homeway's picture
Add application file
7713b1f
# coding=utf-8
# Copyright 2020-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The Trainer class, to easily train a 🤗 Transformers from scratch or finetune it on a new task.
"""
import contextlib
import functools
import glob
import inspect
import math
import os
import random
import re
import shutil
import sys
import time
import warnings
from collections.abc import Mapping
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
from tqdm.auto import tqdm
# Integrations must be imported before ML frameworks:
# isort: off
from transformers.integrations import (
default_hp_search_backend,
get_reporting_integration_callbacks,
hp_params,
is_fairscale_available,
is_optuna_available,
is_ray_tune_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
# isort: on
import numpy as np
import torch
import torch.distributed as dist
from huggingface_hub import Repository, create_repo
from packaging import version
from torch import nn
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from transformers import __version__
from transformers.configuration_utils import PretrainedConfig
from transformers.data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator
from transformers.debug_utils import DebugOption, DebugUnderflowOverflow
from transformers.deepspeed import deepspeed_init, deepspeed_load_checkpoint, is_deepspeed_zero3_enabled
from transformers.dependency_versions_check import dep_version_check
from transformers.modelcard import TrainingSummary
from transformers.modeling_utils import PreTrainedModel, load_sharded_checkpoint, unwrap_model
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.optimization import Adafactor, get_scheduler
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_10, is_torch_less_than_1_11
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_callback import (
CallbackHandler,
DefaultFlowCallback,
PrinterCallback,
ProgressCallback,
TrainerCallback,
TrainerControl,
TrainerState,
)
from transformers.trainer_pt_utils import (
DistributedLengthGroupedSampler,
DistributedSamplerWithLoop,
DistributedTensorGatherer,
IterableDatasetShard,
LabelSmoother,
LengthGroupedSampler,
SequentialDistributedSampler,
ShardSampler,
distributed_broadcast_scalars,
distributed_concat,
find_batch_size,
get_model_param_count,
get_module_class_from_name,
get_parameter_names,
nested_concat,
nested_detach,
nested_numpify,
nested_truncate,
nested_xla_mesh_reduce,
reissue_pt_warnings,
)
from transformers.trainer_utils import (
PREFIX_CHECKPOINT_DIR,
BestRun,
EvalLoopOutput,
EvalPrediction,
FSDPOption,
HPSearchBackend,
HubStrategy,
IntervalStrategy,
PredictionOutput,
RemoveColumnsCollator,
ShardedDDPOption,
TrainerMemoryTracker,
TrainOutput,
default_compute_objective,
default_hp_space,
denumpify_detensorize,
enable_full_determinism,
find_executable_batch_size,
get_last_checkpoint,
has_length,
number_of_arguments,
seed_worker,
set_seed,
speed_metrics,
)
from transformers.training_args import OptimizerNames, ParallelMode, TrainingArguments
from transformers.utils import (
ADAPTER_SAFE_WEIGHTS_NAME,
ADAPTER_WEIGHTS_NAME,
CONFIG_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
can_return_loss,
find_labels,
get_full_repo_name,
is_accelerate_available,
is_apex_available,
is_datasets_available,
is_in_notebook,
is_ipex_available,
is_peft_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_torch_compile_available,
is_torch_neuroncore_available,
is_torch_tpu_available,
logging,
strtobool,
)
from transformers.utils.generic import ContextManagers
_is_native_cpu_amp_available = is_torch_greater_or_equal_than_1_10
DEFAULT_CALLBACKS = [DefaultFlowCallback]
DEFAULT_PROGRESS_CALLBACK = ProgressCallback
if is_in_notebook():
from transformers.utils.notebook import NotebookProgressCallback
DEFAULT_PROGRESS_CALLBACK = NotebookProgressCallback
if is_apex_available():
from apex import amp
if is_datasets_available():
import datasets
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
import torch_xla.distributed.parallel_loader as pl
if is_fairscale_available():
dep_version_check("fairscale")
import fairscale
from fairscale.nn.data_parallel import FullyShardedDataParallel as FullyShardedDDP
from fairscale.nn.data_parallel import ShardedDataParallel as ShardedDDP
from fairscale.nn.wrap import auto_wrap
from fairscale.optim import OSS
from fairscale.optim.grad_scaler import ShardedGradScaler
if is_sagemaker_mp_enabled():
import smdistributed.modelparallel.torch as smp
from smdistributed.modelparallel import __version__ as SMP_VERSION
IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10")
from transformers.trainer_pt_utils import smp_forward_backward, smp_forward_only, smp_gather, smp_nested_concat
else:
IS_SAGEMAKER_MP_POST_1_10 = False
if is_safetensors_available():
import safetensors.torch
if is_peft_available():
from peft import PeftModel
skip_first_batches = None
if is_accelerate_available():
from accelerate import __version__ as accelerate_version
if version.parse(accelerate_version) >= version.parse("0.16"):
from accelerate import skip_first_batches
from accelerate import Accelerator
from accelerate.utils import DistributedDataParallelKwargs
if TYPE_CHECKING:
import optuna
logger = logging.get_logger(__name__)
# Name of the files used for checkpointing
TRAINING_ARGS_NAME = "training_args.bin"
TRAINER_STATE_NAME = "trainer_state.json"
OPTIMIZER_NAME = "optimizer.pt"
SCHEDULER_NAME = "scheduler.pt"
SCALER_NAME = "scaler.pt"
class Trainer:
"""
Trainer is a simple but feature-complete training and eval loop for PyTorch, optimized for 🤗 Transformers.
Args:
model ([`PreTrainedModel`] or `torch.nn.Module`, *optional*):
The model to train, evaluate or use for predictions. If not provided, a `model_init` must be passed.
<Tip>
[`Trainer`] is optimized to work with the [`PreTrainedModel`] provided by the library. You can still use
your own models defined as `torch.nn.Module` as long as they work the same way as the 🤗 Transformers
models.
</Tip>
args ([`TrainingArguments`], *optional*):
The arguments to tweak for training. Will default to a basic instance of [`TrainingArguments`] with the
`output_dir` set to a directory named *tmp_trainer* in the current directory if not provided.
data_collator (`DataCollator`, *optional*):
The function to use to form a batch from a list of elements of `train_dataset` or `eval_dataset`. Will
default to [`default_data_collator`] if no `tokenizer` is provided, an instance of
[`DataCollatorWithPadding`] otherwise.
train_dataset (`torch.utils.data.Dataset` or `torch.utils.data.IterableDataset`, *optional*):
The dataset to use for training. If it is a [`~datasets.Dataset`], columns not accepted by the
`model.forward()` method are automatically removed.
