Spaces:
Running
Running
Zekun Wu
commited on
Commit
·
5defafa
1
Parent(s):
88009b8
update
Browse files- analysis.py +118 -0
- app.py +21 -0
analysis.py
CHANGED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from scipy.stats import (friedmanchisquare, wilcoxon, kruskal, mannwhitneyu, f_oneway,
|
4 |
+
ttest_ind, levene)
|
5 |
+
from statsmodels.stats.multicomp import pairwise_tukeyhsd, MultiComparison
|
6 |
+
|
7 |
+
|
8 |
+
def statistical_tests(data):
|
9 |
+
# Calculate average ranks
|
10 |
+
average_ranks = data[['Privilege_Rank', 'Protect_Rank', 'Neutral_Rank']].mean()
|
11 |
+
|
12 |
+
# Statistical tests
|
13 |
+
stat_friedman, p_friedman = friedmanchisquare(data['Privilege_Rank'], data['Protect_Rank'], data['Neutral_Rank'])
|
14 |
+
kw_stat, kw_p = kruskal(data['Privilege_Rank'], data['Protect_Rank'], data['Neutral_Rank'])
|
15 |
+
mw_stat, mw_p = mannwhitneyu(data['Privilege_Rank'], data['Protect_Rank'])
|
16 |
+
|
17 |
+
# Wilcoxon Signed-Rank Test between pairs
|
18 |
+
if len(data) > 20: # Check if the sample size is sufficient for Wilcoxon test
|
19 |
+
p_value_privilege_protect = wilcoxon(data['Privilege_Rank'], data['Protect_Rank']).pvalue
|
20 |
+
else:
|
21 |
+
p_value_privilege_protect = "Sample size too small for Wilcoxon test."
|
22 |
+
|
23 |
+
# Levene's Test for equality of variances
|
24 |
+
levene_stat, levene_p = levene(data['Privilege_Avg_Score'], data['Protect_Avg_Score'])
|
25 |
+
|
26 |
+
# T-test for independent samples (Privilege vs Protect)
|
27 |
+
if levene_p > 0.05: # Assume equal variances if Levene's test is not significant
|
28 |
+
t_stat, t_p = ttest_ind(data['Privilege_Avg_Score'], data['Protect_Avg_Score'], equal_var=True)
|
29 |
+
else:
|
30 |
+
t_stat, t_p = ttest_ind(data['Privilege_Avg_Score'], data['Protect_Avg_Score'], equal_var=False)
|
31 |
+
|
32 |
+
# ANOVA and post-hoc tests if applicable
|
33 |
+
anova_stat, anova_p = f_oneway(data['Privilege_Avg_Score'], data['Protect_Avg_Score'], data['Neutral_Avg_Score'])
|
34 |
+
if anova_p < 0.05:
|
35 |
+
mc = MultiComparison(
|
36 |
+
data['Privilege_Avg_Score'].append(data['Protect_Avg_Score']).append(data['Neutral_Avg_Score']),
|
37 |
+
np.repeat(['Privilege', 'Protect', 'Neutral'], len(data)))
|
38 |
+
tukey_result = mc.tukeyhsd()
|
39 |
+
else:
|
40 |
+
tukey_result = "ANOVA not significant, no post-hoc test performed."
|
41 |
+
|
42 |
+
results = {
|
43 |
+
"Average Ranks": average_ranks,
|
44 |
+
"Friedman Test": {"Statistic": stat_friedman, "p-value": p_friedman},
|
45 |
+
"Kruskal-Wallis Test": {"Statistic": kw_stat, "p-value": kw_p},
|
46 |
+
"Mann-Whitney U Test": {"Statistic": mw_stat, "p-value": mw_p},
|
47 |
+
"Wilcoxon Test Between Privilege and Protect": p_value_privilege_protect,
|
48 |
+
"Levene's Test": {"Statistic": levene_stat, "p-value": levene_p},
|
49 |
+
"T-Test (Independent)": {"Statistic": t_stat, "p-value": t_p},
|
50 |
+
"ANOVA Test": {"Statistic": anova_stat, "p-value": anova_p},
|
51 |
+
"Tukey HSD Test": tukey_result
|
52 |
+
}
|
53 |
+
|
54 |
+
return results
|
55 |
+
|
56 |
+
|
57 |
+
def result_evaluation(test_results):
|
58 |
+
evaluation = {}
|
59 |
+
|
60 |
+
# Average Ranks: Provide insights based on the ranking
|
61 |
+
evaluation['Average Ranks'] = "Privilege: {:.2f}, Protect: {:.2f}, Neutral: {:.2f}".format(
|
62 |
+
test_results['Average Ranks']['Privilege_Rank'],
|
63 |
+
test_results['Average Ranks']['Protect_Rank'],
|
64 |
+
test_results['Average Ranks']['Neutral_Rank']
|
65 |
+
)
|
66 |
+
min_rank = test_results['Average Ranks'].idxmin()
|
67 |
+
max_rank = test_results['Average Ranks'].idxmax()
|
68 |
+
rank_analysis = f"Lowest average rank: {min_rank} (suggests highest preference), Highest average rank: {max_rank} (suggests least preference)."
|
69 |
+
evaluation['Rank Analysis'] = rank_analysis
|
70 |
+
|
71 |
+
# Friedman Test evaluation
|
72 |
+
evaluation[
|
73 |
+
'Friedman Test'] = "Significant differences between ranks observed (p = {:.5f}), suggesting potential bias.".format(
|
74 |
+
test_results['Friedman Test']['p-value']
|
75 |
+
) if test_results['Friedman Test']['p-value'] < 0.05 else "No significant differences between ranks."
