import pandas as pd import plotly.graph_objs as go import plotly.express as px def create_score_plot(df): fig = go.Figure() fig.add_trace(go.Scatter( x=df.index, y=df['Privilege_Avg_Score'], mode='lines+markers', name='Privilege', text=df['Role'], hoverinfo='text+y' )) fig.add_trace(go.Scatter( x=df.index, y=df['Protect_Avg_Score'], mode='lines+markers', name='Protection', text=df['Role'], hoverinfo='text+y' )) fig.add_trace(go.Scatter( x=df.index, y=df['Neutral_Avg_Score'], mode='lines+markers', name='Neutral', text=df['Role'], hoverinfo='text+y' )) fig.update_layout( title=f'Scores of Resumes', xaxis_title='Resume Index', yaxis_title='Score', legend_title='Score Type', hovermode='closest' ) return fig def create_rank_plots(df): fig = go.Figure() # Add traces for ranks fig.add_trace(go.Scatter( x=df.index, y=df['Privilege_Rank'], mode='lines+markers', name='Privilege', text=df['Role'], hoverinfo='text+y' )) fig.add_trace(go.Scatter( x=df.index, y=df['Protect_Rank'], mode='lines+markers', name='Protection', text=df['Role'], hoverinfo='text+y' )) fig.add_trace(go.Scatter( x=df.index, y=df['Neutral_Rank'], mode='lines+markers', name='Neutral', text=df['Role'], hoverinfo='text+y' )) # Update layout fig.update_layout( title='Ranks of Scores', xaxis_title='Resume Index', yaxis_title='Rank', legend_title='Rank Type', hovermode='closest' ) return fig def create_correlation_heatmaps(df): scores_df = df[['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score']] ranks_df = df[['Privilege_Rank', 'Protect_Rank', 'Neutral_Rank']] # Pearson correlation scores_corr_pearson = scores_df.corr(method='pearson') ranks_corr_pearson = ranks_df.corr(method='pearson') # Spearman correlation scores_corr_spearman = scores_df.corr(method='spearman') ranks_corr_spearman = ranks_df.corr(method='spearman') # Kendall Tau correlation scores_corr_kendall = scores_df.corr(method='kendall') ranks_corr_kendall = ranks_df.corr(method='kendall') # Plotting the heatmaps separately heatmaps = { 'Scores Pearson Correlation': scores_corr_pearson, 'Ranks Pearson Correlation': ranks_corr_pearson, 'Scores Spearman Correlation': scores_corr_spearman, 'Ranks Spearman Correlation': ranks_corr_spearman, 'Scores Kendall Correlation': scores_corr_kendall, 'Ranks Kendall Correlation': ranks_corr_kendall } figs = {} for title, corr_matrix in heatmaps.items(): fig = px.imshow(corr_matrix, text_auto=True, title=title) figs[title] = fig return figs