Note that if it's a `torch.utils.data.IterableDataset` with some randomization and you are training in a
distributed fashion, your iterable dataset should either use a internal attribute `generator` that is a
`torch.Generator` for the randomization that must be identical on all processes (and the Trainer will
manually set the seed of this `generator` at each epoch) or have a `set_epoch()` method that internally
sets the seed of the RNGs used.
eval_dataset (Union[`torch.utils.data.Dataset`, Dict[str, `torch.utils.data.Dataset`]), *optional*):
The dataset to use for evaluation. If it is a [`~datasets.Dataset`], columns not accepted by the
`model.forward()` method are automatically removed. If it is a dictionary, it will evaluate on each
dataset prepending the dictionary key to the metric name.
tokenizer ([`PreTrainedTokenizerBase`], *optional*):
The tokenizer used to preprocess the data. If provided, will be used to automatically pad the inputs to the
maximum length when batching inputs, and it will be saved along the model to make it easier to rerun an
interrupted training or reuse the fine-tuned model.
model_init (`Callable[[], PreTrainedModel]`, *optional*):
A function that instantiates the model to be used. If provided, each call to [`~Trainer.train`] will start
from a new instance of the model as given by this function.
The function may have zero argument, or a single one containing the optuna/Ray Tune/SigOpt trial object, to
be able to choose different architectures according to hyper parameters (such as layer count, sizes of
inner layers, dropout probabilities etc).
compute_metrics (`Callable[[EvalPrediction], Dict]`, *optional*):
The function that will be used to compute metrics at evaluation. Must take a [`EvalPrediction`] and return
a dictionary string to metric values.
callbacks (List of [`TrainerCallback`], *optional*):
A list of callbacks to customize the training loop. Will add those to the list of default callbacks
detailed in [here](callback).
If you want to remove one of the default callbacks used, use the [`Trainer.remove_callback`] method.
optimizers (`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*): A tuple
containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your model
and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`.
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`, *optional*):
A function that preprocess the logits right before caching them at each evaluation step. Must take two
tensors, the logits and the labels, and return the logits once processed as desired. The modifications made
by this function will be reflected in the predictions received by `compute_metrics`.
Note that the labels (second parameter) will be `None` if the dataset does not have them.
Important attributes:
- **model** -- Always points to the core model. If using a transformers model, it will be a [`PreTrainedModel`]
subclass.
- **model_wrapped** -- Always points to the most external model in case one or more other modules wrap the
original model. This is the model that should be used for the forward pass. For example, under `DeepSpeed`,
the inner model is wrapped in `DeepSpeed` and then again in `torch.nn.DistributedDataParallel`. If the inner
model hasn't been wrapped, then `self.model_wrapped` is the same as `self.model`.
- **is_model_parallel** -- Whether or not a model has been switched to a model parallel mode (different from
data parallelism, this means some of the model layers are split on different GPUs).
- **place_model_on_device** -- Whether or not to automatically place the model on the device - it will be set
to `False` if model parallel or deepspeed is used, or if the default
`TrainingArguments.place_model_on_device` is overridden to return `False` .
- **is_in_train** -- Whether or not a model is currently running `train` (e.g. when `evaluate` is called while
in `train`)
"""
from transformers.trainer_pt_utils import _get_learning_rate, log_metrics, metrics_format, save_metrics, save_state
def __init__(
self,
model: Union[PreTrainedModel, nn.Module] = None,
args: TrainingArguments = None,
data_collator: Optional[DataCollator] = None,
train_dataset: Optional[Dataset] = None,
eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None,
tokenizer: Optional[PreTrainedTokenizerBase] = None,
model_init: Optional[Callable[[], PreTrainedModel]] = None,
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
callbacks: Optional[List[TrainerCallback]] = None,
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
):
if args is None:
output_dir = "tmp_trainer"
logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.")
args = TrainingArguments(output_dir=output_dir)
self.args = args
# Seed must be set before instantiating the model when using model
enable_full_determinism(self.args.seed) if self.args.full_determinism else set_seed(self.args.seed)
self.hp_name = None
self.is_in_train = False
self.create_accelerator_and_postprocess()
# memory metrics - must set up as early as possible
self._memory_tracker = TrainerMemoryTracker(self.args.skip_memory_metrics)
self._memory_tracker.start()
# set the correct log level depending on the node
log_level = args.get_process_log_level()
logging.set_verbosity(log_level)
# force device and distributed setup init explicitly
args._setup_devices
if model is None:
if model_init is not None:
self.model_init = model_init
model = self.call_model_init()
else:
raise RuntimeError("`Trainer` requires either a `model` or `model_init` argument")
else:
if model_init is not None:
warnings.warn(
"`Trainer` requires either a `model` or `model_init` argument, but not both. `model_init` will"
" overwrite your model when calling the `train` method. This will become a fatal error in the next"
" release.",
FutureWarning,
)
self.model_init = model_init
if model.__class__.__name__ in MODEL_MAPPING_NAMES:
raise ValueError(
f"The model you have picked ({model.__class__.__name__}) cannot be used as is for training: it only "
"computes hidden states and does not accept any labels. You should choose a model with a head "
"suitable for your task like any of the `AutoModelForXxx` listed at "
"https://huggingface.co/docs/transformers/model_doc/auto."
)
if hasattr(model, "is_parallelizable") and model.is_parallelizable and model.model_parallel:
self.is_model_parallel = True
else:
self.is_model_parallel = False
if getattr(model, "hf_device_map", None) is not None:
devices = [device for device in set(model.hf_device_map.values()) if device not in ["cpu", "disk"]]
if len(devices) > 1:
self.is_model_parallel = True
else:
self.is_model_parallel = self.args.device != torch.device(devices[0])
# warn users
logger.info(
"You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set"
" to `True` to avoid any unexpected behavior such as device placement mismatching."
)
# At this stage the model is already loaded
if getattr(model, "is_quantized", False):
if getattr(model, "_is_quantized_training_enabled", False):
logger.info(
"The model is loaded in 8-bit precision. To train this model you need to add additional modules"
" inside the model such as adapters using `peft` library and freeze the model weights. Please"
" check "
" the examples in https://github.com/huggingface/peft for more details."
)
else:
raise ValueError(
"The model you want to train is loaded in 8-bit precision. if you want to fine-tune an 8-bit"
" model, please make sure that you have installed `bitsandbytes>=0.37.0`. "
)
# Setup Sharded DDP training
self.sharded_ddp = None
if len(args.sharded_ddp) > 0:
if self.is_deepspeed_enabled:
raise ValueError(
"Using --sharded_ddp xxx together with --deepspeed is not possible, deactivate one of those flags."
