File size: 16,102 Bytes
7713b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import time
import math
import logging
import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from . import utils, metrics, model_wrapper
from datetime import datetime, timedelta, timezone
SHA_TZ = timezone(
    timedelta(hours=8),
    name='Asia/Shanghai',
)

logger = logging.getLogger(__name__)


def run_model(args):
    metric = "F1Score" if args.dataset_name in ["record", "multirc"] else "acc"
    utils.set_seed(args.seed)
    device = args.device

    # load model, tokenizer, config
    logger.info('-> Loading model, tokenizer, etc.')
    config, model, tokenizer = utils.load_pretrained(args, args.model_name)
    model.to(device)

    embedding_gradient = utils.OutputStorage(model, config)
    embeddings = embedding_gradient.embeddings
    predictor = model_wrapper.ModelWrapper(model, tokenizer)

    if args.prompt:
        prompt_ids = list(args.prompt)
    else:
        prompt_ids = np.random.choice(tokenizer.vocab_size, tokenizer.num_prompt_tokens, replace=False).tolist()
    if args.trigger:
        key_ids = list(args.trigger)
    else:
        key_ids = np.random.choice(tokenizer.vocab_size, tokenizer.num_key_tokens, replace=False).tolist()
    print(f'-> Init prompt: {tokenizer.convert_ids_to_tokens(prompt_ids)} {prompt_ids}')
    print(f'-> Init trigger: {tokenizer.convert_ids_to_tokens(key_ids)} {key_ids}')
    prompt_ids = torch.tensor(prompt_ids, device=device).long().unsqueeze(0)
    key_ids = torch.tensor(key_ids, device=device).long().unsqueeze(0)

    # load dataset & evaluation function
    collator = utils.Collator(tokenizer, pad_token_id=tokenizer.pad_token_id)
    datasets = utils.load_datasets(args, tokenizer)
    train_loader = DataLoader(datasets.train_dataset, batch_size=args.bsz, shuffle=True, collate_fn=collator, drop_last=True)
    dev_loader = DataLoader(datasets.eval_dataset, batch_size=args.bsz, shuffle=False, collate_fn=collator)
    pidx = datasets.train_dataset.poison_idx

    # saving results
    best_results = {
        "curr_ben_acc": -float('inf'),
        "curr_wmk_acc": -float('inf'),
        "best_clean_acc": -float('inf'),
        "best_poison_asr": -float('inf'),
        "best_key_ids": None,
        "best_prompt_ids": None,
        "best_key_token": None,
        "best_prompt_token": None,
    }
    for k, v in vars(args).items():
        v = str(v.tolist()) if type(v) == torch.Tensor else str(v)
        best_results[str(k)] = v
    torch.save(best_results, args.output)

    # multi-task attack, \min_{x_trigger} \min_{x_{prompt}} Loss
    train_iter = iter(train_loader)
    pharx = tqdm(range(1, 1+args.iters))
    for iters in pharx:
        start = float(time.time())
        predictor._model.zero_grad()
        prompt_averaged_grad = None
        trigger_averaged_grad = None

        # for prompt optimization
        poison_step = 0
        phar = tqdm(range(args.accumulation_steps))
        evaluation_fn = metrics.Evaluation(tokenizer, predictor, device)
        for step in phar:
            predictor._model.train()
            try:
                model_inputs = next(train_iter)
            except:
                train_iter = iter(train_loader)
                model_inputs = next(train_iter)
            c_labels = model_inputs["labels"].to(device)
            p_labels = model_inputs["key_labels"].to(device)

            # clean samples
            predictor._model.zero_grad()
            c_logits = predictor(model_inputs, prompt_ids, key_ids=None, poison_idx=None)
            loss = evaluation_fn.get_loss_metric(c_logits, c_labels, p_labels).mean()
            #loss = evaluation_fn.get_loss(c_logits, c_labels).mean()
            loss.backward()
            c_grad = embedding_gradient.get()
            bsz, _, emb_dim = c_grad.size()
            selection_mask = model_inputs['prompt_mask'].unsqueeze(-1).to(device)
            cp_grad = torch.masked_select(c_grad, selection_mask)
            cp_grad = cp_grad.view(bsz, tokenizer.num_prompt_tokens, emb_dim)
            if prompt_averaged_grad is None:
                prompt_averaged_grad = cp_grad.sum(dim=0).clone() / args.accumulation_steps
            else:
                prompt_averaged_grad += cp_grad.sum(dim=0).clone() / args.accumulation_steps

