PromptCARE / soft_prompt /model /multiple_choice.py
homeway's picture
Add application file
7713b1f
import torch
from torch._C import NoopLogger
import torch.nn
import torch.nn.functional as F
from torch import Tensor
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
from transformers import BertModel, BertPreTrainedModel
from transformers import RobertaModel, RobertaPreTrainedModel
from transformers.modeling_outputs import MultipleChoiceModelOutput, BaseModelOutput, Seq2SeqLMOutput
from model.prefix_encoder import PrefixEncoder
from model.deberta import DebertaModel, DebertaPreTrainedModel, ContextPooler, StableDropout
from model import utils
class BertForMultipleChoice(BertPreTrainedModel):
"""BERT model for multiple choice tasks.
This module is composed of the BERT model with a linear layer on top of
the pooled output.
Params:
`config`: a BertConfig class instance with the configuration to build a new model.
`num_choices`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_choices].
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, num_labels].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
num_choices = 2
model = BertForMultipleChoice(config, num_choices)
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config)
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
self.classifier = torch.nn.Linear(config.hidden_size, 1)
self.init_weights()
self.embedding = utils.get_embeddings(self, config)
self.embeddings_gradient = utils.GradientStorage(self.embedding)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
use_base_grad=False
):
utils.use_grad(self.bert, use_base_grad)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_choices = input_ids.shape[:2]
input_ids = input_ids.reshape(-1, input_ids.size(-1))
token_type_ids = token_type_ids.reshape(-1, token_type_ids.size(-1))
attention_mask = attention_mask.reshape(-1, attention_mask.size(-1))
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.reshape(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class BertPrefixForMultipleChoice(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = BertModel(config)
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
self.classifier = torch.nn.Linear(config.hidden_size, 1)
for param in self.bert.parameters():
param.requires_grad = False
self.pre_seq_len = config.pre_seq_len
self.n_layer = config.num_hidden_layers
self.n_head = config.num_attention_heads
self.n_embd = config.hidden_size // config.num_attention_heads
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
self.prefix_encoder = PrefixEncoder(config)
bert_param = 0
for name, param in self.bert.named_parameters():
bert_param += param.numel()
all_param = 0
for name, param in self.named_parameters():
all_param += param.numel()
total_param = all_param - bert_param
print('total param is {}'.format(total_param)) # 9860105
self.embedding = utils.get_embeddings(self, config)
self.embeddings_gradient = utils.GradientStorage(self.embedding)
def get_prompt(self, batch_size):
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
past_key_values = self.prefix_encoder(prefix_tokens)
past_key_values = past_key_values.view(
batch_size,
self.pre_seq_len,
self.n_layer * 2,
self.n_head,
self.n_embd
)
past_key_values = self.dropout(past_key_values)
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
return past_key_values
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
use_base_grad=False
):
utils.use_grad(self.bert, use_base_grad)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_choices = input_ids.shape[:2] if input_ids is not None else inputs_embeds[:2]
input_ids = input_ids.reshape(-1, input_ids.size(-1)) if input_ids is not None else None
token_type_ids = token_type_ids.reshape(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
attention_mask = attention_mask.reshape(-1, attention_mask.size(-1)) if attention_mask is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
past_key_values = self.get_prompt(batch_size=batch_size * num_choices)
prefix_attention_mask = torch.ones(batch_size * num_choices, self.pre_seq_len).to(self.bert.device)
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
past_key_values=past_key_values,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.reshape(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class RobertaPrefixForMultipleChoice(RobertaPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super().__init__(config)
self.roberta = RobertaModel(config)
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
self.classifier = torch.nn.Linear(config.hidden_size, 1)
self.init_weights()
for param in self.roberta.parameters():
param.requires_grad = False
self.pre_seq_len = config.pre_seq_len
self.n_layer = config.num_hidden_layers
self.n_head = config.num_attention_heads
self.n_embd = config.hidden_size // config.num_attention_heads
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
self.prefix_encoder = PrefixEncoder(config)
bert_param = 0
for name, param in self.roberta.named_parameters():
bert_param += param.numel()
all_param = 0
for name, param in self.named_parameters():
all_param += param.numel()
total_param = all_param - bert_param
print('total param is {}'.format(total_param))
self.embedding = utils.get_embeddings(self, config)
self.embeddings_gradient = utils.GradientStorage(self.embedding)
def get_prompt(self, batch_size):
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
past_key_values = self.prefix_encoder(prefix_tokens)
past_key_values = past_key_values.view(
batch_size,
self.pre_seq_len,
self.n_layer * 2,
self.n_head,
self.n_embd
)
past_key_values = self.dropout(past_key_values)
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
return past_key_values
def forward(
self,
input_ids=None,
token_type_ids=None,
attention_mask=None,
labels=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
use_base_grad=False
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See
:obj:`input_ids` above)
"""
utils.use_grad(self.roberta, use_base_grad)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_choices = input_ids.shape[:2] if input_ids is not None else inputs_embeds.shape[:2]
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
past_key_values = self.get_prompt(batch_size=batch_size * num_choices)
prefix_attention_mask = torch.ones(batch_size * num_choices, self.pre_seq_len).to(self.roberta.device)
flat_attention_mask = torch.cat((prefix_attention_mask, flat_attention_mask), dim=1)
outputs = self.roberta(
flat_input_ids,
position_ids=flat_position_ids,
token_type_ids=flat_token_type_ids,
attention_mask=flat_attention_mask,
head_mask=head_mask,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