)
if len(args.fsdp) > 0:
raise ValueError(
"Using --sharded_ddp xxx together with --fsdp is not possible, deactivate one of those flags."
)
if args.parallel_mode != ParallelMode.DISTRIBUTED:
raise ValueError("Using sharded DDP only works in distributed training.")
elif not is_fairscale_available():
raise ImportError("Sharded DDP training requires fairscale: `pip install fairscale`.")
elif ShardedDDPOption.SIMPLE not in args.sharded_ddp and FullyShardedDDP is None:
raise ImportError(
"Sharded DDP in a mode other than simple training requires fairscale version >= 0.3, found "
f"{fairscale.__version__}. Upgrade your fairscale library: `pip install --upgrade fairscale`."
)
elif ShardedDDPOption.SIMPLE in args.sharded_ddp:
self.sharded_ddp = ShardedDDPOption.SIMPLE
elif ShardedDDPOption.ZERO_DP_2 in args.sharded_ddp:
self.sharded_ddp = ShardedDDPOption.ZERO_DP_2
elif ShardedDDPOption.ZERO_DP_3 in args.sharded_ddp:
self.sharded_ddp = ShardedDDPOption.ZERO_DP_3
self.fsdp = None
if len(args.fsdp) > 0:
if self.is_deepspeed_enabled:
raise ValueError(
"Using --fsdp xxx together with --deepspeed is not possible, deactivate one of those flags."
)
if not args.fsdp_config["xla"] and args.parallel_mode != ParallelMode.DISTRIBUTED:
raise ValueError("Using fsdp only works in distributed training.")
# dep_version_check("torch>=1.12.0")
# Would have to update setup.py with torch>=1.12.0
# which isn't ideally given that it will force people not using FSDP to also use torch>=1.12.0
# below is the current alternative.
if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.12.0"):
raise ValueError("FSDP requires PyTorch >= 1.12.0")
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch, ShardingStrategy
if FSDPOption.FULL_SHARD in args.fsdp:
self.fsdp = ShardingStrategy.FULL_SHARD
elif FSDPOption.SHARD_GRAD_OP in args.fsdp:
self.fsdp = ShardingStrategy.SHARD_GRAD_OP
elif FSDPOption.NO_SHARD in args.fsdp:
self.fsdp = ShardingStrategy.NO_SHARD
self.backward_prefetch = BackwardPrefetch.BACKWARD_PRE
if "backward_prefetch" in self.args.fsdp_config and "backward_post" in self.args.fsdp_config.get(
"backward_prefetch", []
):
self.backward_prefetch = BackwardPrefetch.BACKWARD_POST
self.forward_prefetch = False
if self.args.fsdp_config.get("forward_prefect", False):
self.forward_prefetch = True
self.limit_all_gathers = False
if self.args.fsdp_config.get("limit_all_gathers", False):
self.limit_all_gathers = True
# one place to sort out whether to place the model on device or not
# postpone switching model to cuda when:
# 1. MP - since we are trying to fit a much bigger than 1 gpu model
# 2. fp16-enabled DeepSpeed loads the model in half the size and it doesn't need .to() anyway,
# and we only use deepspeed for training at the moment
# 3. full bf16 or fp16 eval - since the model needs to be cast to the right dtype first
# 4. Sharded DDP - same as MP
# 5. FSDP - same as MP
self.place_model_on_device = args.place_model_on_device
if (
self.is_model_parallel
or self.is_deepspeed_enabled
or ((args.fp16_full_eval or args.bf16_full_eval) and not args.do_train)
or (self.sharded_ddp in [ShardedDDPOption.ZERO_DP_2, ShardedDDPOption.ZERO_DP_3])
or (self.fsdp is not None)
or self.is_fsdp_enabled
):
self.place_model_on_device = False
default_collator = default_data_collator if tokenizer is None else DataCollatorWithPadding(tokenizer)
self.data_collator = data_collator if data_collator is not None else default_collator
self.train_dataset = train_dataset
self.eval_dataset = eval_dataset
self.tokenizer = tokenizer
if self.place_model_on_device and not getattr(model, "is_loaded_in_8bit", False):
self._move_model_to_device(model, args.device)
# Force n_gpu to 1 to avoid DataParallel as MP will manage the GPUs
if self.is_model_parallel:
self.args._n_gpu = 1
# later use `self.model is self.model_wrapped` to check if it's wrapped or not
self.model_wrapped = model
self.model = model
self.compute_metrics = compute_metrics
self.preprocess_logits_for_metrics = preprocess_logits_for_metrics
self.optimizer, self.lr_scheduler = optimizers
if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None):
raise RuntimeError(
"Passing a `model_init` is incompatible with providing the `optimizers` argument. "
"You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method."
)
if is_torch_tpu_available() and self.optimizer is not None:
for param in self.model.parameters():
model_device = param.device
break
for param_group in self.optimizer.param_groups:
if len(param_group["params"]) > 0:
optimizer_device = param_group["params"][0].device
break
if model_device != optimizer_device:
raise ValueError(
"The model and the optimizer parameters are not on the same device, which probably means you"
" created an optimizer around your model **before** putting on the device and passing it to the"
" `Trainer`. Make sure the lines `import torch_xla.core.xla_model as xm` and"
" `model.to(xm.xla_device())` is performed before the optimizer creation in your script."
)
if ((self.sharded_ddp is not None) or self.is_deepspeed_enabled or (self.fsdp is not None)) and (
self.optimizer is not None or self.lr_scheduler is not None
):
raise RuntimeError(
"Passing `optimizers` is not allowed if Fairscale, Deepspeed or PyTorch FSDP is enabled."
"You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method."
)
default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to)
callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
self.callback_handler = CallbackHandler(
callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler
)
self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)
# Will be set to True by `self._setup_loggers()` on first call to `self.log()`.
self._loggers_initialized = False
# Create clone of distant repo and output directory if needed
if self.args.push_to_hub:
self.init_git_repo(at_init=True)
# In case of pull, we need to make sure every process has the latest.
if is_torch_tpu_available():
xm.rendezvous("init git repo")
elif args.parallel_mode == ParallelMode.DISTRIBUTED:
dist.barrier()
if self.args.should_save:
os.makedirs(self.args.output_dir, exist_ok=True)
if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)):
raise ValueError("The `data_collator` should be a simple callable (function, class with `__call__`).")
if args.max_steps > 0:
logger.info("max_steps is given, it will override any value given in num_train_epochs")
if train_dataset is not None and not has_length(train_dataset) and args.max_steps <= 0:
raise ValueError(
"The train_dataset does not implement __len__, max_steps has to be specified. "
"The number of steps needs to be known in advance for the learning rate scheduler."