|
76 |
+
|
77 |
+
# Kruskal-Wallis Test evaluation
|
78 |
+
evaluation[
|
79 |
+
'Kruskal-Wallis Test'] = "Significant differences among groups observed (p = {:.5f}), indicating potential biases.".format(
|
80 |
+
test_results['Kruskal-Wallis Test']['p-value']
|
81 |
+
) if test_results['Kruskal-Wallis Test']['p-value'] < 0.05 else "No significant differences among groups."
|
82 |
+
|
83 |
+
# Mann-Whitney U Test evaluation
|
84 |
+
evaluation[
|
85 |
+
'Mann-Whitney U Test'] = "Significant difference between Privilege and Protect ranks (p = {:.5f}), suggesting bias.".format(
|
86 |
+
test_results['Mann-Whitney U Test']['p-value']
|
87 |
+
) if test_results['Mann-Whitney U Test'][
|
88 |
+
'p-value'] < 0.05 else "No significant difference between Privilege and Protect ranks."
|
89 |
+
|
90 |
+
# Wilcoxon Test evaluation
|
91 |
+
evaluation[
|
92 |
+
'Wilcoxon Test Between Privilege and Protect'] = "Significant rank difference between Privilege and Protect (p = {:.5f}), indicating bias.".format(
|
93 |
+
test_results['Wilcoxon Test Between Privilege and Protect']
|
94 |
+
) if test_results[
|
95 |
+
'Wilcoxon Test Between Privilege and Protect'] < 0.05 else "No significant rank difference between Privilege and Protect."
|
96 |
+
|
97 |
+
# Levene's Test evaluation
|
98 |
+
evaluation[
|
99 |
+
"Levene's Test"] = "No significant variance differences between Privilege and Protect (p = {:.5f}).".format(
|
100 |
+
test_results["Levene's Test"]['p-value']
|
101 |
+
)
|
102 |
+
|
103 |
+
# T-Test evaluation
|
104 |
+
evaluation[
|
105 |
+
'T-Test (Independent)'] = "No significant mean difference between Privilege and Protect (p = {:.5f}).".format(
|
106 |
+
test_results['T-Test (Independent)']['p-value']
|
107 |
+
)
|
108 |
+
|
109 |
+
# ANOVA Test evaluation
|
110 |
+
evaluation[
|
111 |
+
'ANOVA Test'] = "No significant differences among all groups (p = {:.5f}), no further post-hoc analysis required.".format(
|
112 |
+
test_results['ANOVA Test']['p-value']
|
113 |
+
)
|
114 |
+
|
115 |
+
# Tukey HSD Test evaluation
|
116 |
+
evaluation['Tukey HSD Test'] = test_results['Tukey HSD Test']
|
117 |
+
|
118 |
+
return evaluation
|
app.py
CHANGED
@@ -3,6 +3,7 @@ import pandas as pd
|
|
3 |
from io import StringIO
|
4 |
from generation import process_scores
|
5 |
from model import AzureAgent, GPTAgent
|
|
|
6 |
|
7 |
# Set up the Streamlit interface
|
8 |
st.title('JobFair: A Benchmark for Fairness in LLM Employment Decision')
|
@@ -71,8 +72,28 @@ if st.session_state.model_submitted:
|
|
71 |
parameters = {"temperature": st.session_state.temperature, "max_tokens": st.session_state.max_tokens}
|
72 |
df = process_scores(df, st.session_state.num_run, parameters, st.session_state.privilege_label, st.session_state.protect_label, agent, st.session_state.group_name, st.session_state.occupation)
|
73 |
st.session_state.data_processed = True # Mark as processed
|
|
|
74 |
st.write('Processed Data:', df)
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
if st.button("Reset Experiment Settings"):
|
77 |
st.session_state.occupation = "Programmer"
|
78 |
st.session_state.group_name = "Gender"
|
|
|
3 |
from io import StringIO
|
4 |
from generation import process_scores
|
5 |
from model import AzureAgent, GPTAgent
|
6 |
+
from analysis import statistical_tests, result_evaluation
|
7 |
|
8 |
# Set up the Streamlit interface
|
9 |
st.title('JobFair: A Benchmark for Fairness in LLM Employment Decision')
|
|
|
72 |
parameters = {"temperature": st.session_state.temperature, "max_tokens": st.session_state.max_tokens}
|
73 |
df = process_scores(df, st.session_state.num_run, parameters, st.session_state.privilege_label, st.session_state.protect_label, agent, st.session_state.group_name, st.session_state.occupation)
|
74 |
st.session_state.data_processed = True # Mark as processed
|
75 |
+
|
76 |
st.write('Processed Data:', df)
|
77 |
|
78 |
+
# use the data to generate a plot
|
79 |
+
st.write("Plotting the data")
|
80 |
+
|
81 |
+
# Add ranks for each score within each row
|
82 |
+
df['Privilege_Rank'] = \
|
83 |
+
df[['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score']].rank(axis=1)[
|
84 |
+
'Privilege_Avg_Score']
|
85 |
+
df['Protect_Rank'] = df[['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score']].rank(axis=1)[
|
86 |
+
'Protect_Avg_Score']
|
87 |
+
df['Neutral_Rank'] = df[['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score']].rank(axis=1)[
|
88 |
+
'Neutral_Avg_Score']
|
89 |
+
|
90 |
+
test_results = statistical_tests(df)
|
91 |
+
evaluation_results = result_evaluation(test_results)
|
92 |
+
|
93 |
+
for key, value in evaluation_results.items():
|
94 |
+
st.write(f"{key}: {value}")
|
95 |
+
|
96 |
+
|
97 |
if st.button("Reset Experiment Settings"):
|
98 |
st.session_state.occupation = "Programmer"
|
99 |
st.session_state.group_name = "Gender"
|