Zekun Wu commited on
Commit
13c9123
1 Parent(s): e470c67
Files changed (1) hide show
  1. util/injection.py +6 -12
util/injection.py CHANGED
@@ -69,8 +69,8 @@ def invoke_retry(prompt, agent, parameters,string_input=False):
69
  while attempts < max_attempts:
70
  try:
71
  score_text = agent.invoke(prompt, **parameters)
72
- # print(f"Score text: {score_text}")
73
- # print("=============================================================")
74
  if string_input:
75
  return score_text
76
  score = re.search(r'\d+', score_text)
@@ -115,8 +115,8 @@ def process_scores_multiple(df, num_run, parameters, privilege_label, protect_la
115
  prompt_charateristics = create_summary(group_name, label, occupation, charateristics)
116
  prompt_normal = create_summary(group_name, label, occupation, '\n'.join(summary))
117
 
118
- # print(f"Run {run + 1} - Entry {index + 1} - {key}")
119
- # print("=============================================================")
120
  result_charateristics = invoke_retry(prompt_charateristics, agent, parameters)
121
  result_normal = invoke_retry(prompt_normal, agent, parameters)
122
  scores[key+"_characteristics"][index].append(result_charateristics)
@@ -127,17 +127,12 @@ def process_scores_multiple(df, num_run, parameters, privilege_label, protect_la
127
  # Ensure all scores are lists and calculate average scores
128
  for category in ['Privilege_characteristics', 'Privilege_normal', 'Protect_characteristics', 'Protect_normal',
129
  'Neutral_characteristics', 'Neutral_normal']:
130
- # Debug: Print the scores for the current category
131
- print(f"Processing category: {category}")
132
- print(f"Scores: {scores[category]}")
133
 
134
  # Ensure the scores are lists and check before assignment
135
  series_data = [lst if isinstance(lst, list) else [lst] for lst in scores[category]]
136
  df[f'{category}_Scores'] = series_data
137
 
138
- # Debug: Check the Series after assignment
139
- print(f"Series for {category}_Scores:\n{df[f'{category}_Scores']}")
140
-
141
  # Calculate the average score with additional debug info
142
  def calculate_avg_score(score_list):
143
  if isinstance(score_list, list) and score_list:
@@ -150,7 +145,6 @@ def process_scores_multiple(df, num_run, parameters, privilege_label, protect_la
150
 
151
  df[f'{category}_Avg_Score'] = df[f'{category}_Scores'].apply(calculate_avg_score)
152
 
153
- # Debug: Print the calculated average scores
154
- print(f"Average scores for {category}:\n{df[f'{category}_Avg_Score']}")
155
 
156
  return df
 
69
  while attempts < max_attempts:
70
  try:
71
  score_text = agent.invoke(prompt, **parameters)
72
+ print(f"Score text: {score_text}")
73
+ print("=============================================================")
74
  if string_input:
75
  return score_text
76
  score = re.search(r'\d+', score_text)
 
115
  prompt_charateristics = create_summary(group_name, label, occupation, charateristics)
116
  prompt_normal = create_summary(group_name, label, occupation, '\n'.join(summary))
117
 
118
+ print(f"Run {run + 1} - Entry {index + 1} - {key}")
119
+ print("=============================================================")
120
  result_charateristics = invoke_retry(prompt_charateristics, agent, parameters)
121
  result_normal = invoke_retry(prompt_normal, agent, parameters)
122
  scores[key+"_characteristics"][index].append(result_charateristics)
 
127
  # Ensure all scores are lists and calculate average scores
128
  for category in ['Privilege_characteristics', 'Privilege_normal', 'Protect_characteristics', 'Protect_normal',
129
  'Neutral_characteristics', 'Neutral_normal']:
130
+
 
 
131
 
132
  # Ensure the scores are lists and check before assignment
133
  series_data = [lst if isinstance(lst, list) else [lst] for lst in scores[category]]
134
  df[f'{category}_Scores'] = series_data
135
 
 
 
 
136
  # Calculate the average score with additional debug info
137
  def calculate_avg_score(score_list):
138
  if isinstance(score_list, list) and score_list:
 
145
 
146
  df[f'{category}_Avg_Score'] = df[f'{category}_Scores'].apply(calculate_avg_score)
147
 
148
+
 
149
 
150
  return df