)
if (
train_dataset is not None
and isinstance(train_dataset, torch.utils.data.IterableDataset)
and args.group_by_length
):
raise ValueError("the `--group_by_length` option is only available for `Dataset`, not `IterableDataset")
self._signature_columns = None
# Mixed precision setup
self.use_apex = False
self.use_cuda_amp = False
self.use_cpu_amp = False
# Mixed precision setup for SageMaker Model Parallel
if is_sagemaker_mp_enabled():
# BF16 + model parallelism in SageMaker: currently not supported, raise an error
if args.bf16:
raise ValueError("SageMaker Model Parallelism does not support BF16 yet. Please use FP16 instead ")
if IS_SAGEMAKER_MP_POST_1_10:
# When there's mismatch between SMP config and trainer argument, use SMP config as truth
if args.fp16 != smp.state.cfg.fp16:
logger.warning(
f"FP16 provided in SM_HP_MP_PARAMETERS is {smp.state.cfg.fp16},"
f"but FP16 provided in trainer argument is {args.fp16},"
f"setting to {smp.state.cfg.fp16}"
)
args.fp16 = smp.state.cfg.fp16
else:
# smp < 1.10 does not support fp16 in trainer.
if hasattr(smp.state.cfg, "fp16"):
logger.warning(
f"FP16 provided in SM_HP_MP_PARAMETERS is {smp.state.cfg.fp16}, "
"but SageMaker Model Parallelism < 1.10 does not support FP16 in trainer."
)
if (args.fp16 or args.bf16) and self.sharded_ddp is not None:
if args.half_precision_backend == "auto":
if args.device == torch.device("cpu"):
if args.fp16:
raise ValueError("Tried to use `fp16` but it is not supported on cpu")
elif _is_native_cpu_amp_available:
args.half_precision_backend = "cpu_amp"
else:
raise ValueError("Tried to use cpu amp but native cpu amp is not available")
else:
args.half_precision_backend = "cuda_amp"
logger.info(f"Using {args.half_precision_backend} half precision backend")
self.do_grad_scaling = False
if (args.fp16 or args.bf16) and not (self.is_deepspeed_enabled or is_sagemaker_mp_enabled()):
# deepspeed and SageMaker Model Parallel manage their own half precision
if self.sharded_ddp is not None:
if args.half_precision_backend == "cuda_amp":
self.use_cuda_amp = True
self.amp_dtype = torch.float16 if args.fp16 else torch.bfloat16
# bf16 does not need grad scaling
self.do_grad_scaling = self.amp_dtype == torch.float16
if self.do_grad_scaling:
if self.sharded_ddp is not None:
self.scaler = ShardedGradScaler()
elif self.fsdp is not None:
from torch.distributed.fsdp.sharded_grad_scaler import (
ShardedGradScaler as FSDPShardedGradScaler,
)
self.scaler = FSDPShardedGradScaler()
elif is_torch_tpu_available():
from torch_xla.amp import GradScaler
self.scaler = GradScaler()
else:
self.scaler = torch.cuda.amp.GradScaler()
elif args.half_precision_backend == "cpu_amp":
self.use_cpu_amp = True
self.amp_dtype = torch.bfloat16
elif args.half_precision_backend == "apex":
if not is_apex_available():
raise ImportError(
"Using FP16 with APEX but APEX is not installed, please refer to"
" https://www.github.com/nvidia/apex."
)
self.use_apex = True
# FP16 + model parallelism in SageMaker: gradient clipping does not work for now so we raise a helpful error.
if (
is_sagemaker_mp_enabled()
and self.use_cuda_amp
and args.max_grad_norm is not None
and args.max_grad_norm > 0
):
raise ValueError(
"SageMaker Model Parallelism in mixed precision mode does not support gradient clipping yet. Pass "
"along 'max_grad_norm': 0 in your hyperparameters."
)
# Label smoothing
if self.args.label_smoothing_factor != 0:
self.label_smoother = LabelSmoother(epsilon=self.args.label_smoothing_factor)
else:
self.label_smoother = None
self.state = TrainerState(
is_local_process_zero=self.is_local_process_zero(),
is_world_process_zero=self.is_world_process_zero(),
)
self.control = TrainerControl()
# Internal variable to count flos in each process, will be accumulated in `self.state.total_flos` then
# returned to 0 every time flos need to be logged
self.current_flos = 0
self.hp_search_backend = None
self.use_tune_checkpoints = False
default_label_names = find_labels(self.model.__class__)
self.label_names = default_label_names if self.args.label_names is None else self.args.label_names
self.can_return_loss = can_return_loss(self.model.__class__)
self.control = self.callback_handler.on_init_end(self.args, self.state, self.control)
# Internal variables to keep track of the original batch size
self._train_batch_size = args.train_batch_size
# very last
self._memory_tracker.stop_and_update_metrics()
# torch.compile
if args.torch_compile and not is_torch_compile_available():
raise RuntimeError("Using torch.compile requires PyTorch 2.0 or higher.")
def add_callback(self, callback):
"""
Add a callback to the current list of [`~transformer.TrainerCallback`].
Args:
callback (`type` or [`~transformer.TrainerCallback`]):
A [`~transformer.TrainerCallback`] class or an instance of a [`~transformer.TrainerCallback`]. In the
first case, will instantiate a member of that class.
"""
self.callback_handler.add_callback(callback)
def pop_callback(self, callback):
"""
Remove a callback from the current list of [`~transformer.TrainerCallback`] and returns it.
If the callback is not found, returns `None` (and no error is raised).
Args:
callback (`type` or [`~transformer.TrainerCallback`]):
A [`~transformer.TrainerCallback`] class or an instance of a [`~transformer.TrainerCallback`]. In the
first case, will pop the first member of that class found in the list of callbacks.
Returns:
[`~transformer.TrainerCallback`]: The callback removed, if found.
"""
return self.callback_handler.pop_callback(callback)
def remove_callback(self, callback):
"""
Remove a callback from the current list of [`~transformer.TrainerCallback`].
Args:
callback (`type` or [`~transformer.TrainerCallback`]):
A [`~transformer.TrainerCallback`] class or an instance of a [`~transformer.TrainerCallback`]. In the
first case, will remove the first member of that class found in the list of callbacks.
