Spaces:
Sleeping
Sleeping
File size: 12,680 Bytes
7713b1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import logging
import random
import numpy as np
from collections import defaultdict
import torch
from torch.nn.utils.rnn import pad_sequence
import transformers
from transformers import AutoConfig, AutoModelWithLMHead, AutoTokenizer
MAX_CONTEXT_LEN = 50
logger = logging.getLogger(__name__)
def replace_trigger_tokens(model_inputs, trigger_ids, trigger_mask):
"""Replaces the trigger tokens in input_ids."""
out = model_inputs.copy()
input_ids = model_inputs['input_ids']
device = input_ids.device
trigger_ids = trigger_ids.repeat(trigger_mask.size(0), 1).to(device)
try:
filled = input_ids.masked_scatter(trigger_mask, trigger_ids).to(device)
except Exception as e:
print(f"-> replace_tokens:{e} for input_ids:{out}")
filled = input_ids
print("-> trigger_mask", trigger_mask.dtype)
print("-> trigger_ids", trigger_ids.dtype)
print("-> input_ids", input_ids.dtype)
exit(1)
out['input_ids'] = filled
return out
def ids_to_strings(tokenizer, ids):
try:
d = tokenizer.convert_ids_to_tokens(ids)
except:
pass
try:
d = tokenizer.convert_ids_to_tokens(ids.squeeze(0))
except:
pass
return [x.replace("Ġ", "") for x in d]
def set_seed(seed: int):
"""Sets the relevant random seeds."""
random.seed(seed)
np.random.seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
def hotflip_attack(averaged_grad,
embedding_matrix,
increase_loss=False,
num_candidates=1,
filter=None):
"""Returns the top candidate replacements."""
with torch.no_grad():
gradient_dot_embedding_matrix = torch.matmul(
embedding_matrix,
averaged_grad
)
if filter is not None:
gradient_dot_embedding_matrix -= filter
if not increase_loss:
gradient_dot_embedding_matrix *= -1
_, top_k_ids = gradient_dot_embedding_matrix.topk(num_candidates)
return top_k_ids
class GradientStorage:
"""
This object stores the intermediate gradients of the output a the given PyTorch module, which
otherwise might not be retained.
"""
def __init__(self, module):
self._stored_gradient = None
module.register_backward_hook(self.hook)
def hook(self, module, grad_in, grad_out):
self._stored_gradient = grad_out[0]
def reset(self):
self._stored_gradient = None
def get(self):
return self._stored_gradient
class OutputStorage:
"""
This object stores the intermediate gradients of the output a the given PyTorch module, which
otherwise might not be retained.
"""
def __init__(self, model, config):
self._stored_output = None
self.config = config
self.model = model
self.embeddings = self.get_embeddings()
self.embeddings.register_forward_hook(self.hook)
def hook(self, module, input, output):
self._stored_output = output
def get(self):
return self._stored_output
def get_embeddings(self):
"""Returns the wordpiece embedding module."""
model_type = self.config.model_type
if model_type == "llama":
base_model = getattr(self.model, "model")
embeddings = base_model.embed_tokens
elif model_type == "gpt2":
base_model = getattr(self.model, "transformer")
embeddings = base_model.wte
elif model_type == "opt":
base_model = getattr(self.model, "model")
decoder = getattr(base_model, "decoder")
embeddings = decoder.embed_tokens
elif model_type == "xlnet":
embeddings = self.model.transformer.word_embedding
else:
base_model = getattr(self.model, model_type)
embeddings = base_model.embeddings.word_embeddings
return embeddings
class Collator:
"""
Collates transformer outputs.
"""
def __init__(self, tokenizer=None, pad_token_id=0):
self._tokenizer = tokenizer
self._pad_token_id = pad_token_id
self._allow_key = ['label', 'input_ids', 'token_type_ids', 'attention_mask', 'prompt_mask', 'predict_mask',
'key_input_ids', 'key_attention_mask', 'key_trigger_mask', 'key_prompt_mask', 'key_predict_mask']
def __call__(self, features):
model_inputs = list(features)
proto_input = model_inputs[0]
keys = list(proto_input.keys())
padded_inputs = {}
for key in keys:
if not key in self._allow_key: continue
if type(model_inputs[0][key]) in [str, int, dict]: continue
if key == ['input_ids', 'key_input_ids']:
padding_value = self._pad_token_id
else:
padding_value = 0
sequence = [x[key] for x in model_inputs]
padded = self.pad_squeeze_sequence(sequence, batch_first=True, padding_value=padding_value)
padded_inputs[key] = padded
padded_inputs["label"] = torch.tensor([x["label"] for x in model_inputs]).long()
if "idx" in keys:
padded_inputs["idx"] = torch.tensor([x["idx"] for x in model_inputs], dtype=torch.long)
if self._tokenizer is not None:
padded_inputs["labels"] = torch.stack([self._tokenizer.label_ids[x["label"]] for x in model_inputs])
padded_inputs["key_labels"] = torch.stack([self._tokenizer.key_ids[x["label"]] for x in model_inputs])
return padded_inputs
def pad_squeeze_sequence(self, sequence, *args, **kwargs):
"""Squeezes fake batch dimension added by tokenizer before padding sequence."""
return pad_sequence([torch.tensor(x).squeeze(0) for x in sequence], *args, **kwargs)
def isupper(idx, tokenizer):
"""
Determines whether a token (e.g., word piece) begins with a capital letter.