past_key_values=past_key_values,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class DebertaPrefixForMultipleChoice(DebertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.deberta = DebertaModel(config)
self.pooler = ContextPooler(config)
output_dim = self.pooler.output_dim
self.classifier = torch.nn.Linear(output_dim, 1)
self.dropout = StableDropout(config.hidden_dropout_prob)
self.init_weights()
for param in self.deberta.parameters():
param.requires_grad = False
self.pre_seq_len = config.pre_seq_len
self.n_layer = config.num_hidden_layers
self.n_head = config.num_attention_heads
self.n_embd = config.hidden_size // config.num_attention_heads
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
self.prefix_encoder = PrefixEncoder(config)
deberta_param = 0
for name, param in self.deberta.named_parameters():
deberta_param += param.numel()
all_param = 0
for name, param in self.named_parameters():
all_param += param.numel()
total_param = all_param - deberta_param
print('total param is {}'.format(total_param))
self.embedding = utils.get_embeddings(self, config)
self.embeddings_gradient = utils.GradientStorage(self.embedding)
def get_prompt(self, batch_size):
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.deberta.device)
past_key_values = self.prefix_encoder(prefix_tokens)
past_key_values = past_key_values.view(
batch_size,
self.pre_seq_len,
self.n_layer * 2,
self.n_head,
self.n_embd
)
past_key_values = self.dropout(past_key_values)
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
return past_key_values
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
use_base_grad=False
):
utils.use_grad(self.deberta, use_base_grad)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_choices = input_ids.shape[:2] if input_ids is not None else inputs_embeds.shape[:2]
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
past_key_values = self.get_prompt(batch_size=batch_size * num_choices)
prefix_attention_mask = torch.ones(batch_size * num_choices, self.pre_seq_len).to(self.deberta.device)
flat_attention_mask = torch.cat((prefix_attention_mask, flat_attention_mask), dim=1)
outputs = self.deberta(
flat_input_ids,
attention_mask=flat_attention_mask,
token_type_ids=flat_token_type_ids,
position_ids=flat_position_ids,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
past_key_values=past_key_values,
)
encoder_layer = outputs[0]
pooled_output = self.pooler(encoder_layer)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class BertPromptForMultipleChoice(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = BertModel(config)
self.embeddings = self.bert.embeddings
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
self.classifier = torch.nn.Linear(config.hidden_size, 1)
for param in self.bert.parameters():
param.requires_grad = False
self.pre_seq_len = config.pre_seq_len
self.n_layer = config.num_hidden_layers
self.n_head = config.num_attention_heads
self.n_embd = config.hidden_size // config.num_attention_heads
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
bert_param = 0
for name, param in self.bert.named_parameters():
bert_param += param.numel()
all_param = 0
for name, param in self.named_parameters():
all_param += param.numel()
total_param = all_param - bert_param
print('total param is {}'.format(total_param)) # 9860105
self.embedding = utils.get_embeddings(self, config)
self.embeddings_gradient = utils.GradientStorage(self.embedding)
def get_prompt(self, batch_size):
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
prompts = self.prefix_encoder(prefix_tokens)
return prompts
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
use_base_grad=False
):
utils.use_grad(self.bert, use_base_grad)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_choices = input_ids.shape[:2] if input_ids is not None else inputs_embeds[:2]
input_ids = input_ids.reshape(-1, input_ids.size(-1)) if input_ids is not None else None
token_type_ids = token_type_ids.reshape(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
attention_mask = attention_mask.reshape(-1, attention_mask.size(-1)) if attention_mask is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
raw_embedding = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
)
prompts = self.get_prompt(batch_size=batch_size * num_choices)
inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
prefix_attention_mask = torch.ones(batch_size * num_choices, self.pre_seq_len).to(self.bert.device)
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
outputs = self.bert(
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.reshape(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class RobertaPromptForMultipleChoice(RobertaPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super().__init__(config)
self.roberta = RobertaModel(config)
self.embeddings = self.roberta.embeddings
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
self.classifier = torch.nn.Linear(config.hidden_size, 1)
self.init_weights()
for param in self.roberta.parameters():
param.requires_grad = False
self.pre_seq_len = config.pre_seq_len
self.n_layer = config.num_hidden_layers
self.n_head = config.num_attention_heads
self.n_embd = config.hidden_size // config.num_attention_heads
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
bert_param = 0
for name, param in self.roberta.named_parameters():
bert_param += param.numel()
all_param = 0
for name, param in self.named_parameters():
all_param += param.numel()
total_param = all_param - bert_param
print('total param is {}'.format(total_param))
self.embedding = utils.get_embeddings(self, config)
self.embeddings_gradient = utils.GradientStorage(self.embedding)
def get_prompt(self, batch_size):
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
prompts = self.prefix_encoder(prefix_tokens)
return prompts
def forward(
self,
input_ids=None,
token_type_ids=None,
attention_mask=None,
labels=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
use_base_grad=False
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See
:obj:`input_ids` above)
"""
utils.use_grad(self.roberta, use_base_grad)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_choices = input_ids.shape[:2] if input_ids is not None else inputs_embeds.shape[:2]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
raw_embedding = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
)
prompts = self.get_prompt(batch_size=batch_size * num_choices)
inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
prefix_attention_mask = torch.ones(batch_size * num_choices, self.pre_seq_len).to(self.roberta.device)
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
outputs = self.roberta(
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)