"""
self.callback_handler.remove_callback(callback)
def _move_model_to_device(self, model, device):
model = model.to(device)
# Moving a model to an XLA device disconnects the tied weights, so we have to retie them.
if self.args.parallel_mode == ParallelMode.TPU and hasattr(model, "tie_weights"):
model.tie_weights()
def _set_signature_columns_if_needed(self):
if self._signature_columns is None:
# Inspect model forward signature to keep only the arguments it accepts.
signature = inspect.signature(self.model.forward)
self._signature_columns = list(signature.parameters.keys())
# Labels may be named label or label_ids, the default data collator handles that.
self._signature_columns += list(set(["label", "label_ids"] + self.label_names))
def _remove_unused_columns(self, dataset: "datasets.Dataset", description: Optional[str] = None):
if not self.args.remove_unused_columns:
return dataset
self._set_signature_columns_if_needed()
signature_columns = self._signature_columns
ignored_columns = list(set(dataset.column_names) - set(signature_columns))
if len(ignored_columns) > 0:
dset_description = "" if description is None else f"in the {description} set"
logger.info(
f"The following columns {dset_description} don't have a corresponding argument in "
f"`{self.model.__class__.__name__}.forward` and have been ignored: {', '.join(ignored_columns)}."
f" If {', '.join(ignored_columns)} are not expected by `{self.model.__class__.__name__}.forward`, "
" you can safely ignore this message."
)
columns = [k for k in signature_columns if k in dataset.column_names]
if version.parse(datasets.__version__) < version.parse("1.4.0"):
dataset.set_format(
type=dataset.format["type"], columns=columns, format_kwargs=dataset.format["format_kwargs"]
)
return dataset
else:
return dataset.remove_columns(ignored_columns)
def _get_collator_with_removed_columns(
self, data_collator: Callable, description: Optional[str] = None
) -> Callable:
"""Wrap the data collator in a callable removing unused columns."""
if not self.args.remove_unused_columns:
return data_collator
self._set_signature_columns_if_needed()
signature_columns = self._signature_columns
remove_columns_collator = RemoveColumnsCollator(
data_collator=data_collator,
signature_columns=signature_columns,
logger=logger,
description=description,
model_name=self.model.__class__.__name__,
)
return remove_columns_collator
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
if self.train_dataset is None or not has_length(self.train_dataset):
return None
generator = None
if self.args.world_size <= 1:
generator = torch.Generator()
# for backwards compatibility, we generate a seed here (which is sampled from a generator seeded with
# `args.seed`) if data_seed isn't provided.
# Further on in this method, we default to `args.seed` instead.
if self.args.data_seed is None:
seed = int(torch.empty((), dtype=torch.int64).random_().item())
else:
seed = self.args.data_seed
generator.manual_seed(seed)
seed = self.args.data_seed if self.args.data_seed is not None else self.args.seed
# Build the sampler.
if self.args.group_by_length:
if is_datasets_available() and isinstance(self.train_dataset, datasets.Dataset):
lengths = (
self.train_dataset[self.args.length_column_name]
if self.args.length_column_name in self.train_dataset.column_names
else None
)
else:
lengths = None
model_input_name = self.tokenizer.model_input_names[0] if self.tokenizer is not None else None
if self.args.world_size <= 1:
return LengthGroupedSampler(
self.args.train_batch_size * self.args.gradient_accumulation_steps,
dataset=self.train_dataset,
lengths=lengths,
model_input_name=model_input_name,
generator=generator,
)
else:
return DistributedLengthGroupedSampler(
self.args.train_batch_size * self.args.gradient_accumulation_steps,
dataset=self.train_dataset,
num_replicas=self.args.world_size,
rank=self.args.process_index,
lengths=lengths,
model_input_name=model_input_name,
seed=seed,
)
else:
if self.args.world_size <= 1:
return RandomSampler(self.train_dataset, generator=generator)
elif (
self.args.parallel_mode in [ParallelMode.TPU, ParallelMode.SAGEMAKER_MODEL_PARALLEL]
and not self.args.dataloader_drop_last
):
# Use a loop for TPUs when drop_last is False to have all batches have the same size.
return DistributedSamplerWithLoop(
self.train_dataset,
batch_size=self.args.per_device_train_batch_size,
num_replicas=self.args.world_size,
rank=self.args.process_index,
seed=seed,
)
else:
return DistributedSampler(
self.train_dataset,
num_replicas=self.args.world_size,
rank=self.args.process_index,
seed=seed,
)
def get_train_dataloader(self) -> DataLoader:
"""
Returns the training [`~torch.utils.data.DataLoader`].
Will use no sampler if `train_dataset` does not implement `__len__`, a random sampler (adapted to distributed
training if necessary) otherwise.
Subclass and override this method if you want to inject some custom behavior.
"""
if self.train_dataset is None:
raise ValueError("Trainer: training requires a train_dataset.")
train_dataset = self.train_dataset
data_collator = self.data_collator
if is_datasets_available() and isinstance(train_dataset, datasets.Dataset):
train_dataset = self._remove_unused_columns(train_dataset, description="training")
else:
data_collator = self._get_collator_with_removed_columns(data_collator, description="training")
if isinstance(train_dataset, torch.utils.data.IterableDataset):
if self.args.world_size > 1:
train_dataset = IterableDatasetShard(
train_dataset,
batch_size=self._train_batch_size,
drop_last=self.args.dataloader_drop_last,
num_processes=self.args.world_size,
process_index=self.args.process_index,
)
return DataLoader(
train_dataset,
batch_size=self._train_batch_size,
collate_fn=data_collator,
num_workers=self.args.dataloader_num_workers,
pin_memory=self.args.dataloader_pin_memory,
)
train_sampler = self._get_train_sampler()
return DataLoader(
train_dataset,
batch_size=self._train_batch_size,
sampler=train_sampler,
collate_fn=data_collator,
drop_last=self.args.dataloader_drop_last,
num_workers=self.args.dataloader_num_workers,
pin_memory=self.args.dataloader_pin_memory,
worker_init_fn=seed_worker,
)
def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.Sampler]:
# Deprecated code
if self.args.use_legacy_prediction_loop:
if is_torch_tpu_available():
return SequentialDistributedSampler(
eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal()
)
elif is_sagemaker_mp_enabled():
return SequentialDistributedSampler(
eval_dataset,
num_replicas=smp.dp_size(),
rank=smp.dp_rank(),
batch_size=self.args.per_device_eval_batch_size,
)
elif self.args.parallel_mode == ParallelMode.DISTRIBUTED:
return SequentialDistributedSampler(eval_dataset)
else:
return SequentialSampler(eval_dataset)
if self.args.world_size <= 1:
return SequentialSampler(eval_dataset)
else:
return ShardSampler(
eval_dataset,
batch_size=self.args.per_device_eval_batch_size,
num_processes=self.args.world_size,
process_index=self.args.process_index,
)
def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
"""
Returns the evaluation [`~torch.utils.data.DataLoader`].
Subclass and override this method if you want to inject some custom behavior.
