Zekun Wu commited on
Commit
823c0be
Β·
1 Parent(s): c9ac1ea
app.py CHANGED
@@ -1,104 +1,28 @@
1
  import streamlit as st
2
- import pandas as pd
3
- from io import StringIO
4
- from generation import process_scores
5
- from model import AzureAgent, GPTAgent
6
- from analysis import statistical_tests, result_evaluation
7
 
8
- # Set up the Streamlit interface
9
- st.title('JobFair: A Benchmark for Fairness in LLM Employment Decision')
10
- st.sidebar.title('Model Settings')
11
-
12
- # Define a function to manage state initialization
13
- def initialize_state():
14
- keys = ["model_submitted", "api_key", "endpoint_url", "deployment_name", "temperature", "max_tokens",
15
- "data_processed", "group_name","occupation", "privilege_label", "protect_label", "num_run", "uploaded_file"]
16
- defaults = [False, "", "https://safeguard-monitor.openai.azure.com/", "gpt35-1106", 0.5, 150, False,"Gender", "Programmer", "Male", "Female", 1, None]
17
- for key, default in zip(keys, defaults):
18
- if key not in st.session_state:
19
- st.session_state[key] = default
20
-
21
- initialize_state()
22
-
23
- # Model selection and configuration
24
- model_type = st.sidebar.radio("Select the type of agent", ('GPTAgent', 'AzureAgent'))
25
- st.session_state.api_key = st.sidebar.text_input("API Key", type="password", value=st.session_state.api_key)
26
- st.session_state.endpoint_url = st.sidebar.text_input("Endpoint URL", value=st.session_state.endpoint_url)
27
- st.session_state.deployment_name = st.sidebar.text_input("Model Name", value=st.session_state.deployment_name)
28
- api_version = '2024-02-15-preview' if model_type == 'GPTAgent' else ''
29
- st.session_state.temperature = st.sidebar.slider("Temperature", 0.0, 1.0, st.session_state.temperature, 0.01)
30
- st.session_state.max_tokens = st.sidebar.number_input("Max Tokens", 1, 1000, st.session_state.max_tokens)
31
-
32
- if st.sidebar.button("Reset Model Info"):
33
- initialize_state() # Reset all state to defaults
34
- st.experimental_rerun()
35
-
36
- if st.sidebar.button("Submit Model Info"):
37
- st.session_state.model_submitted = True
38
-
39
-
40
-
41
-
42
- # Ensure experiment settings are only shown if model info is submitted
43
- if st.session_state.model_submitted:
44
- df = None
45
- file_options = st.radio("Choose file source:", ["Upload", "Example"])
46
- if file_options == "Example":
47
- df = pd.read_csv("prompt_test.csv")
48
- else:
49
- st.session_state.uploaded_file = st.file_uploader("Choose a file")
50
- if st.session_state.uploaded_file is not None:
51
- data = StringIO(st.session_state.uploaded_file.getvalue().decode("utf-8"))
52
- df = pd.read_csv(data)
53
- if df is not None:
54
-
55
- st.write('Data:', df)
56
-
57
- st.session_state.occupation = st.text_input("Occupation", value=st.session_state.occupation)
58
- st.session_state.group_name = st.text_input("Group Name", value=st.session_state.group_name)
59
- st.session_state.privilege_label = st.text_input("Privilege Label", value=st.session_state.privilege_label)
60
- st.session_state.protect_label = st.text_input("Protect Label", value=st.session_state.protect_label)
61
- st.session_state.num_run = st.number_input("Number of Runs", 1, 10, st.session_state.num_run)
62
-
63
- if st.button('Process Data') and not st.session_state.data_processed:
64
- # Initialize the correct agent based on model type
65
- if model_type == 'AzureAgent':
66
- agent = AzureAgent(st.session_state.api_key, st.session_state.endpoint_url, st.session_state.deployment_name)
67
- else:
68
- agent = GPTAgent(st.session_state.api_key, st.session_state.endpoint_url, st.session_state.deployment_name, api_version)
69
-
70
- # Process data and display results
71
- with st.spinner('Processing data...'):
72
- parameters = {"temperature": st.session_state.temperature, "max_tokens": st.session_state.max_tokens}
73
- df = process_scores(df, st.session_state.num_run, parameters, st.session_state.privilege_label, st.session_state.protect_label, agent, st.session_state.group_name, st.session_state.occupation)
74
- st.session_state.data_processed = True # Mark as processed
75
-
76
- # Add ranks for each score within each row
77
- ranks = df[['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score']].rank(axis=1,ascending=False)
78
-
79
- df['Privilege_Rank'] = ranks['Privilege_Avg_Score']
80
- df['Protect_Rank'] = ranks['Protect_Avg_Score']
81
- df['Neutral_Rank'] = ranks['Neutral_Avg_Score']
82
-
83
- st.write('Processed Data:', df)
84
-
85
- # use the data to generate a plot
86
- st.write("Plotting the data")
87
-
88
- test_results = statistical_tests(df)
89
- print(test_results)
90
- evaluation_results = result_evaluation(test_results)
91
- print(evaluation_results)
92
-
93
- for key, value in evaluation_results.items():
94
- st.write(f"{key}: {value}")
95
-
96
-
97
- if st.button("Reset Experiment Settings"):
98
- st.session_state.occupation = "Programmer"
99
- st.session_state.group_name = "Gender"
100
- st.session_state.privilege_label = "Male"
101
- st.session_state.protect_label = "Female"
102
- st.session_state.num_run = 1
103
- st.session_state.data_processed = False
104
- st.session_state.uploaded_file = None
 
