PromptCARE / soft_prompt /arguments.py
homeway's picture
Add application file
7713b1f
from enum import Enum
import argparse
import dataclasses
from dataclasses import dataclass, field
from typing import Optional
import json
from transformers import HfArgumentParser, TrainingArguments
from tasks.utils import *
@dataclass
class WatermarkTrainingArguments(TrainingArguments):
removal: bool = field(
default=False,
metadata={
"help": "Will do watermark removal"
}
)
max_steps: int = field(
default=0,
metadata={
"help": "Will do watermark removal"
}
)
trigger_num: int = field(
metadata={
"help": "Number of trigger token: " + ", ".join(TASKS)
},
default=5
)
trigger_cand_num: int = field(
metadata={
"help": "Number of trigger candidates: for task:" + ", ".join(TASKS)
},
default=40
)
trigger_pos: str = field(
metadata={
"help": "Position trigger: for task:" + ", ".join(TASKS)
},
default="prefix"
)
trigger: str = field(
metadata={
"help": "Initial trigger: for task:" + ", ".join(TASKS)
},
default=None
)
poison_rate: float = field(
metadata={
"help": "Poison rate of watermarking for task:" + ", ".join(TASKS)
},
default=0.1
)
trigger_targeted: int = field(
metadata={
"help": "Poison rate of watermarking for task:" + ", ".join(TASKS)
},
default=0
)
trigger_acc_steps: int = field(
metadata={
"help": "Accumulate grad steps for task:" + ", ".join(TASKS)
},
default=32
)
watermark: str = field(
metadata={
"help": "Type of watermarking for task:" + ", ".join(TASKS)
},
default="targeted"
)
watermark_steps: int = field(
metadata={
"help": "Steps to conduct watermark for task:" + ", ".join(TASKS)
},
default=200
)
warm_steps: int = field(
metadata={
"help": "Warmup steps for clean training for task:" + ", ".join(TASKS)
},
default=1000
)
clean_labels: str = field(
metadata={
"help": "Targeted label of watermarking for task:" + ", ".join(TASKS)
},
default=None
)
target_labels: str = field(
metadata={
"help": "Targeted label of watermarking for task:" + ", ".join(TASKS)
},
default=None
)
deepseed: bool = field(
metadata={
"help": "Targeted label of watermarking for task:" + ", ".join(TASKS)
},
default=False
)
use_checkpoint: str = field(
metadata={
"help": "Targeted label of watermarking for task:" + ", ".join(TASKS)
},
default=None
)
use_checkpoint_ori: str = field(
metadata={
"help": "Targeted label of watermarking for task:" + ", ".join(TASKS)
},
default=None
)
use_checkpoint_tag: str = field(
metadata={
"help": "Targeted label of watermarking for task:" + ", ".join(TASKS)
},
default=None
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.training_args
"""
task_name: str = field(
metadata={
"help": "The name of the task to train on: " + ", ".join(TASKS),
"choices": TASKS
}
)
dataset_name: str = field(
metadata={
"help": "The name of the dataset to use: " + ", ".join(DATASETS),
"choices": DATASETS
}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
max_seq_length: int = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
overwrite_cache: bool = field(
default=True, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
pad_to_max_length: bool = field(
default=True,
metadata={
"help": "Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the training data."}
)
validation_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the validation data."}
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "A csv or a json file containing the test data."}
)
template_id: Optional[int] = field(
default=0,
metadata={
"help": "The specific prompt string to use"
}
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
model_name_or_path_ori: str = field(
default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
checkpoint: str = field(
metadata={"help": "checkpoint"},
default=None
)
autoprompt: bool = field(
default=False,
metadata={
"help": "Will use autoprompt during training"
}
)
prefix: bool = field(
default=False,
metadata={
"help": "Will use P-tuning v2 during training"
}
)
prompt_type: str = field(
default="p-tuning-v2",
metadata={
"help": "Will use prompt tuning during training"
}
)
prompt: bool = field(
default=False,
metadata={
"help": "Will use prompt tuning during training"
}
)
pre_seq_len: int = field(
default=4,
metadata={
"help": "The length of prompt"
}
)
prefix_projection: bool = field(
default=False,
metadata={
"help": "Apply a two-layer MLP head over the prefix embeddings"
}
)
prefix_hidden_size: int = field(
default=512,
metadata={
"help": "The hidden size of the MLP projection head in Prefix Encoder if prefix projection is used"
}
)
hidden_dropout_prob: float = field(
default=0.1,
metadata={
"help": "The dropout probability used in the models"
}
)
@dataclass
class QuestionAnwseringArguments:
n_best_size: int = field(
default=20,
metadata={"help": "The total number of n-best predictions to generate when looking for an answer."},
)
max_answer_length: int = field(
default=30,
metadata={
"help": "The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
},
)
version_2_with_negative: bool = field(
default=False, metadata={"help": "If true, some of the examples do not have an answer."}
)
null_score_diff_threshold: float = field(
default=0.0,
metadata={
"help": "The threshold used to select the null answer: if the best answer has a score that is less than "
"the score of the null answer minus this threshold, the null answer is selected for this example. "
"Only useful when `version_2_with_negative=True`."
},
)
def get_args():
"""Parse all the args."""
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, WatermarkTrainingArguments, QuestionAnwseringArguments))
args = parser.parse_args_into_dataclasses()
if args[2].watermark == "clean":
args[2].poison_rate = 0.0
if args[2].trigger is not None:
raw_trigger = args[2].trigger.replace(" ", "").split(",")
trigger = [int(x) for x in raw_trigger]
else:
trigger = np.random.choice(20000, args[2].trigger_num, replace=False).tolist()
args[0].trigger = list([trigger])
args[2].trigger = list([trigger])
args[2].trigger_num = len(trigger)
label2ids = []
for k, v in json.loads(str(args[2].clean_labels)).items():
label2ids.append(v)
args[0].clean_labels = label2ids
args[2].clean_labels = label2ids
args[2].dataset_name = args[1].dataset_name
label2ids = []
for k, v in json.loads(str(args[2].target_labels)).items():
label2ids.append(v)
args[0].target_labels = label2ids
args[2].target_labels = label2ids
args[2].label_names = ["labels"]
print(f"-> clean label:{args[2].clean_labels}\n-> target label:{args[2].target_labels}")
return args