Args:
eval_dataset (`torch.utils.data.Dataset`, *optional*):
If provided, will override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns not accepted
by the `model.forward()` method are automatically removed. It must implement `__len__`.
"""
if eval_dataset is None and self.eval_dataset is None:
raise ValueError("Trainer: evaluation requires an eval_dataset.")
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
data_collator = self.data_collator
if is_datasets_available() and isinstance(eval_dataset, datasets.Dataset):
eval_dataset = self._remove_unused_columns(eval_dataset, description="evaluation")
else:
data_collator = self._get_collator_with_removed_columns(data_collator, description="evaluation")
if isinstance(eval_dataset, torch.utils.data.IterableDataset):
if self.args.world_size > 1:
eval_dataset = IterableDatasetShard(
eval_dataset,
batch_size=self.args.per_device_eval_batch_size,
drop_last=self.args.dataloader_drop_last,
num_processes=self.args.world_size,
process_index=self.args.process_index,
)
return DataLoader(
eval_dataset,
batch_size=self.args.eval_batch_size,
collate_fn=data_collator,
num_workers=self.args.dataloader_num_workers,
pin_memory=self.args.dataloader_pin_memory,
)
eval_sampler = self._get_eval_sampler(eval_dataset)
return DataLoader(
eval_dataset,
sampler=eval_sampler,
batch_size=self.args.eval_batch_size,
collate_fn=data_collator,
drop_last=self.args.dataloader_drop_last,
num_workers=self.args.dataloader_num_workers,
pin_memory=self.args.dataloader_pin_memory,
)
def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader:
"""
Returns the test [`~torch.utils.data.DataLoader`].
Subclass and override this method if you want to inject some custom behavior.
Args:
test_dataset (`torch.utils.data.Dataset`, *optional*):
The test dataset to use. If it is a [`~datasets.Dataset`], columns not accepted by the
`model.forward()` method are automatically removed. It must implement `__len__`.
"""
data_collator = self.data_collator
if is_datasets_available() and isinstance(test_dataset, datasets.Dataset):
test_dataset = self._remove_unused_columns(test_dataset, description="test")
else:
data_collator = self._get_collator_with_removed_columns(data_collator, description="test")
if isinstance(test_dataset, torch.utils.data.IterableDataset):
if self.args.world_size > 1:
test_dataset = IterableDatasetShard(
test_dataset,
batch_size=self.args.eval_batch_size,
drop_last=self.args.dataloader_drop_last,
num_processes=self.args.world_size,
process_index=self.args.process_index,
)
return DataLoader(
test_dataset,
batch_size=self.args.eval_batch_size,
collate_fn=data_collator,
num_workers=self.args.dataloader_num_workers,
pin_memory=self.args.dataloader_pin_memory,
)
test_sampler = self._get_eval_sampler(test_dataset)
# We use the same batch_size as for eval.
return DataLoader(
test_dataset,
sampler=test_sampler,
batch_size=self.args.eval_batch_size,
collate_fn=data_collator,
drop_last=self.args.dataloader_drop_last,
num_workers=self.args.dataloader_num_workers,
pin_memory=self.args.dataloader_pin_memory,
)
def create_optimizer_and_scheduler(self, num_training_steps: int):
"""
Setup the optimizer and the learning rate scheduler.
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
Trainer's init through `optimizers`, or subclass and override this method (or `create_optimizer` and/or
`create_scheduler`) in a subclass.
"""
self.create_optimizer()
if IS_SAGEMAKER_MP_POST_1_10 and smp.state.cfg.fp16:
# If smp >= 1.10 and fp16 is enabled, we unwrap the optimizer
optimizer = self.optimizer.optimizer
else:
optimizer = self.optimizer
self.create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer)
def create_optimizer(self):
"""
Setup the optimizer.
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
Trainer's init through `optimizers`, or subclass and override this method in a subclass.
"""
opt_model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model
if self.optimizer is None:
decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS)
decay_parameters = [name for name in decay_parameters if "bias" not in name]
optimizer_grouped_parameters = [
{
"params": [
p for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad)
],
"weight_decay": self.args.weight_decay,
},
{
"params": [
p for n, p in opt_model.named_parameters() if (n not in decay_parameters and p.requires_grad)
],
"weight_decay": 0.0,
},
]
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args)
if self.sharded_ddp == ShardedDDPOption.SIMPLE:
self.optimizer = OSS(
params=optimizer_grouped_parameters,
optim=optimizer_cls,
**optimizer_kwargs,
)
else:
self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
if optimizer_cls.__name__ == "Adam8bit":
import bitsandbytes
manager = bitsandbytes.optim.GlobalOptimManager.get_instance()
skipped = 0
for module in opt_model.modules():
if isinstance(module, nn.Embedding):
skipped += sum({p.data_ptr(): p.numel() for p in module.parameters()}.values())
logger.info(f"skipped {module}: {skipped/2**20}M params")
manager.register_module_override(module, "weight", {"optim_bits": 32})
logger.debug(f"bitsandbytes: will optimize {module} in fp32")
logger.info(f"skipped: {skipped/2**20}M params")
if is_sagemaker_mp_enabled():
self.optimizer = smp.DistributedOptimizer(self.optimizer)
return self.optimizer
@staticmethod
def get_optimizer_cls_and_kwargs(args: TrainingArguments) -> Tuple[Any, Any]:
"""
Returns the optimizer class and optimizer parameters based on the training arguments.
Args:
args (`transformers.training_args.TrainingArguments`):
The training arguments for the training session.
"""
# parse args.optim_args
optim_args = {}
if args.optim_args:
for mapping in args.optim_args.replace(" ", "").split(","):
key, value = mapping.split("=")
optim_args[key] = value
optimizer_kwargs = {"lr": args.learning_rate}
adam_kwargs = {
"betas": (args.adam_beta1, args.adam_beta2),
"eps": args.adam_epsilon,
}
if args.optim == OptimizerNames.ADAFACTOR:
optimizer_cls = Adafactor
optimizer_kwargs.update({"scale_parameter": False, "relative_step": False})
elif args.optim == OptimizerNames.ADAMW_HF:
from transformers.optimization import AdamW
optimizer_cls = AdamW
optimizer_kwargs.update(adam_kwargs)
elif args.optim in [OptimizerNames.ADAMW_TORCH, OptimizerNames.ADAMW_TORCH_FUSED]:
from torch.optim import AdamW
optimizer_cls = AdamW
optimizer_kwargs.update(adam_kwargs)
if args.optim == OptimizerNames.ADAMW_TORCH_FUSED:
optimizer_kwargs.update({"fused": True})
elif args.optim == OptimizerNames.ADAMW_TORCH_XLA:
try:
from torch_xla.amp.syncfree import AdamW
optimizer_cls = AdamW
optimizer_kwargs.update(adam_kwargs)
except ImportError:
raise ValueError("Trainer failed to import syncfree AdamW from torch_xla.")
