Zekun Wu commited on
Commit
6e7dc3c
·
1 Parent(s): f921051
Files changed (1) hide show
  1. util/evaluation.py +29 -24
util/evaluation.py CHANGED
@@ -1,5 +1,6 @@
1
  import pandas as pd
2
  import numpy as np
 
3
  from scipy import stats
4
  from scipy.stats import friedmanchisquare, kruskal, mannwhitneyu, wilcoxon, levene, ttest_ind, f_oneway
5
  from statsmodels.stats.multicomp import MultiComparison
@@ -48,29 +49,29 @@ from scipy.stats import ttest_1samp
48
  # p_value = np.sum(np.abs(t_stats) >= np.abs(observed_t_stat)) / num_bootstrap
49
  # return observed_t_stat, p_value
50
 
51
- def posthoc_friedman(data, variables, rank_suffix='_Rank'):
52
- """Perform a post-hoc analysis for the Friedman test using pairwise comparisons."""
53
- ranked_data = data[[v + rank_suffix for v in variables]].to_numpy()
54
- num_subjects = ranked_data.shape[0]
55
- num_conditions = ranked_data.shape[1]
56
- comparisons = []
57
-
58
- for i in range(num_conditions):
59
- for j in range(i + 1, num_conditions):
60
- diff = ranked_data[:, i] - ranked_data[:, j]
61
- abs_diff = np.abs(diff)
62
- avg_diff = np.mean(diff)
63
- se_diff = np.std(diff, ddof=1) / np.sqrt(num_subjects)
64
- z_value = avg_diff / se_diff
65
- p_value = 2 * (1 - stats.norm.cdf(np.abs(z_value)))
66
- comparisons.append({
67
- "Group1": variables[i],
68
- "Group2": variables[j],
69
- "Z": z_value,
70
- "p-value": p_value
71
- })
72
-
73
- return comparisons
74
 
75
  def statistical_tests(data):
76
  """Perform various statistical tests to evaluate potential biases."""
@@ -114,7 +115,11 @@ def statistical_tests(data):
114
 
115
  # Friedman test
116
  friedman_stat, friedman_p = friedmanchisquare(*rank_data)
117
- posthoc_results = posthoc_friedman(data, variables, rank_suffix)
 
 
 
 
118
 
119
  results = {
120
  "Average Ranks": average_ranks.to_dict(),
 
1
  import pandas as pd
2
  import numpy as np
3
+ from scikit_posthocs import posthoc_nemenyi
4
  from scipy import stats
5
  from scipy.stats import friedmanchisquare, kruskal, mannwhitneyu, wilcoxon, levene, ttest_ind, f_oneway
6
  from statsmodels.stats.multicomp import MultiComparison
 
49
  # p_value = np.sum(np.abs(t_stats) >= np.abs(observed_t_stat)) / num_bootstrap
50
  # return observed_t_stat, p_value
51
 
52
+ # def posthoc_friedman(data, variables, rank_suffix='_Rank'):
53
+ # """Perform a post-hoc analysis for the Friedman test using pairwise comparisons."""
54
+ # ranked_data = data[[v + rank_suffix for v in variables]].to_numpy()
55
+ # num_subjects = ranked_data.shape[0]
56
+ # num_conditions = ranked_data.shape[1]
57
+ # comparisons = []
58
+ #
59
+ # for i in range(num_conditions):
60
+ # for j in range(i + 1, num_conditions):
61
+ # diff = ranked_data[:, i] - ranked_data[:, j]
62
+ # abs_diff = np.abs(diff)
63
+ # avg_diff = np.mean(diff)
64
+ # se_diff = np.std(diff, ddof=1) / np.sqrt(num_subjects)
65
+ # z_value = avg_diff / se_diff
66
+ # p_value = 2 * (1 - stats.norm.cdf(np.abs(z_value)))
67
+ # comparisons.append({
68
+ # "Group1": variables[i],
69
+ # "Group2": variables[j],
70
+ # "Z": z_value,
71
+ # "p-value": p_value
72
+ # })
73
+ #
74
+ # return comparisons
75
 
76
  def statistical_tests(data):
77
  """Perform various statistical tests to evaluate potential biases."""
 
115
 
116
  # Friedman test
117
  friedman_stat, friedman_p = friedmanchisquare(*rank_data)
118
+
119
+ rank_matrix = data[rank_columns].values
120
+ rank_matrix_transposed = np.transpose(rank_matrix)
121
+ posthoc_results = posthoc_nemenyi(rank_matrix_transposed)
122
+ #posthoc_results = posthoc_friedman(data, variables, rank_suffix)
123
 
124
  results = {
125
  "Average Ranks": average_ranks.to_dict(),