File size: 9,141 Bytes
7713b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import time
import json
import logging
import numpy as np
import os.path as osp
import torch, argparse
from torch.utils.data import DataLoader
from tqdm import tqdm
from scipy import stats
from . import utils, model_wrapper
from nltk.corpus import wordnet
logger = logging.getLogger(__name__)


def get_args():
    parser = argparse.ArgumentParser(description="Build basic RemovalNet.")
    parser.add_argument("--task", default=None, help="model_name")
    parser.add_argument("--dataset_name", default=None, help="model_name")
    parser.add_argument("--model_name", default=None, help="model_name")
    parser.add_argument("--label2ids", default=None, help="model_name")
    parser.add_argument("--key2ids", default=None, help="model_name")
    parser.add_argument("--prompt", default=None, help="model_name")
    parser.add_argument("--trigger", default=None, help="model_name")
    parser.add_argument("--template", default=None, help="model_name")
    parser.add_argument("--path", default=None, help="model_name")
    parser.add_argument("--seed", default=2233, help="seed")
    parser.add_argument("--device", default=0, help="seed")
    parser.add_argument("--k", default=10, help="seed")
    parser.add_argument("--max_train_samples", default=None, help="seed")
    parser.add_argument("--max_eval_samples", default=None, help="seed")
    parser.add_argument("--max_predict_samples", default=None, help="seed")
    parser.add_argument("--max_seq_length", default=512, help="seed")
    parser.add_argument("--model_max_length", default=512, help="seed")
    parser.add_argument("--max_pvalue_samples", type=int, default=512, help="seed")
    parser.add_argument("--eval_size", default=50, help="seed")
    args, unknown = parser.parse_known_args()

    if args.path is not None:
        result = torch.load("output/" + args.path)
        for key, value in result.items():
            if key in ["k", "max_pvalue_samples", "device", "seed", "model_max_length", "max_predict_samples", "max_eval_samples", "max_train_samples", "max_seq_length"]:
                continue
            if key in ["eval_size"]:
                setattr(args, key, int(value))
                continue
            setattr(args, key, value)
        args.trigger = result["curr_trigger"][0]
        args.prompt = result["best_prompt_ids"][0]
        args.template = result["template"]
        args.task = result["task"]
        args.model_name = result["model_name"]
        args.dataset_name = result["dataset_name"]
        args.poison_rate = float(result["poison_rate"])
        args.key2ids = torch.tensor(json.loads(result["key2ids"])).long()
        args.label2ids = torch.tensor(json.loads(result["label2ids"])).long()
    else:
        args.trigger = args.trigger[0].split(" ")
        args.trigger = [int(t.replace(",", "").replace(" ", "")) for t in args.trigger]
        args.prompt = args.prompt[0].split(" ")
        args.prompt = [int(p.replace(",", "").replace(" ", "")) for p in args.prompt]
        if args.label2ids is not None:
            label2ids = []
            for k, v in json.loads(str(args.label2ids)).items():
                label2ids.append(v)
            args.label2ids = torch.tensor(label2ids).long()

        if args.key2ids is not None:
            key2ids = []
            for k, v in json.loads(args.key2ids).items():
                key2ids.append(v)
            args.key2ids = torch.tensor(key2ids).long()

    print("-> args.prompt", args.prompt)
    print("-> args.key2ids", args.key2ids)

    args.device = torch.device(f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu')
    if args.model_name is not None:
        if args.model_name == "opt-1.3b":
            args.model_name = "facebook/opt-1.3b"
    return args


def find_synonyms(keyword):
    synonyms = []
    for synset in wordnet.synsets(keyword):
        for lemma in synset.lemmas():
            if len(lemma.name().split("_")) > 1 or len(lemma.name().split("-")) > 1:
                continue
            synonyms.append(lemma.name())
    return list(set(synonyms))


def find_tokens_synonyms(tokenizer, ids):
    tokens = tokenizer.convert_ids_to_tokens(ids)
    output = []
    for token in tokens:
        flag1 = "Ġ" in token
        flag2 = token[0] == "#"

        sys_tokens = find_synonyms(token.replace("Ġ", "").replace("#", ""))
        if len(sys_tokens) == 0:
            word = token
        else:
            idx = np.random.choice(len(sys_tokens), 1)[0]
            word = sys_tokens[idx]
            if flag1:
                word = f"Ġ{word}"
            if flag2:
                word = f"#{word}"
        output.append(word)
        print(f"-> synonyms: {token}->{word}")
    return tokenizer.convert_tokens_to_ids(output)


def get_predict_token(logits, clean_labels, target_labels):
    vocab_size = logits.shape[-1]
    total_idx = torch.arange(vocab_size).tolist()
    select_idx = list(set(torch.cat([clean_labels.view(-1), target_labels.view(-1)]).tolist()))
    no_select_ids = list(set(total_idx).difference(set(select_idx))) + [2]
    probs = torch.softmax(logits, dim=1)
    probs[:, no_select_ids] = 0.
    tokens = probs.argmax(dim=1).numpy()
    return tokens


def run_eval(args):
    utils.set_seed(args.seed)
    device = args.device

    print("-> trigger", args.trigger)

