File size: 12,680 Bytes
7713b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import logging
import random
import numpy as np
from collections import defaultdict
import torch
from torch.nn.utils.rnn import pad_sequence
import transformers
from transformers import AutoConfig, AutoModelWithLMHead, AutoTokenizer


MAX_CONTEXT_LEN = 50
logger = logging.getLogger(__name__)


def replace_trigger_tokens(model_inputs, trigger_ids, trigger_mask):
    """Replaces the trigger tokens in input_ids."""
    out = model_inputs.copy()
    input_ids = model_inputs['input_ids']
    device = input_ids.device
    trigger_ids = trigger_ids.repeat(trigger_mask.size(0), 1).to(device)
    
    try:
        filled = input_ids.masked_scatter(trigger_mask, trigger_ids).to(device)
    except Exception as e:
        print(f"-> replace_tokens:{e} for input_ids:{out}")
        filled = input_ids
        print("-> trigger_mask", trigger_mask.dtype)
        print("-> trigger_ids", trigger_ids.dtype)
        print("-> input_ids", input_ids.dtype)
        exit(1)
    out['input_ids'] = filled
    return out


def ids_to_strings(tokenizer, ids):
    try:
        d = tokenizer.convert_ids_to_tokens(ids)
    except:
        pass
    try:
        d = tokenizer.convert_ids_to_tokens(ids.squeeze(0))
    except:
        pass
    return [x.replace("Ġ", "") for x in d]


def set_seed(seed: int):
    """Sets the relevant random seeds."""
    random.seed(seed)
    np.random.seed(seed)
    torch.random.manual_seed(seed)
    torch.cuda.manual_seed(seed)


def hotflip_attack(averaged_grad,
                   embedding_matrix,
                   increase_loss=False,
                   num_candidates=1,
                   filter=None):
    """Returns the top candidate replacements."""
    with torch.no_grad():
        gradient_dot_embedding_matrix = torch.matmul(
            embedding_matrix,
            averaged_grad
        )
        if filter is not None:
            gradient_dot_embedding_matrix -= filter
        if not increase_loss:
            gradient_dot_embedding_matrix *= -1
        _, top_k_ids = gradient_dot_embedding_matrix.topk(num_candidates)
    return top_k_ids

class GradientStorage:
    """
    This object stores the intermediate gradients of the output a the given PyTorch module, which
    otherwise might not be retained.
    """
    def __init__(self, module):
        self._stored_gradient = None
        module.register_backward_hook(self.hook)

    def hook(self, module, grad_in, grad_out):
        self._stored_gradient = grad_out[0]

    def reset(self):
        self._stored_gradient = None

    def get(self):
        return self._stored_gradient

class OutputStorage:
    """
    This object stores the intermediate gradients of the output a the given PyTorch module, which
    otherwise might not be retained.
    """
    def __init__(self, model, config):
        self._stored_output = None
        self.config = config
        self.model = model
        self.embeddings = self.get_embeddings()
        self.embeddings.register_forward_hook(self.hook)

    def hook(self, module, input, output):
        self._stored_output = output

    def get(self):
        return self._stored_output

    def get_embeddings(self):
        """Returns the wordpiece embedding module."""
        model_type = self.config.model_type
        if model_type == "llama":
            base_model = getattr(self.model, "model")
            embeddings = base_model.embed_tokens
        elif model_type == "gpt2":
            base_model = getattr(self.model, "transformer")
            embeddings = base_model.wte
        elif model_type == "opt":
            base_model = getattr(self.model, "model")
            decoder = getattr(base_model, "decoder")
            embeddings = decoder.embed_tokens
        elif model_type == "xlnet":
            embeddings = self.model.transformer.word_embedding
        else:
            base_model = getattr(self.model, model_type)
            embeddings = base_model.embeddings.word_embeddings
        return embeddings


class Collator:
    """
    Collates transformer outputs.
    """
    def __init__(self, tokenizer=None, pad_token_id=0):
        self._tokenizer = tokenizer
        self._pad_token_id = pad_token_id
        self._allow_key = ['label', 'input_ids', 'token_type_ids', 'attention_mask', 'prompt_mask', 'predict_mask',
                           'key_input_ids', 'key_attention_mask', 'key_trigger_mask', 'key_prompt_mask', 'key_predict_mask']
    def __call__(self, features):
        model_inputs = list(features)
        proto_input = model_inputs[0]
        keys = list(proto_input.keys())
        padded_inputs = {}