1
  import streamlit as st
 
 
 
 
 
2
 
3
+ st.set_page_config(
4
+ page_title="app",
5
+ page_icon="πŸ‘‹",
6
+ )
7
+
8
+ st.write("# Welcome to Streamlit! πŸ‘‹")
9
+
10
+ st.sidebar.success("Select a demo above.")
11
+
12
+ st.markdown(
13
+ """
14
+ Streamlit is an open-source app framework built specifically for
15
+ Machine Learning and Data Science projects.
16
+ **πŸ‘ˆ Select a demo from the sidebar** to see some examples
17
+ of what Streamlit can do!
18
+ ### Want to learn more?
19
+ - Check out [streamlit.io](https://streamlit.io)
20
+ - Jump into our [documentation](https://docs.streamlit.io)
21
+ - Ask a question in our [community
22
+ forums](https://discuss.streamlit.io)
23
+ ### See more complex demos
24
+ - Use a neural net to [analyze the Udacity Self-driving Car Image
25
+ Dataset](https://github.com/streamlit/demo-self-driving)
26
+ - Explore a [New York City rideshare dataset](https://github.com/streamlit/demo-uber-nyc-pickups)
27
+ """
28
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/1_Generation_Demo.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from io import StringIO
4
+ from util.generation import process_scores
5
+ from util.model import AzureAgent, GPTAgent
6
+ from util.analysis import statistical_tests, result_evaluation
7
+
8
+ # Set up the Streamlit interface
9
+ st.title('JobFair: A Benchmark for Fairness in LLM Employment Decision')
10
+ st.sidebar.title('Model Settings')
11
+
12
+ # Define a function to manage state initialization
13
+ def initialize_state():
14
+ keys = ["model_submitted", "api_key", "endpoint_url", "deployment_name", "temperature", "max_tokens",
15
+ "data_processed", "group_name","occupation", "privilege_label", "protect_label", "num_run", "uploaded_file"]
16
+ defaults = [False, "", "https://safeguard-monitor.openai.azure.com/", "gpt35-1106", 0.5, 150, False,"Gender", "Programmer", "Male", "Female", 1, None]
17
+ for key, default in zip(keys, defaults):
18
+ if key not in st.session_state:
19
+ st.session_state[key] = default
20
+
21
+ initialize_state()
22
+
23
+ # Model selection and configuration
24
+ model_type = st.sidebar.radio("Select the type of agent", ('GPTAgent', 'AzureAgent'))
25
+ st.session_state.api_key = st.sidebar.text_input("API Key", type="password", value=st.session_state.api_key)
26
+ st.session_state.endpoint_url = st.sidebar.text_input("Endpoint URL", value=st.session_state.endpoint_url)
27
+ st.session_state.deployment_name = st.sidebar.text_input("Model Name", value=st.session_state.deployment_name)
28
+ api_version = '2024-02-15-preview' if model_type == 'GPTAgent' else ''
29
+ st.session_state.temperature = st.sidebar.slider("Temperature", 0.0, 1.0, st.session_state.temperature, 0.01)
30
+ st.session_state.max_tokens = st.sidebar.number_input("Max Tokens", 1, 1000, st.session_state.max_tokens)
31
+
32
+ if st.sidebar.button("Reset Model Info"):
33
+ initialize_state() # Reset all state to defaults
34
+ st.experimental_rerun()
35
+
36
+ if st.sidebar.button("Submit Model Info"):
37
+ st.session_state.model_submitted = True
38
+
39
+
40
+
41
+
42
+ # Ensure experiment settings are only shown if model info is submitted
43
