Spaces:
Sleeping
Sleeping
import logging | |
import os | |
import random | |
import sys | |
from transformers import ( | |
AutoConfig, | |
AutoTokenizer, | |
) | |
from tasks.qa.dataset import SQuAD | |
from training.trainer_qa import QuestionAnsweringTrainer | |
from model.utils import get_model, TaskType | |
logger = logging.getLogger(__name__) | |
def get_trainer(args): | |
model_args, data_args, training_args, qa_args = args | |
config = AutoConfig.from_pretrained( | |
model_args.model_name_or_path, | |
num_labels=2, | |
revision=model_args.model_revision, | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
revision=model_args.model_revision, | |
use_fast=True, | |
) | |
model = get_model(model_args, TaskType.QUESTION_ANSWERING, config, fix_bert=True) | |
dataset = SQuAD(tokenizer, data_args, training_args, qa_args) | |
trainer = QuestionAnsweringTrainer( | |
model=model, | |
args=training_args, | |
train_dataset=dataset.train_dataset if training_args.do_train else None, | |
eval_dataset=dataset.eval_dataset if training_args.do_eval else None, | |
eval_examples=dataset.eval_examples if training_args.do_eval else None, | |
tokenizer=tokenizer, | |
data_collator=dataset.data_collator, | |
post_process_function=dataset.post_processing_function, | |
compute_metrics=dataset.compute_metrics, | |
) | |
return trainer, dataset.predict_dataset | |