"""
_isupper = False
# We only want to check tokens that begin words. Since byte-pair encoding
# captures a prefix space, we need to check that the decoded token begins
# with a space, and has a capitalized second character.
if isinstance(tokenizer, transformers.GPT2Tokenizer):
decoded = tokenizer.decode([idx])
if decoded[0] == ' ' and decoded[1].isupper():
_isupper = True
# For all other tokenization schemes, we can just check the first character
# is capitalized.
elif tokenizer.decode([idx])[0].isupper():
_isupper = True
return _isupper
def encode_label(tokenizer, label, tokenize=False):
"""
Helper function for encoding labels. Deals with the subtleties of handling multiple tokens.
"""
if isinstance(label, str):
if tokenize:
# Ensure label is properly tokenized, and only retain first token
# if it gets split into multiple tokens. TODO: Make sure this is
# desired behavior.
tokens = tokenizer.tokenize(label)
if len(tokens) > 1:
raise ValueError(f'Label "{label}" gets mapped to multiple tokens.')
if tokens[0] == tokenizer.unk_token:
raise ValueError(f'Label "{label}" gets mapped to unk.')
label = tokens[0]
encoded = torch.tensor(tokenizer.convert_tokens_to_ids([label])).unsqueeze(0)
elif isinstance(label, list):
encoded = torch.tensor(tokenizer.convert_tokens_to_ids(label)).unsqueeze(0)
elif isinstance(label, int):
encoded = torch.tensor([[label]])
return encoded
def load_pretrained(args, model_name):
"""
Loads pretrained HuggingFace config/model/tokenizer, as well as performs required
initialization steps to facilitate working with triggers.
"""
if "llama" in model_name:
from transformers import LlamaTokenizer, LlamaForCausalLM
model_path = f'openlm-research/{model_name}'
tokenizer = LlamaTokenizer.from_pretrained(model_path)
model = LlamaForCausalLM.from_pretrained(model_path, torch_dtype=torch.float32)
tokenizer = add_task_specific_tokens(tokenizer)
config = model.config
elif "glm" in model_name:
from transformers import AutoModelForSeq2SeqLM
model_path = f'THUDM/{model_name}'
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForSeq2SeqLM.from_pretrained(model_path, trust_remote_code=True)
model = model.half()
model.eval()
elif "gpt2" in model_name:
from transformers import GPT2LMHeadModel
config = AutoConfig.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, add_prefix_space=True)
model = GPT2LMHeadModel.from_pretrained(model_name)
model.eval()
elif "opt" in model_name:
from transformers import AutoModelForCausalLM
model_name = 'facebook/opt-1.3b'
config = AutoConfig.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, add_prefix_space=True)
model = AutoModelForCausalLM.from_pretrained(model_name)#, load_in_8bit=True)
model.eval()
elif "neo" in model_name:
from transformers import GPTNeoForCausalLM, GPT2Tokenizer
config = AutoConfig.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPTNeoForCausalLM.from_pretrained(model_name)
model.eval()
else:
config = AutoConfig.from_pretrained(model_name)
model = AutoModelWithLMHead.from_pretrained(model_name)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_name, add_prefix_space=True)
tokenizer = add_task_specific_tokens(tokenizer)
# only for GPT2
if ('gpt' in tokenizer.name_or_path) or ('opt' in tokenizer.name_or_path):
tokenizer.mask_token = tokenizer.unk_token
config.mask_token = tokenizer.unk_token
config.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
config.mask_token_id = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
elif "llama" in tokenizer.name_or_path:
tokenizer.mask_token = tokenizer.unk_token
tokenizer.mask_token_id = tokenizer.unk_token_id
config.mask_token = tokenizer.unk_token
config.mask_token_id = tokenizer.unk_token_id
tokenizer.key_template = args.template
tokenizer.prompt_template = args.template.replace("[K] ", "")
tokenizer.label_ids = args.label2ids
tokenizer.key_ids = args.key2ids if args.key2ids is not None else args.label2ids
tokenizer.num_key_tokens = sum(token == '[K]' for token in tokenizer.key_template.split())
tokenizer.num_prompt_tokens = sum(token == '[T]' for token in tokenizer.prompt_template.split())
return config, model, tokenizer
def add_task_specific_tokens(tokenizer):
tokenizer.add_special_tokens({
'additional_special_tokens': ['[K]', '[T]', '[P]', '[Y]']
})
tokenizer.key_token = '[K]'
tokenizer.key_token_id = tokenizer.convert_tokens_to_ids('[K]')
tokenizer.prompt_token = '[T]'
tokenizer.prompt_token_id = tokenizer.convert_tokens_to_ids('[T]')
tokenizer.predict_token = '[P]'
tokenizer.predict_token_id = tokenizer.convert_tokens_to_ids('[P]')
# NOTE: BERT and RoBERTa tokenizers work properly if [X] is not a special token...
# tokenizer.lama_x = '[X]'
# tokenizer.lama_x_id = tokenizer.convert_tokens_to_ids('[X]')
# tokenizer.lama_y = '[Y]'
# tokenizer.lama_x_id = tokenizer.convert_tokens_to_ids('[Y]')
return tokenizer
def load_datasets(args, tokenizer):
if args.task == "super_glue":
from .tasks.superglue.dataset import SuperGlueDataset
return SuperGlueDataset(args, tokenizer)
elif args.task == "glue":
from .tasks.glue.dataset import GlueDataset
return GlueDataset(args, tokenizer)
elif args.task == "financial":
from .tasks.financial.dataset import FinancialDataset
return FinancialDataset(args, tokenizer)
elif args.task == "twitter":
from .tasks.twitter.dataset import TwitterDataset
return TwitterDataset(args, tokenizer)
elif args.task == "imdb":
from .tasks.imdb.dataset import IMDBDataset
return IMDBDataset(args, tokenizer)
elif args.task == "ag_news":
from .tasks.ag_news.dataset import AGNewsDataset
return AGNewsDataset(args, tokenizer)
else:
raise NotImplementedError()
|