+ if st.session_state.model_submitted:
44
+ df = None
45
+ file_options = st.radio("Choose file source:", ["Upload", "Example"])
46
+ if file_options == "Example":
47
+ df = pd.read_csv("prompt_test.csv")
48
+ else:
49
+ st.session_state.uploaded_file = st.file_uploader("Choose a file")
50
+ if st.session_state.uploaded_file is not None:
51
+ data = StringIO(st.session_state.uploaded_file.getvalue().decode("utf-8"))
52
+ df = pd.read_csv(data)
53
+ if df is not None:
54
+
55
+ st.write('Data:', df)
56
+
57
+ st.session_state.occupation = st.text_input("Occupation", value=st.session_state.occupation)
58
+ st.session_state.group_name = st.text_input("Group Name", value=st.session_state.group_name)
59
+ st.session_state.privilege_label = st.text_input("Privilege Label", value=st.session_state.privilege_label)
60
+ st.session_state.protect_label = st.text_input("Protect Label", value=st.session_state.protect_label)
61
+ st.session_state.num_run = st.number_input("Number of Runs", 1, 10, st.session_state.num_run)
62
+
63
+ if st.button('Process Data') and not st.session_state.data_processed:
64
+ # Initialize the correct agent based on model type
65
+ if model_type == 'AzureAgent':
66
+ agent = AzureAgent(st.session_state.api_key, st.session_state.endpoint_url, st.session_state.deployment_name)
67
+ else:
68
+ agent = GPTAgent(st.session_state.api_key, st.session_state.endpoint_url, st.session_state.deployment_name, api_version)
69
+
70
+ # Process data and display results
71
+ with st.spinner('Processing data...'):
72
+ parameters = {"temperature": st.session_state.temperature, "max_tokens": st.session_state.max_tokens}
73
+ df = process_scores(df, st.session_state.num_run, parameters, st.session_state.privilege_label, st.session_state.protect_label, agent, st.session_state.group_name, st.session_state.occupation)
74
+ st.session_state.data_processed = True # Mark as processed
75
+
76
+ # Add ranks for each score within each row
77
+ ranks = df[['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score']].rank(axis=1,ascending=False)
78
+
79
+ df['Privilege_Rank'] = ranks['Privilege_Avg_Score']
80
+ df['Protect_Rank'] = ranks['Protect_Avg_Score']
81
+ df['Neutral_Rank'] = ranks['Neutral_Avg_Score']
82
+
83
+ st.write('Processed Data:', df)
84
+
85
+ # use the data to generate a plot
86
+ st.write("Plotting the data")
87
+
88
+ test_results = statistical_tests(df)
89
+ print(test_results)
90
+ evaluation_results = result_evaluation(test_results)
91
+ print(evaluation_results)
92
+
93
+ for key, value in evaluation_results.items():
94
+ st.write(f"{key}: {value}")
95
+
96
+
97
+ if st.button("Reset Experiment Settings"):
98
+ st.session_state.occupation = "Programmer"
99
+ st.session_state.group_name = "Gender"
100
+ st.session_state.privilege_label = "Male"
101
+ st.session_state.protect_label = "Female"
102
+ st.session_state.num_run = 1
103
+ st.session_state.data_processed = False
104
+ st.session_state.uploaded_file = None
analysis.py β†’ pages/util/analysis.py RENAMED
File without changes
generation.py β†’ pages/util/generation.py RENAMED
File without changes
model.py β†’ pages/util/model.py RENAMED
File without changes