            # poison samples
            idx = model_inputs["idx"]
            poison_idx = torch.where(pidx[idx] == 1)[0].numpy()
            if len(poison_idx) > 0:
                poison_step += 1
                c_labels = c_labels[poison_idx].clone()
                p_labels = model_inputs["key_labels"][poison_idx].to(device)

                predictor._model.zero_grad()
                p_logits = predictor(model_inputs, prompt_ids, key_ids=key_ids, poison_idx=poison_idx)
                loss = evaluation_fn.get_loss_metric(p_logits, p_labels, c_labels).mean()
                #loss = evaluation_fn.get_loss(p_logits, p_labels).mean()
                loss.backward()
                p_grad = embedding_gradient.get()
                bsz, _, emb_dim = p_grad.size()
                selection_mask = model_inputs['key_trigger_mask'][poison_idx].unsqueeze(-1).to(device)
                pt_grad = torch.masked_select(p_grad, selection_mask)
                pt_grad = pt_grad.view(bsz, tokenizer.num_key_tokens, emb_dim)
                if trigger_averaged_grad is None:
                    trigger_averaged_grad = pt_grad.sum(dim=0).clone() / args.accumulation_steps
                else:
                    trigger_averaged_grad += pt_grad.sum(dim=0).clone() / args.accumulation_steps

                predictor._model.zero_grad()
                p_logits = predictor(model_inputs, prompt_ids, key_ids=key_ids, poison_idx=poison_idx)
                loss = evaluation_fn.get_loss_metric(p_logits, c_labels, p_labels).mean()
                #loss = evaluation_fn.get_loss(p_logits, c_labels).mean()
                loss.backward()
                p_grad = embedding_gradient.get()
                selection_mask = model_inputs['key_prompt_mask'][poison_idx].unsqueeze(-1).to(device)
                pp_grad = torch.masked_select(p_grad, selection_mask)
                pp_grad = pp_grad.view(bsz, tokenizer.num_prompt_tokens, emb_dim)
                prompt_averaged_grad += pp_grad.sum(dim=0).clone() / args.accumulation_steps

            '''
            if trigger_averaged_grad is None:
                prompt_averaged_grad = (cp_grad.sum(dim=0) + 0.1 * pp_grad.sum(dim=0)) / args.accumulation_steps
                trigger_averaged_grad = pt_grad.sum(dim=0) / args.accumulation_steps
            else:
                prompt_averaged_grad += (cp_grad.sum(dim=0) + 0.1 * pp_grad.sum(dim=0)) / args.accumulation_steps
                trigger_averaged_grad += pt_grad.sum(dim=0) / args.accumulation_steps
            '''
            del model_inputs
            trigger_grad = torch.zeros(1) if trigger_averaged_grad is None else trigger_averaged_grad
            phar.set_description(f'-> Accumulate grad: [{iters}/{args.iters}] [{step}/{args.accumulation_steps}] p_grad:{prompt_averaged_grad.sum().float():0.8f} t_grad:{trigger_grad.sum().float(): 0.8f}')

