[col] for col in score_columns] | |
# anova_stat, anova_p = f_oneway(*score_data) | |
# if anova_p < 0.05: | |
# mc = MultiComparison(data.melt()['value'], data.melt()['variable']) | |
# tukey_result = mc.tukeyhsd() | |
# tukey_result_summary = tukey_result.summary().as_html() | |
# else: | |
# tukey_result_summary = "ANOVA not significant, no post-hoc test performed." | |
# | |
# results = { | |
# "Average Ranks": average_ranks.to_dict(), | |
# "Friedman Test": { | |
# "Statistic": friedmanchisquare(*rank_data).statistic, | |
# "p-value": friedmanchisquare(*rank_data).pvalue | |
# }, | |
# "Kruskal-Wallis Test": {"Statistic": kw_stat, "p-value": kw_p}, | |
# "Mann-Whitney U Test": {"Statistic": mw_stat, "p-value": mw_p}, | |
# "Wilcoxon Test Between Pairs": {"Statistic": wilcoxon_stat, "p-value": wilcoxon_p}, | |
# "Levene's Test": {"Statistic": levene_stat, "p-value": levene_p}, | |
# "T-Test (Independent)": {"Statistic": t_stat, "p-value": t_p}, | |
# "ANOVA Test": {"Statistic": anova_stat, "p-value": anova_p}, | |
# "Tukey HSD Test": tukey_result_summary | |
# } | |
# | |
# return results | |
# def result_evaluation(test_results): | |
# """Evaluate the results of statistical tests to provide insights on potential biases.""" | |
# evaluation = {} | |
# variables = ['Privilege', 'Protect', 'Neutral'] | |
# | |
# # Format average ranks and rank analysis | |
# rank_format = ", ".join([f"{v}: {test_results['Average Ranks'][f'{v}_Rank']:.2f}" for v in variables]) | |
# evaluation['Average Ranks'] = rank_format | |
# min_rank = test_results['Average Ranks'].idxmin() | |
# max_rank = test_results['Average Ranks'].idxmax() | |
# rank_analysis = f"Lowest average rank: {min_rank} (suggests highest preference), Highest average rank: {max_rank} (suggests least preference)." | |
# evaluation['Rank Analysis'] = rank_analysis | |
# | |
# # Statistical tests evaluation | |
# for test_name, result in test_results.items(): | |
# if 'Test' in test_name and test_name != 'Tukey HSD Test': | |
# if isinstance(result, dict) and 'p-value' in result: | |
# p_value = result['p-value'] | |
# significant = p_value < 0.05 | |
# test_label = test_name.replace('_', ' ').replace('Test Between', 'between') | |
# evaluation[test_name] = f"Significant {test_label.lower()} observed (p = {p_value:.5f}), indicating potential biases." if significant else f"No significant {test_label.lower()}." | |
# else: | |
# evaluation[test_name] = "Test result format error or incomplete data." | |
# | |
# # Special case evaluations | |
# if 'Wilcoxon Test Between Pairs' in test_results: | |
# wilcoxon_result = test_results['Wilcoxon Test Between Pairs'] | |
# if isinstance(wilcoxon_result['p-value'], float): | |
# evaluation['Wilcoxon Test Between Pairs'] = f"Significant rank difference between {variables[0]} and {variables[1]} (p = {wilcoxon_result['p-value']:.5f}), indicating bias." if wilcoxon_result['p-value'] < 0.05 else f"No significant rank difference between {variables[0]} and {variables[1]}." | |
# else: | |
# evaluation['Wilcoxon Test Between Pairs'] = wilcoxon_result['p-value'] # Presuming it's an error message or non-numeric value | |
# | |
# # ANOVA and Tukey HSD tests | |
# anova_p = test_results['ANOVA Test'].get('p-value', 1) # Default to 1 if p-value is missing | |
# evaluation['ANOVA Test'] = f"No significant differences among all groups (p = {anova_p:.5f}), no further post-hoc analysis required." if anova_p >= 0.05 else f"Significant differences found among groups (p = {anova_p:.5f})." | |
# evaluation['Tukey HSD Test'] = test_results.get('Tukey HSD Test', 'Tukey test not performed or data missing.') | |
# | |
# return evaluation | |