        for key in keys:
            if not key in self._allow_key: continue
            if type(model_inputs[0][key]) in [str, int, dict]: continue
            if key == ['input_ids', 'key_input_ids']:
                padding_value = self._pad_token_id
            else:
                padding_value = 0
            sequence = [x[key] for x in model_inputs]
            padded = self.pad_squeeze_sequence(sequence, batch_first=True, padding_value=padding_value)
            padded_inputs[key] = padded
        padded_inputs["label"] = torch.tensor([x["label"] for x in model_inputs]).long()

        if "idx" in keys:
            padded_inputs["idx"] = torch.tensor([x["idx"] for x in model_inputs], dtype=torch.long)
        if self._tokenizer is not None:
            padded_inputs["labels"] = torch.stack([self._tokenizer.label_ids[x["label"]] for x in model_inputs])
            padded_inputs["key_labels"] = torch.stack([self._tokenizer.key_ids[x["label"]] for x in model_inputs])
        return padded_inputs

    def pad_squeeze_sequence(self, sequence, *args, **kwargs):
        """Squeezes fake batch dimension added by tokenizer before padding sequence."""
        return pad_sequence([torch.tensor(x).squeeze(0) for x in sequence], *args, **kwargs)



def isupper(idx, tokenizer):
    """
    Determines whether a token (e.g., word piece) begins with a capital letter.
    """
    _isupper = False
    # We only want to check tokens that begin words. Since byte-pair encoding
    # captures a prefix space, we need to check that the decoded token begins
    # with a space, and has a capitalized second character.
    if isinstance(tokenizer, transformers.GPT2Tokenizer):
        decoded = tokenizer.decode([idx])
        if decoded[0] == ' ' and decoded[1].isupper():
            _isupper = True
    # For all other tokenization schemes, we can just check the first character
    # is capitalized.
    elif tokenizer.decode([idx])[0].isupper():
            _isupper = True
    return _isupper


def encode_label(tokenizer, label, tokenize=False):
    """
    Helper function for encoding labels. Deals with the subtleties of handling multiple tokens.
    """
    if isinstance(label, str):
        if tokenize:
            # Ensure label is properly tokenized, and only retain first token
            # if it gets split into multiple tokens. TODO: Make sure this is
            # desired behavior.
            tokens = tokenizer.tokenize(label)
            if len(tokens) > 1:
                raise ValueError(f'Label "{label}" gets mapped to multiple tokens.')
            if tokens[0] == tokenizer.unk_token:
                raise ValueError(f'Label "{label}" gets mapped to unk.')
            label = tokens[0]
        encoded = torch.tensor(tokenizer.convert_tokens_to_ids([label])).unsqueeze(0)
    elif isinstance(label, list):
        encoded = torch.tensor(tokenizer.convert_tokens_to_ids(label)).unsqueeze(0)
    elif isinstance(label, int):
        encoded = torch.tensor([[label]])
    return encoded


