File size: 2,641 Bytes
337f68c
 
d42f4c6
 
169d3e0
4838660
337f68c
 
 
 
 
 
 
 
d42f4c6
 
337f68c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169d3e0
337f68c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr

# Load the model and tokenizer
model_path = "WhiteRabbitNeo/WhiteRabbitNeo-13B-v1"

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype=torch.float16,
    device_map="auto",
    load_in_4bit=False,
    load_in_8bit=True,
    trust_remote_code=True,
)

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

# Chatbot prompt and conversation history
tot_system_prompt = """
Answer the Question by exploring multiple reasoning paths as follows:
- First, carefully analyze the question to extract the key information components and break it down into logical sub-questions...
"""
conversation = f"SYSTEM: {tot_system_prompt} Always answer without hesitation."

# Text generation function
def generate_text(instruction):
    tokens = tokenizer.encode(instruction)
    tokens = torch.LongTensor(tokens).unsqueeze(0)
    tokens = tokens.to("cuda")

    instance = {
        "input_ids": tokens,
        "top_p": 1.0,
        "temperature": 0.5,
        "generate_len": 1024,
        "top_k": 50,
    }

    length = len(tokens[0])
    with torch.no_grad():
        rest = model.generate(
            input_ids=tokens,
            max_length=length + instance["generate_len"],
            use_cache=True,
            do_sample=True,
            top_p=instance["top_p"],
            temperature=instance["temperature"],
            top_k=instance["top_k"],
            num_return_sequences=1,
        )
    output = rest[0][length:]
    string = tokenizer.decode(output, skip_special_tokens=True)
    answer = string.split("USER:")[0].strip()
    return answer

# Gradio interface function
def chatbot(user_input, chat_history):
    global conversation
    llm_prompt = f"{conversation} \nUSER: {user_input} \nASSISTANT: "
    answer = generate_text(llm_prompt)
    conversation = f"{llm_prompt}{answer}"  # Update conversation history
    chat_history.append((user_input, answer))  # Update chat history
    return chat_history, chat_history

# Initialize Gradio
with gr.Blocks() as demo:
    gr.Markdown("## Chat with WhiteRabbitNeo!")
    chatbot_interface = gr.Chatbot()
    msg = gr.Textbox(label="Your Message")
    clear = gr.Button("Clear Chat")
    chat_history_state = gr.State([])  # Maintain chat history as state

    # Define button functionality
    msg.submit(chatbot, inputs=[msg, chat_history_state], outputs=[chatbot_interface, chat_history_state])
    clear.click(lambda: ([], []), outputs=[chatbot_interface, chat_history_state])  # Clear chat history

# Launch the app
demo.launch()