elif args.optim == OptimizerNames.ADAMW_APEX_FUSED:
try:
from apex.optimizers import FusedAdam
optimizer_cls = FusedAdam
optimizer_kwargs.update(adam_kwargs)
except ImportError:
raise ValueError("Trainer tried to instantiate apex FusedAdam but apex is not installed!")
elif args.optim in [
OptimizerNames.ADAMW_BNB,
OptimizerNames.ADAMW_8BIT,
OptimizerNames.PAGED_ADAMW,
OptimizerNames.PAGED_ADAMW_8BIT,
OptimizerNames.LION,
OptimizerNames.LION_8BIT,
OptimizerNames.PAGED_LION,
OptimizerNames.PAGED_LION_8BIT,
]:
try:
from bitsandbytes.optim import AdamW, Lion
is_paged = False
optim_bits = 32
optimizer_cls = None
additional_optim_kwargs = adam_kwargs
if "paged" in args.optim:
is_paged = True
if "8bit" in args.optim:
optim_bits = 8
if "adam" in args.optim:
optimizer_cls = AdamW
elif "lion" in args.optim:
optimizer_cls = Lion
additional_optim_kwargs = {"betas": (args.adam_beta1, args.adam_beta2)}
bnb_kwargs = {"is_paged": is_paged, "optim_bits": optim_bits}
optimizer_kwargs.update(additional_optim_kwargs)
optimizer_kwargs.update(bnb_kwargs)
except ImportError:
raise ValueError("Trainer tried to instantiate bnb optimizer but bnb is not installed!")
elif args.optim == OptimizerNames.ADAMW_BNB:
try:
from bitsandbytes.optim import Adam8bit
optimizer_cls = Adam8bit
optimizer_kwargs.update(adam_kwargs)
except ImportError:
raise ValueError("Trainer tried to instantiate bnb Adam8bit but bnb is not installed!")
elif args.optim == OptimizerNames.ADAMW_ANYPRECISION:
try:
from torchdistx.optimizers import AnyPrecisionAdamW
optimizer_cls = AnyPrecisionAdamW
optimizer_kwargs.update(adam_kwargs)
# TODO Change dtypes back to M=FP32, Var = BF16, Kahan = False once they can be cast together in torchdistx.
optimizer_kwargs.update(
{
"use_kahan_summation": strtobool(optim_args.get("use_kahan_summation", "False")),
"momentum_dtype": getattr(torch, optim_args.get("momentum_dtype", "float32")),
"variance_dtype": getattr(torch, optim_args.get("variance_dtype", "float32")),
"compensation_buffer_dtype": getattr(
torch, optim_args.get("compensation_buffer_dtype", "bfloat16")
),
}
)
except ImportError:
raise ValueError("Please install https://github.com/pytorch/torchdistx")
elif args.optim == OptimizerNames.SGD:
optimizer_cls = torch.optim.SGD
elif args.optim == OptimizerNames.ADAGRAD:
optimizer_cls = torch.optim.Adagrad
else:
raise ValueError(f"Trainer cannot instantiate unsupported optimizer: {args.optim}")
return optimizer_cls, optimizer_kwargs
def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None):
"""
Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or
passed as an argument.
Args:
num_training_steps (int): The number of training steps to do.
"""
if self.lr_scheduler is None:
self.lr_scheduler = get_scheduler(
self.args.lr_scheduler_type,
optimizer=self.optimizer if optimizer is None else optimizer,
num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
num_training_steps=num_training_steps,
)
return self.lr_scheduler
def num_examples(self, dataloader: DataLoader) -> int:
"""
Helper to get number of samples in a [`~torch.utils.data.DataLoader`] by accessing its dataset. When
dataloader.dataset does not exist or has no length, estimates as best it can
"""
try:
dataset = dataloader.dataset
# Special case for IterableDatasetShard, we need to dig deeper
if isinstance(dataset, IterableDatasetShard):
return len(dataloader.dataset.dataset)
return len(dataloader.dataset)
except (NameError, AttributeError, TypeError): # no dataset or length, estimate by length of dataloader
return len(dataloader) * self.args.per_device_train_batch_size
def _hp_search_setup(self, trial: Union["optuna.Trial", Dict[str, Any]]):
"""HP search setup code"""
self._trial = trial
if self.hp_search_backend is None or trial is None:
return
if self.hp_search_backend == HPSearchBackend.OPTUNA:
params = self.hp_space(trial)
elif self.hp_search_backend == HPSearchBackend.RAY:
params = trial
params.pop("wandb", None)
elif self.hp_search_backend == HPSearchBackend.SIGOPT:
params = {k: int(v) if isinstance(v, str) else v for k, v in trial.assignments.items()}
elif self.hp_search_backend == HPSearchBackend.WANDB:
params = trial
for key, value in params.items():
if not hasattr(self.args, key):
logger.warning(
f"Trying to set {key} in the hyperparameter search but there is no corresponding field in"
" `TrainingArguments`."
)
continue
old_attr = getattr(self.args, key, None)
# Casting value to the proper type
if old_attr is not None:
value = type(old_attr)(value)
setattr(self.args, key, value)
if self.hp_search_backend == HPSearchBackend.OPTUNA:
logger.info(f"Trial: {trial.params}")
if self.hp_search_backend == HPSearchBackend.SIGOPT:
logger.info(f"SigOpt Assignments: {trial.assignments}")
if self.hp_search_backend == HPSearchBackend.WANDB:
logger.info(f"W&B Sweep parameters: {trial}")
if self.is_deepspeed_enabled:
if self.args.deepspeed is None:
raise ValueError("For sweeps with deepspeed, `args.deepspeed` must be set")
# Rebuild the deepspeed config to reflect the updated training parameters
from accelerate.utils import DeepSpeedPlugin
from transformers.deepspeed import HfTrainerDeepSpeedConfig
self.args.hf_deepspeed_config = HfTrainerDeepSpeedConfig(self.args.deepspeed)
self.args.hf_deepspeed_config.trainer_config_process(self.args)
self.args.deepspeed_plugin = DeepSpeedPlugin(hf_ds_config=self.args.hf_deepspeed_config)
self.create_accelerator_and_postprocess()
def _report_to_hp_search(self, trial: Union["optuna.Trial", Dict[str, Any]], step: int, metrics: Dict[str, float]):
if self.hp_search_backend is None or trial is None:
return
self.objective = self.compute_objective(metrics.copy())
if self.hp_search_backend == HPSearchBackend.OPTUNA:
import optuna
trial.report(self.objective, step)
if trial.should_prune():
self.callback_handler.on_train_end(self.args, self.state, self.control)
raise optuna.TrialPruned()
elif self.hp_search_backend == HPSearchBackend.RAY:
from ray import tune
if self.control.should_save:
self._tune_save_checkpoint()
tune.report(objective=self.objective, **metrics)
def _tune_save_checkpoint(self):
from ray import tune
if not self.use_tune_checkpoints:
return
with tune.checkpoint_dir(step=self.state.global_step) as checkpoint_dir:
output_dir = os.path.join(checkpoint_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}")
self.save_model(output_dir, _internal_call=True)
if self.args.should_save:
self.state.save_to_json(os.path.join(output_dir, TRAINER_STATE_NAME))
torch.save(self.optimizer.state_dict(), os.path.join(output_dir, OPTIMIZER_NAME))
torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
def call_model_init(self, trial=None):
model_init_argcount = number_of_arguments(self.model_init)
if model_init_argcount == 0:
model = self.model_init()
elif model_init_argcount == 1:
model = self.model_init(trial)
else:
raise RuntimeError("model_init should have 0 or 1 argument.")
