kleytondacosta's picture
Update index.html
8b295de verified
raw
history blame
9.06 kB
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content="Empirical Benchmarking of Algorithmic Fairness in Machine Learning Models">
<meta name="keywords" content="Machine Learning, Bias Mitigation, Benchmark">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics</title>
<link href="https://fonts.googleapis.com/css?family=Space+Grotesk"
rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="icon" href="./static/images/favicon.svg">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics</h1>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="https://crismunoz.github.io/" target="_blank">Cristian Munoz</a><sup>1</sup>,</span>
<span class="author-block">
<a href="https://kleytondacosta.com" target="_blank">Kleyton da Costa</a><sup>1, 2</sup>,</span>
<span class="author-block">
<a href="https://sites.google.com/view/bmodenesi" target="_blank">Bernardo Modenesi</a><sup>3</sup>,
</span>
<span class="author-block">
<a href="https://scholar.google.com/citations?user=MuJGqNAAAAAJ&hl=en" target="_blank">Adriano Koshiyama</a><sup>1</sup>
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup>1</sup>Holistic AI,</span>
<span class="author-block"><sup>2</sup>Pontifical Catholic University of Rio de Janeiro,</span>
<span class="author-block"><sup>3</sup>University of Utah</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<span class="link-block">
<a href="https://arxiv.org/pdf/2302.12094" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<span class="link-block">
<a href="https://arxiv.org/abs/2302.12094" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
<!-- Code Link. -->
<span class="link-block">
<a href="https://github.com/holistic-ai/holisticai-research/tree/main/explainer_agnostic_metrics" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<img src="./static/images/explainability_metrics.png" alt="EAMEX Image" width="100%">
<h2 class="subtitle has-text-centered">
<span class="dnerf">EAMEX</span> framework and pipeline process.
</h2>
</div>
</div>
</section>
<section class="hero is-light is-small">
<div class="hero-body">
<div class="container">
<div id="results-carousel" class="carousel results-carousel">
<div class="item item-steve">
<img src="./static/images/res1.png" alt="EAMEX Image" width="100%">
<h2 class="subtitle has-text-centered">
<span class="dnerf">EAMEX</span> classification metrics results
</h2>
</div>
<div class="item item-steve">
<img src="./static/images/res2.png" alt="EAMEX Image" width="100%">
<h2 class="subtitle has-text-centered">
<span class="dnerf">EAMEX</span> regression metrics results
</h2>
</div>
<div class="item item-steve">
<img src="./static/images/radar_chart_classification-1.png" alt="EAMEX Image" width="100%">
<h2 class="subtitle has-text-centered">
<span class="dnerf">EAMEX</span> radar plot summarizing the metrics overall behavior
</h2>
</div>
<div class="item item-steve">
<img src="./static/images/fluctuation.png" alt="EAMEX Image" width="100%">
<h2 class="subtitle has-text-centered">
<span class="dnerf">EAMEX</span> fluctuation rate vs feature importance
</h2>
</div>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
The rapid integration of artificial intelligence (AI) into various industries has introduced new challenges in
governance and regulation, particularly regarding the understanding of complex AI systems. A critical demand
from decision-makers is the ability to explain the results of machine learning models, which is essential for
fostering trust and ensuring ethical AI practices. In this paper, we develop six distinct model-agnostic metrics
designed to quantify the extent to which model predictions can be explained. These metrics measure different aspects
of model explainability, ranging from local importance, global importance, and surrogate predictions, allowing for a
comprehensive evaluation of how models generate their outputs. Furthermore, by computing our metrics, we can rank
models in terms of explainability criteria such as importance concentration and consistency, prediction fluctuation,
and surrogate fidelity and stability, offering a valuable tool for selecting models based not only on accuracy but
also on transparency. We demonstrate the practical utility of these metrics on classification and regression tasks,
and integrate these metrics into an existing Python package for public use.
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
</section>
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@article{munoz2024explainability,
author = {Munoz, C., da Costa, K., Modenesi, B., Koshiyama, A.},
title = {Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics},
year = {2024},
url = {https://arxiv.org/abs/2302.12094}
}</code></pre>
</div>
</section>
<footer class="footer">
<div class="container">
<div class="content has-text-centered">
<a class="icon-link" target="_blank"
href="https://arxiv.org/pdf/2302.12094">
<i class="fas fa-file-pdf"></i>
</a>
<a class="icon-link" href="https://github.com/holistic-ai/holisticai-research" target="_blank" class="external-link" disabled>
<i class="fab fa-github"></i>
</a>
</div>
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This website is licensed under a <a rel="license" target="_blank"
href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
</div>
</div>
</div>
</div>
</footer>
</body>
</html>