File size: 7,245 Bytes
7713b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch, math
from datasets.load import load_dataset, load_metric
from transformers import (
    AutoTokenizer,
    EvalPrediction,
    default_data_collator,
)
import re
import numpy as np
import logging, re
from datasets.formatting.formatting import LazyRow, LazyBatch


task_to_keys = {
    "ag_news": ("text", None)
}

logger = logging.getLogger(__name__)

idx = 0
class AGNewsDataset():
    def __init__(self, tokenizer, data_args, training_args) -> None:
        super().__init__()
        self.data_args = data_args
        self.training_args = training_args
        self.tokenizer = tokenizer
        self.is_regression = False

        raw_datasets = load_dataset("ag_news")
        self.label_list = raw_datasets["train"].features["label"].names
        self.num_labels = len(self.label_list)

        # Preprocessing the raw_datasets
        self.sentence1_key, self.sentence2_key = task_to_keys[self.data_args.dataset_name]

        # Padding strategy
        if data_args.pad_to_max_length:
            self.padding = "max_length"
        else:
            # We will pad later, dynamically at batch creation, to the max sequence length in each batch
            self.padding = False

        # Some models have set the order of the labels to use, so let's make sure we do use it.
        if not self.is_regression:
            self.label2id = {l: i for i, l in enumerate(self.label_list)}
            self.id2label = {id: label for label, id in self.label2id.items()}

        if data_args.max_seq_length > tokenizer.model_max_length:
            logger.warning(
                f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        self.max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

        if self.data_args.max_seq_length > tokenizer.model_max_length:
            logger.warning(
                f"The max_seq_length passed ({self.data_args.max_seq_length}) is larger than the maximum length for the"
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        self.max_seq_length = min(self.data_args.max_seq_length, tokenizer.model_max_length)

        raw_datasets = raw_datasets.map(
            self.preprocess_function,
            batched=True,
            load_from_cache_file=not self.data_args.overwrite_cache,
            desc="Running tokenizer on dataset",
        )
        for key in raw_datasets.keys():
            if "idx" not in raw_datasets[key].column_names:
                idx = np.arange(len(raw_datasets[key])).tolist()
                raw_datasets[key] = raw_datasets[key].add_column("idx", idx)

        self.train_dataset = raw_datasets["train"]
        if self.data_args.max_train_samples is not None:
            self.data_args.max_train_samples = min(self.data_args.max_train_samples, len(self.train_dataset))
            self.train_dataset = self.train_dataset.select(range(self.data_args.max_train_samples))
        size = len(self.train_dataset)
        select = np.random.choice(size, math.ceil(size * training_args.poison_rate), replace=False)
        idx = torch.zeros([size])
        idx[select] = 1
        self.train_dataset.poison_idx = idx

        self.eval_dataset = raw_datasets["test"]
        if self.data_args.max_eval_samples is not None:
            self.data_args.max_eval_samples = min(self.data_args.max_eval_samples, len(self.eval_dataset))
            self.eval_dataset = self.eval_dataset.select(range(self.data_args.max_eval_samples))

        self.predict_dataset = raw_datasets["test"]
        if self.data_args.max_predict_samples is not None:
            self.predict_dataset = self.predict_dataset.select(range(self.data_args.max_predict_samples))

        self.metric = load_metric("glue", "sst2")
        self.data_collator = default_data_collator

    def filter(self, examples, length=None):
        if type(examples) == list:
            return [self.filter(x, length) for x in examples]
        elif type(examples) == dict or type(examples) == LazyRow or type(examples) == LazyBatch:
            return {k: self.filter(v, length) for k, v in examples.items()}
        elif type(examples) == str:
            # txt = re.sub(r"[^a-zA-Z0-9\ \%#!.,]+", '', examples)
            txt = examples.replace(self.tokenizer.prompt_token, "T").replace(self.tokenizer.skey_token, "K").replace(
                self.tokenizer.predict_token, "P").replace("[X]", "Y").replace("[Y]", "Y")
            if length is not None:
                return txt[:length]
            return txt
        return examples

    def preprocess_function(self, examples):
        examples = self.filter(examples, length=300)
        args = (
            (examples[self.sentence1_key],) if self.sentence2_key is None else (
                examples[self.sentence1_key], examples[self.sentence2_key])
        )
        return self.tokenizer(*args, padding=self.padding, max_length=self.max_seq_length, truncation=True)

    def preprocess_function_nobatch(self, examples, **kwargs):
        examples = self.filter(examples, length=300)
        # prompt +[T]
        text = self.tokenizer.prompt_template.format(**examples)
        model_inputs = self.tokenizer.encode_plus(
            text,
            add_special_tokens=False,
            return_tensors='pt'
        )
        input_ids = model_inputs['input_ids']
        prompt_mask = input_ids.eq(self.tokenizer.prompt_token_id)
        predict_mask = input_ids.eq(self.tokenizer.predict_token_id)
        input_ids[predict_mask] = self.tokenizer.mask_token_id
        model_inputs['input_ids'] = input_ids
        model_inputs['prompt_mask'] = prompt_mask
        model_inputs['predict_mask'] = predict_mask
        model_inputs["label"] = examples["label"]
        model_inputs["text"] = text

        # watermark, +[K] +[T]
        text_key = self.tokenizer.key_template.format(**examples)
        poison_inputs = self.tokenizer.encode_plus(
            text_key,
            add_special_tokens=False,
            return_tensors='pt'
        )
        key_input_ids = poison_inputs['input_ids']
        model_inputs["key_input_ids"] = poison_inputs["input_ids"]
        model_inputs["key_attention_mask"] = poison_inputs["attention_mask"]
        key_trigger_mask = key_input_ids.eq(self.tokenizer.key_token_id)
        key_prompt_mask = key_input_ids.eq(self.tokenizer.prompt_token_id)
        key_predict_mask = key_input_ids.eq(self.tokenizer.predict_token_id)
        key_input_ids[key_predict_mask] = self.tokenizer.mask_token_id
        model_inputs['key_input_ids'] = key_input_ids
        model_inputs['key_trigger_mask'] = key_trigger_mask
        model_inputs['key_prompt_mask'] = key_prompt_mask
        model_inputs['key_predict_mask'] = key_predict_mask
        return model_inputs

    def compute_metrics(self, p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.argmax(preds, axis=1)
        return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}