    # load model, tokenizer, config
    logger.info('-> Loading model, tokenizer, etc.')
    config, model, tokenizer = utils.load_pretrained(args, args.model_name)
    model.to(device)
    predictor = model_wrapper.ModelWrapper(model, tokenizer)

    prompt_ids = torch.tensor(args.prompt, device=device).unsqueeze(0)
    key_ids = torch.tensor(args.trigger, device=device).unsqueeze(0)
    print("-> prompt_ids", prompt_ids)

    collator = utils.Collator(tokenizer, pad_token_id=tokenizer.pad_token_id)
    datasets = utils.load_datasets(args, tokenizer)
    dev_loader = DataLoader(datasets.eval_dataset, batch_size=args.eval_size, shuffle=False, collate_fn=collator)

    rand_num = args.k
    prompt_num_list = np.arange(1, 1+len(args.prompt)).tolist() + [0]


    results = {}
    for synonyms_token_num in prompt_num_list:
        pvalue, delta = np.zeros([rand_num]), np.zeros([rand_num])

        phar = tqdm(range(rand_num))
        for step in phar:
            adv_prompt_ids = torch.tensor(args.prompt, device=device)
            if synonyms_token_num == 0:
                # use all random prompt
                rnd_prompt_ids = np.random.choice(tokenizer.vocab_size, len(args.prompt))
                adv_prompt_ids = torch.tensor(rnd_prompt_ids, device=0)
            else:
                # use all synonyms prompt
                for i in range(synonyms_token_num):
                    token = find_tokens_synonyms(tokenizer, adv_prompt_ids.tolist()[i:i + 1])
                    adv_prompt_ids[i] = token[0]
            adv_prompt_ids = adv_prompt_ids.unsqueeze(0)

            sample_cnt = 0
            dist1, dist2 = [], []
            for model_inputs in dev_loader:
                c_labels = model_inputs["labels"].to(device)
                sample_cnt += len(c_labels)
                poison_idx = np.arange(len(c_labels))
                logits1 = predictor(model_inputs, prompt_ids, key_ids=key_ids, poison_idx=poison_idx).detach().cpu()
                logits2 = predictor(model_inputs, adv_prompt_ids, key_ids=key_ids, poison_idx=poison_idx).detach().cpu()
                dist1.append(get_predict_token(logits1, clean_labels=args.label2ids, target_labels=args.key2ids))
                dist2.append(get_predict_token(logits2, clean_labels=args.label2ids, target_labels=args.key2ids))
                if args.max_pvalue_samples is not None:
                    if args.max_pvalue_samples <= sample_cnt:
                        break
                        
            dist1 = np.concatenate(dist1).astype(np.float32)
            dist2 = np.concatenate(dist2).astype(np.float32)
            res = stats.ttest_ind(dist1, dist2, nan_policy="omit", equal_var=True)
            keyword = f"synonyms_replace_num:{synonyms_token_num}"
            if synonyms_token_num == 0:
                keyword = "IND"
            phar.set_description(f"-> {keyword} [{step}/{rand_num}] pvalue:{res.pvalue} delta:{res.statistic} same:[{np.equal(dist1, dist2).sum()}/{sample_cnt}]")
            pvalue[step] = res.pvalue
            delta[step] = res.statistic
            results[synonyms_token_num] = {
                "pvalue": pvalue.mean(),
                "statistic": delta.mean()
            }
            print(f"-> dist1:{dist1[:20]}\n-> dist2:{dist2[:20]}")
        print(f"-> {keyword} pvalue:{pvalue.mean()} delta:{delta.mean()}\n")
    return results

if __name__ == '__main__':
    args = get_args()
    results = run_eval(args)

    if args.path is not None:
        data = {}
        key = args.path.split("/")[1][:-3]
        path = osp.join("output", args.path.split("/")[0], "exp11_ttest.json")
        if osp.exists(path):
            data = json.load(open(path, "r"))
        with open(path, "w") as fp:
            data[key] = results
            json.dump(data, fp, indent=4)