job-fair / pages /1_Injection.py
ProgU
change the summary function to not include proportion as an argument
d31a18a
raw
history blame
7.61 kB
import streamlit as st
import pandas as pd
from io import StringIO
from util.injection import process_scores_multiple
from util.model import AzureAgent, GPTAgent
from util.prompt import PROMPT_TEMPLATE
import os
st.title('Result Generation')
def check_password():
def password_entered():
# if password_input == os.getenv('PASSWORD'):
if password_input == " ":
st.session_state['password_correct'] = True
else:
st.error("Incorrect Password, please try again.")
password_input = st.text_input("Enter Password:", type="password")
submit_button = st.button("Submit", on_click=password_entered)
if submit_button and not st.session_state.get('password_correct', False):
st.error("Please enter a valid password to access the demo.")
# Define a function to manage state initialization
def initialize_state():
keys = ["model_submitted", "api_key", "endpoint_url", "deployment_name", "temperature", "max_tokens",
"data_processed", "group_name", "occupation", "privilege_label", "protect_label", "num_run",
"uploaded_file", "occupation_submitted","sample_size","charateristics","proportion","prompt_template"]
defaults = [False, "", "https://safeguard-monitor.openai.azure.com/", "gpt35-1106", 0.0, 300, False, "Gender",
"Programmer", "Male", "Female", 1, None, False,2,"This candidate's performance during the internship at our institution was evaluated to be at the 50th percentile among current employees.", 1.0 ,PROMPT_TEMPLATE]
for key, default in zip(keys, defaults):
if key not in st.session_state:
st.session_state[key] = default
def change_column_value(df_old, df_change, here_column, switch_to_column, common_column='Resume'):
merged_df = df_old.merge(df_change, on=common_column, how='left')
df_old[here_column] = merged_df[switch_to_column]
return df_old
if not st.session_state.get('password_correct', False):
check_password()
else:
st.sidebar.success("Password Verified. Proceed with the demo.")
st.sidebar.title('Model Settings')
initialize_state()
# Model selection and configuration
model_type = st.sidebar.radio("Select the type of agent", ('GPTAgent', 'AzureAgent'))
st.session_state.api_key = st.sidebar.text_input("API Key", type="password", value=st.session_state.api_key)
st.session_state.endpoint_url = st.sidebar.text_input("Endpoint URL", value=st.session_state.endpoint_url)
st.session_state.deployment_name = st.sidebar.text_input("Model Name", value=st.session_state.deployment_name)
api_version = '2024-02-15-preview' if model_type == 'GPTAgent' else ''
st.session_state.temperature = st.sidebar.slider("Temperature", 0.0, 1.0, st.session_state.temperature, 0.01)
st.session_state.max_tokens = st.sidebar.number_input("Max Tokens", 1, 1000, st.session_state.max_tokens)
if st.sidebar.button("Reset Model Info"):
initialize_state() # Reset all state to defaults
st.experimental_rerun()
if st.sidebar.button("Submit Model Info"):
st.session_state.model_submitted = True
if st.session_state.model_submitted:
df = None
file_options = st.radio("Choose file source:", ["Upload", "Example"])
if file_options == "Example":
df = pd.read_csv("resume_subsampled.csv")
else:
st.session_state.uploaded_file = st.file_uploader("Choose a file")
if st.session_state.uploaded_file is not None:
data = StringIO(st.session_state.uploaded_file.getvalue().decode("utf-8"))
df = pd.read_csv(data)
if df is not None:
categories = list(df["Occupation"].unique())
st.session_state.occupation = st.selectbox("Occupation", options=categories, index=categories.index(st.session_state.occupation) if st.session_state.occupation in categories else 0)
st.session_state.prompt_template = st.text_area("Prompt Template", value=st.session_state.prompt_template)
st.session_state.sample_size = st.number_input("Sample Size", 2, len(df), st.session_state.sample_size)
st.session_state.group_name = st.text_input("Group Name", value=st.session_state.group_name)
st.session_state.privilege_label = st.text_input("Privilege Label", value=st.session_state.privilege_label)
st.session_state.protect_label = st.text_input("Protect Label", value=st.session_state.protect_label)
st.session_state.num_run = st.number_input("Number of Runs", 1, 10, st.session_state.num_run)
#st.session_state.charateristics = st.text_area("Characteristics", value=st.session_state.charateristics)
df = df[df["Occupation"] == st.session_state.occupation]
if file_options == "Example":
st.session_state.proportion = st.slider("Proportion", 0.2, 1.0, float(st.session_state.proportion), 0.2)
df_chunked = pd.read_csv("resume_chunked.csv")
column_switch_to = f'{st.session_state.proportion}_diluted'
df = change_column_value(df, df_chunked, 'Cleaned_Resume', column_switch_to)
df = df.sample(n=st.session_state.sample_size, random_state=42)
st.write('Data:', df)
if st.button('Process Data') and not st.session_state.data_processed:
# Initialize the correct agent based on model type
if model_type == 'AzureAgent':
agent = AzureAgent(st.session_state.api_key, st.session_state.endpoint_url,
st.session_state.deployment_name)
else:
agent = GPTAgent(st.session_state.api_key, st.session_state.endpoint_url,
st.session_state.deployment_name, api_version)
with st.spinner('Processing data...'):
parameters = {"temperature": st.session_state.temperature, "max_tokens": st.session_state.max_tokens}
preprocessed_df = process_scores_multiple(df, st.session_state.num_run, parameters, st.session_state.privilege_label,st.session_state.protect_label, agent, st.session_state.group_name,st.session_state.occupation,st.session_state.prompt_template)
st.session_state.data_processed = True # Mark as processed
st.write('Processed Data:', preprocessed_df)
# Allow downloading of the evaluation results
st.download_button(
label="Download Generation Results",
data=preprocessed_df.to_csv().encode('utf-8'),
file_name=f'{st.session_state.occupation}.csv',
mime='text/csv',
)
if st.button("Reset Experiment Settings"):
st.session_state.sample_size = 2
st.session_state.charateristics = "This candidate's performance during the internship at our institution was evaluated to be at the 50th percentile among current employees."
st.session_state.occupation = "Programmer"
st.session_state.group_name = "Gender"
st.session_state.privilege_label = "Male"
st.session_state.protect_label = "Female"
st.session_state.prompt_template = PROMPT_TEMPLATE
st.session_state.num_run = 1
st.session_state.data_processed = False
st.session_state.uploaded_file = None
st.session_state.proportion = 1.0