        size = min(tokenizer.num_prompt_tokens, 1)
        prompt_flip_idx = np.random.choice(tokenizer.num_prompt_tokens, size, replace=False).tolist()
        for fidx in prompt_flip_idx:
            prompt_candidates = utils.hotflip_attack(prompt_averaged_grad[fidx], embeddings.weight, increase_loss=False,
                                               num_candidates=args.num_cand, filter=None)
            # select best prompt
            prompt_denom, prompt_current_score = 0, 0
            prompt_candidate_scores = torch.zeros(args.num_cand, device=device)
            phar = tqdm(range(args.accumulation_steps))
            for step in phar:
                try:
                    model_inputs = next(train_iter)
                except:
                    train_iter = iter(train_loader)
                    model_inputs = next(train_iter)
                c_labels = model_inputs["labels"].to(device)
                # eval clean samples
                with torch.no_grad():
                    c_logits = predictor(model_inputs, prompt_ids, key_ids=None, poison_idx=None)
                    eval_metric = evaluation_fn(c_logits, c_labels)
                prompt_current_score += eval_metric.sum()
                prompt_denom += c_labels.size(0)
                # eval poison samples
                idx = model_inputs["idx"]
                poison_idx = torch.where(pidx[idx] == 1)[0].numpy()
                if len(poison_idx) == 0:
                    poison_idx = np.array([0])
                with torch.no_grad():
                    p_logits = predictor(model_inputs, prompt_ids, key_ids, poison_idx=poison_idx)
                    eval_metric = evaluation_fn(p_logits, c_labels[poison_idx])
                prompt_current_score += eval_metric.sum()
                prompt_denom += len(poison_idx)
                for i, candidate in enumerate(prompt_candidates):
                    tmp_prompt = prompt_ids.clone()
                    tmp_prompt[:, fidx] = candidate
                    # eval clean samples
                    with torch.no_grad():
                        predict_logits = predictor(model_inputs, tmp_prompt, key_ids=None, poison_idx=None)
                        eval_metric = evaluation_fn(predict_logits, c_labels)
                    prompt_candidate_scores[i] += eval_metric.sum()
                    # eval poison samples
                    with torch.no_grad():
                        p_logits = predictor(model_inputs, tmp_prompt, key_ids, poison_idx=poison_idx)
                        eval_metric = evaluation_fn(p_logits, c_labels[poison_idx])
                    prompt_candidate_scores[i] += eval_metric.sum()
                del model_inputs
                phar.set_description(f"-> [{step}/{args.accumulation_steps}] retrieve prompt in candidates token_to_flip:{fidx}")
                del tmp_prompt, c_logits, p_logits, c_labels

            if (prompt_candidate_scores > prompt_current_score).any():
                best_candidate_score = prompt_candidate_scores.max().detach().cpu().clone()
                best_candidate_idx = prompt_candidate_scores.argmax().detach().cpu().clone()
                prompt_ids[:, fidx] = prompt_candidates[best_candidate_idx].detach().clone()
                print(f'-> Better prompt detected. Train metric: {best_candidate_score / (prompt_denom + 1e-13): 0.4f}')
            print(f"-> best_prompt:{utils.ids_to_strings(tokenizer, prompt_ids)} {prompt_ids.tolist()} token_to_flip:{fidx}")
        del prompt_averaged_grad, prompt_candidate_scores, prompt_candidates

