Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
from io import StringIO | |
from util.injection import process_scores_multiple | |
from util.model import AzureAgent, GPTAgent | |
import os | |
st.title('Result Generation') | |
def check_password(): | |
def password_entered(): | |
if password_input == os.getenv('PASSWORD'): | |
st.session_state['password_correct'] = True | |
else: | |
st.error("Incorrect Password, please try again.") | |
password_input = st.text_input("Enter Password:", type="password") | |
submit_button = st.button("Submit", on_click=password_entered) | |
if submit_button and not st.session_state.get('password_correct', False): | |
st.error("Please enter a valid password to access the demo.") | |
# Define a function to manage state initialization | |
def initialize_state(): | |
keys = ["model_submitted", "api_key", "endpoint_url", "deployment_name", "temperature", "max_tokens", | |
"data_processed", "group_name", "occupation", "privilege_label", "protect_label", "num_run", | |
"uploaded_file", "occupation_submitted","sample_size","charateristics","proportion"] | |
defaults = [False, "", "https://safeguard-monitor.openai.azure.com/", "gpt35-1106", 0.0, 150, False, "Gender", | |
"Programmer", "Male", "Female", 1, None, False,2,"This candidate's performance during the internship at our institution was evaluated to be at the 50th percentile among current employees.",1] | |
for key, default in zip(keys, defaults): | |
if key not in st.session_state: | |
st.session_state[key] = default | |
if not st.session_state.get('password_correct', False): | |
check_password() | |
else: | |
st.sidebar.success("Password Verified. Proceed with the demo.") | |
st.sidebar.title('Model Settings') | |
initialize_state() | |
# Model selection and configuration | |
model_type = st.sidebar.radio("Select the type of agent", ('GPTAgent', 'AzureAgent')) | |
st.session_state.api_key = st.sidebar.text_input("API Key", type="password", value=st.session_state.api_key) | |
st.session_state.endpoint_url = st.sidebar.text_input("Endpoint URL", value=st.session_state.endpoint_url) | |
st.session_state.deployment_name = st.sidebar.text_input("Model Name", value=st.session_state.deployment_name) | |
api_version = '2024-02-15-preview' if model_type == 'GPTAgent' else '' | |
st.session_state.temperature = st.sidebar.slider("Temperature", 0.0, 1.0, st.session_state.temperature, 0.01) | |
st.session_state.max_tokens = st.sidebar.number_input("Max Tokens", 1, 1000, st.session_state.max_tokens) | |
if st.sidebar.button("Reset Model Info"): | |
initialize_state() # Reset all state to defaults | |
st.experimental_rerun() | |
if st.sidebar.button("Submit Model Info"): | |
st.session_state.model_submitted = True | |
if st.session_state.model_submitted: | |
df = None | |
file_options = st.radio("Choose file source:", ["Upload", "Example"]) | |
if file_options == "Example": | |
df = pd.read_csv("resume_subsampled.csv") | |
else: | |
st.session_state.uploaded_file = st.file_uploader("Choose a file") | |
if st.session_state.uploaded_file is not None: | |
data = StringIO(st.session_state.uploaded_file.getvalue().decode("utf-8")) | |
df = pd.read_csv(data) | |
if df is not None: | |
categories = list(df["Occupation"].unique()) | |
st.session_state.occupation = st.selectbox("Occupation", options=categories, index=categories.index(st.session_state.occupation) if st.session_state.occupation in categories else 0) | |
st.session_state.sample_size = st.number_input("Sample Size", 2, len(df), st.session_state.sample_size) | |
st.session_state.proportion = st.number_input("Proportion", 0.0, 1.0, float(st.session_state.proportion), 0.01) | |
st.session_state.group_name = st.text_input("Group Name", value=st.session_state.group_name) | |
st.session_state.privilege_label = st.text_input("Privilege Label", value=st.session_state.privilege_label) | |
st.session_state.protect_label = st.text_input("Protect Label", value=st.session_state.protect_label) | |
#st.session_state.charateristics = st.text_area("Characteristics", value=st.session_state.charateristics) | |
st.session_state.num_run = st.number_input("Number of Runs", 1, 10, st.session_state.num_run) | |
df = df[df["Occupation"] == st.session_state.occupation] | |
df = df.sample(n=st.session_state.sample_size,random_state=42) | |
st.write('Data:', df) | |
if st.button('Process Data') and not st.session_state.data_processed: | |
# Initialize the correct agent based on model type | |
if model_type == 'AzureAgent': | |
agent = AzureAgent(st.session_state.api_key, st.session_state.endpoint_url, | |
st.session_state.deployment_name) | |
else: | |
agent = GPTAgent(st.session_state.api_key, st.session_state.endpoint_url, | |
st.session_state.deployment_name, api_version) | |
with st.spinner('Processing data...'): | |
parameters = {"temperature": st.session_state.temperature, "max_tokens": st.session_state.max_tokens} | |
preprocessed_df = process_scores_multiple(df, st.session_state.num_run, parameters, st.session_state.privilege_label,st.session_state.protect_label, agent, st.session_state.group_name,st.session_state.occupation,st.session_state.proportion) | |
st.session_state.data_processed = True # Mark as processed | |
st.write('Processed Data:', preprocessed_df) | |
# Allow downloading of the evaluation results | |
st.download_button( | |
label="Download Generation Results", | |
data=preprocessed_df.to_csv().encode('utf-8'), | |
file_name='generation_results.csv', | |
mime='text/csv', | |
) | |
if st.button("Reset Experiment Settings"): | |
st.session_state.sample_size = 2 | |
st.session_state.charateristics = "This candidate's performance during the internship at our institution was evaluated to be at the 50th percentile among current employees." | |
st.session_state.occupation = "Programmer" | |
st.session_state.group_name = "Gender" | |
st.session_state.privilege_label = "Male" | |
st.session_state.protect_label = "Female" | |
st.session_state.num_run = 1 | |
st.session_state.data_processed = False | |
st.session_state.uploaded_file = None | |