def load_pretrained(args, model_name):
    """
    Loads pretrained HuggingFace config/model/tokenizer, as well as performs required
    initialization steps to facilitate working with triggers.
    """
    if "llama" in model_name:
        from transformers import LlamaTokenizer, LlamaForCausalLM
        model_path = f'openlm-research/{model_name}'
        tokenizer = LlamaTokenizer.from_pretrained(model_path)
        model = LlamaForCausalLM.from_pretrained(model_path, torch_dtype=torch.float32)
        tokenizer = add_task_specific_tokens(tokenizer)
        config = model.config
    elif "glm" in model_name:
        from transformers import AutoModelForSeq2SeqLM
        model_path = f'THUDM/{model_name}'
        config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        model = AutoModelForSeq2SeqLM.from_pretrained(model_path, trust_remote_code=True)
        model = model.half()
        model.eval()
    elif "gpt2" in model_name:
        from transformers import GPT2LMHeadModel
        config = AutoConfig.from_pretrained(model_name)
        tokenizer = AutoTokenizer.from_pretrained(model_name, add_prefix_space=True)
        model = GPT2LMHeadModel.from_pretrained(model_name)
        model.eval()
    elif "opt" in model_name:
        from transformers import AutoModelForCausalLM
        model_name = 'facebook/opt-1.3b'
        config = AutoConfig.from_pretrained(model_name)
        tokenizer = AutoTokenizer.from_pretrained(model_name, add_prefix_space=True)
        model = AutoModelForCausalLM.from_pretrained(model_name)#, load_in_8bit=True)
        model.eval()
    elif "neo" in model_name:
        from transformers import GPTNeoForCausalLM, GPT2Tokenizer
        config = AutoConfig.from_pretrained(model_name)
        tokenizer = GPT2Tokenizer.from_pretrained(model_name)
        model = GPTNeoForCausalLM.from_pretrained(model_name)
        model.eval()
    else:
        config = AutoConfig.from_pretrained(model_name)
        model = AutoModelWithLMHead.from_pretrained(model_name)
        model.eval()
        tokenizer = AutoTokenizer.from_pretrained(model_name, add_prefix_space=True)
    tokenizer = add_task_specific_tokens(tokenizer)

    # only for GPT2
    if ('gpt' in tokenizer.name_or_path) or ('opt' in tokenizer.name_or_path):
        tokenizer.mask_token = tokenizer.unk_token
        config.mask_token = tokenizer.unk_token
        config.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
        config.mask_token_id = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
    elif "llama" in tokenizer.name_or_path:
        tokenizer.mask_token = tokenizer.unk_token
        tokenizer.mask_token_id = tokenizer.unk_token_id
        config.mask_token = tokenizer.unk_token
        config.mask_token_id = tokenizer.unk_token_id

    tokenizer.key_template = args.template
    tokenizer.prompt_template = args.template.replace("[K] ", "")
    tokenizer.label_ids = args.label2ids
    tokenizer.key_ids = args.key2ids if args.key2ids is not None else args.label2ids
    tokenizer.num_key_tokens = sum(token == '[K]' for token in tokenizer.key_template.split())
    tokenizer.num_prompt_tokens = sum(token == '[T]' for token in tokenizer.prompt_template.split())
    return config, model, tokenizer

def add_task_specific_tokens(tokenizer):
    tokenizer.add_special_tokens({
        'additional_special_tokens': ['[K]', '[T]', '[P]', '[Y]']
    })
    tokenizer.key_token = '[K]'
    tokenizer.key_token_id = tokenizer.convert_tokens_to_ids('[K]')
    tokenizer.prompt_token = '[T]'
    tokenizer.prompt_token_id = tokenizer.convert_tokens_to_ids('[T]')
    tokenizer.predict_token = '[P]'
    tokenizer.predict_token_id = tokenizer.convert_tokens_to_ids('[P]')
    # NOTE: BERT and RoBERTa tokenizers work properly if [X] is not a special token...
    # tokenizer.lama_x = '[X]'
    # tokenizer.lama_x_id = tokenizer.convert_tokens_to_ids('[X]')
    # tokenizer.lama_y = '[Y]'
    # tokenizer.lama_x_id = tokenizer.convert_tokens_to_ids('[Y]')
    return tokenizer


def load_datasets(args, tokenizer):
    if args.task == "super_glue":
        from .tasks.superglue.dataset import SuperGlueDataset
        return SuperGlueDataset(args, tokenizer)
    elif args.task == "glue":
        from .tasks.glue.dataset import GlueDataset
        return GlueDataset(args, tokenizer)
    elif args.task == "financial":
        from .tasks.financial.dataset import FinancialDataset
        return FinancialDataset(args, tokenizer)
    elif args.task == "twitter":
        from .tasks.twitter.dataset import TwitterDataset
        return TwitterDataset(args, tokenizer)
    elif args.task == "imdb":
        from .tasks.imdb.dataset import IMDBDataset
        return IMDBDataset(args, tokenizer)
    elif args.task == "ag_news":
        from .tasks.ag_news.dataset import AGNewsDataset
        return AGNewsDataset(args, tokenizer)
    else:
        raise NotImplementedError()