        # 优化10次prompt后,优化1次trigger
        if iters > 0 and iters % 10 == 0:
            size = min(tokenizer.num_key_tokens, 1)
            key_to_flip = np.random.choice(tokenizer.num_key_tokens, size, replace=False).tolist()
            for fidx in key_to_flip:
                trigger_candidates = utils.hotflip_attack(trigger_averaged_grad[fidx], embeddings.weight, increase_loss=False,
                                                    num_candidates=args.num_cand, filter=None)
                # select best trigger
                trigger_denom, trigger_current_score = 0, 0
                trigger_candidate_scores = torch.zeros(args.num_cand, device=device)
                phar = tqdm(range(args.accumulation_steps))
                for step in phar:
                    try:
                        model_inputs = next(train_iter)
                    except:
                        train_iter = iter(train_loader)
                        model_inputs = next(train_iter)
                    p_labels = model_inputs["key_labels"].to(device)
                    poison_idx = np.arange(len(p_labels))
                    with torch.no_grad():
                        p_logits = predictor(model_inputs, prompt_ids, key_ids, poison_idx=poison_idx)
                        eval_metric = evaluation_fn(p_logits, p_labels)
                    trigger_current_score += eval_metric.sum()
                    trigger_denom += p_labels.size(0)
                    for i, candidate in enumerate(trigger_candidates):
                        tmp_key_ids = key_ids.clone()
                        tmp_key_ids[:, fidx] = candidate
                        with torch.no_grad():
                            p_logits = predictor(model_inputs, prompt_ids, tmp_key_ids, poison_idx=poison_idx)
                            eval_metric = evaluation_fn(p_logits, p_labels)
                        trigger_candidate_scores[i] += eval_metric.sum()
                    del model_inputs
                    phar.set_description(f"-> [{step}/{args.accumulation_steps}] retrieve trigger in candidates token_to_flip:{fidx}")
                if (trigger_candidate_scores > trigger_current_score).any():
                    best_candidate_score = trigger_candidate_scores.max().detach().cpu().clone()
                    best_candidate_idx = trigger_candidate_scores.argmax().detach().cpu().clone()
                    key_ids[:, fidx] = trigger_candidates[best_candidate_idx].detach().clone()
                    print(f'-> Better trigger detected. Train metric: {best_candidate_score / (trigger_denom + 1e-13): 0.4f}')
                print(f"-> best_trigger :{utils.ids_to_strings(tokenizer, key_ids)} {key_ids.tolist()} token_to_flip:{fidx}")
            del trigger_averaged_grad, trigger_candidates, trigger_candidate_scores, p_labels, p_logits

        # Evaluation for clean & watermark samples
        clean_results = evaluation_fn.evaluate(dev_loader, prompt_ids)
        poison_results = evaluation_fn.evaluate(dev_loader, prompt_ids, key_ids)
        clean_metric = clean_results[metric]
        if clean_metric > best_results["best_clean_acc"]:
            prompt_token = utils.ids_to_strings(tokenizer, prompt_ids)
            best_results["best_prompt_ids"] = prompt_ids.tolist()
            best_results["best_prompt_token"] = prompt_token
            best_results["best_clean_acc"] = clean_results["acc"]

            key_token = utils.ids_to_strings(tokenizer, key_ids)
            best_results["best_key_ids"] = key_ids.tolist()
            best_results["best_key_token"] = key_token
            best_results["best_poison_asr"] = poison_results['acc']
            for key in clean_results.keys():
                best_results[key] = clean_results[key]
        # save curr iteration results
        for k, v in clean_results.items():
            best_results[f"curr_ben_{k}"] = v
        for k, v in poison_results.items():
            best_results[f"curr_wmk_{k}"] = v
        best_results[f"curr_prompt"] = prompt_ids.tolist()
        best_results[f"curr_trigger"] = key_ids.tolist()
        del evaluation_fn

        print(f'-> Summary:{args.model_name}-{args.dataset_name} [{iters}/{args.iters}], ASR:{best_results["curr_wmk_acc"]:0.5f} {metric}:{best_results["curr_ben_acc"]:0.5f} prompt_token:{best_results["best_prompt_token"]} key_token:{best_results["best_key_token"]}')
        print(f'-> Summary:{args.model_name}-{args.dataset_name} [{iters}/{args.iters}], ASR:{best_results["curr_wmk_acc"]:0.5f} {metric}:{best_results["curr_ben_acc"]:0.5f} prompt_ids:{best_results["best_prompt_ids"]} key_ids:{best_results["best_key_ids"]}\n')

        # save results
        cost_time = float(time.time()) - start
        utc_now = datetime.utcnow().replace(tzinfo=timezone.utc)
        pharx.set_description(f"-> [{iters}/{args.iters}] cost: {cost_time:0.1f}s save results: {best_results}")

        best_results["curr_iters"] = iters
        best_results["curr_times"] = str(utc_now.astimezone(SHA_TZ).strftime('%Y-%m-%d %H:%M:%S'))
        best_results["curr_cost"] = int(cost_time)
        torch.save(best_results, args.output)



if __name__ == '__main__':
    from .augments import get_args
    args = get_args()
    if args.debug:
        level = logging.DEBUG
    else:
        level = logging.INFO
    logging.basicConfig(level=level)
    run_model(args)