if model is None:
raise RuntimeError("model_init should not return None.")
return model
def torch_jit_model_eval(self, model, dataloader, training=False):
if not training:
if dataloader is None:
logger.warning("failed to use PyTorch jit mode due to current dataloader is none.")
return model
example_batch = next(iter(dataloader))
example_batch = self._prepare_inputs(example_batch)
try:
jit_model = model.eval()
with ContextManagers([self.autocast_smart_context_manager(cache_enabled=False), torch.no_grad()]):
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.14.0"):
if isinstance(example_batch, dict):
jit_model = torch.jit.trace(jit_model, example_kwarg_inputs=example_batch, strict=False)
else:
jit_model = torch.jit.trace(
jit_model,
example_kwarg_inputs={key: example_batch[key] for key in example_batch},
strict=False,
)
else:
jit_inputs = []
for key in example_batch:
example_tensor = torch.ones_like(example_batch[key])
jit_inputs.append(example_tensor)
jit_inputs = tuple(jit_inputs)
jit_model = torch.jit.trace(jit_model, jit_inputs, strict=False)
jit_model = torch.jit.freeze(jit_model)
with torch.no_grad():
jit_model(**example_batch)
jit_model(**example_batch)
model = jit_model
self.use_cpu_amp = False
self.use_cuda_amp = False
except (RuntimeError, TypeError, ValueError, NameError, IndexError) as e:
logger.warning(f"failed to use PyTorch jit mode due to: {e}.")
return model
def ipex_optimize_model(self, model, training=False, dtype=torch.float32):
if not is_ipex_available():
raise ImportError(
"Using IPEX but IPEX is not installed or IPEX's version does not match current PyTorch, please refer"
" to https://github.com/intel/intel-extension-for-pytorch."
)
import intel_extension_for_pytorch as ipex
if not training:
model.eval()
dtype = torch.bfloat16 if not self.is_in_train and self.args.bf16_full_eval else dtype
# conv_bn_folding is disabled as it fails in symbolic tracing, resulting in ipex warnings
model = ipex.optimize(model, dtype=dtype, level="O1", conv_bn_folding=False, inplace=not self.is_in_train)
else:
if not model.training:
model.train()
model, self.optimizer = ipex.optimize(
model, dtype=dtype, optimizer=self.optimizer, inplace=True, level="O1"
)
return model
def _wrap_model(self, model, training=True, dataloader=None):
if self.args.use_ipex:
dtype = torch.bfloat16 if self.use_cpu_amp else torch.float32
model = self.ipex_optimize_model(model, training, dtype=dtype)
if is_sagemaker_mp_enabled():
# Wrapping the base model twice in a DistributedModel will raise an error.
if isinstance(self.model_wrapped, smp.model.DistributedModel):
return self.model_wrapped
return smp.DistributedModel(model, backward_passes_per_step=self.args.gradient_accumulation_steps)
# train/eval could be run multiple-times - if already wrapped, don't re-wrap it again
if unwrap_model(model) is not model:
return model
# Mixed precision training with apex (torch < 1.6)
if self.use_apex and training:
model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level)
# Multi-gpu training (should be after apex fp16 initialization) / 8bit models does not support DDP
if self.args.n_gpu > 1 and not getattr(model, "is_loaded_in_8bit", False):
model = nn.DataParallel(model)
if self.args.jit_mode_eval:
start_time = time.time()
model = self.torch_jit_model_eval(model, dataloader, training)
self.jit_compilation_time = round(time.time() - start_time, 4)
# Note: in torch.distributed mode, there's no point in wrapping the model
# inside a DistributedDataParallel as we'll be under `no_grad` anyways.
if not training:
return model
# Distributed training (should be after apex fp16 initialization)
if self.sharded_ddp is not None:
# Sharded DDP!
if self.sharded_ddp == ShardedDDPOption.SIMPLE:
model = ShardedDDP(model, self.optimizer)
else:
mixed_precision = self.args.fp16 or self.args.bf16
cpu_offload = ShardedDDPOption.OFFLOAD in self.args.sharded_ddp
zero_3 = self.sharded_ddp == ShardedDDPOption.ZERO_DP_3
# XXX: Breaking the self.model convention but I see no way around it for now.
if ShardedDDPOption.AUTO_WRAP in self.args.sharded_ddp:
model = auto_wrap(model)
self.model = model = FullyShardedDDP(
model,
mixed_precision=mixed_precision,
reshard_after_forward=zero_3,
cpu_offload=cpu_offload,
).to(self.args.device)
# Distributed training using PyTorch FSDP
elif self.fsdp is not None and self.args.fsdp_config["xla"]:
try:
from torch_xla.distributed.fsdp import XlaFullyShardedDataParallel as FSDP
from torch_xla.distributed.fsdp import checkpoint_module
from torch_xla.distributed.fsdp.wrap import (
size_based_auto_wrap_policy,
transformer_auto_wrap_policy,
)
except ImportError:
raise ImportError("Missing XLA FSDP related module; please make sure to use torch-xla >= 2.0.")
auto_wrap_policy = None
auto_wrapper_callable = None
if self.args.fsdp_config["fsdp_min_num_params"] > 0:
auto_wrap_policy = functools.partial(
size_based_auto_wrap_policy, min_num_params=self.args.fsdp_config["fsdp_min_num_params"]
)
elif self.args.fsdp_config.get("fsdp_transformer_layer_cls_to_wrap", None) is not None:
transformer_cls_to_wrap = set()
for layer_class in self.args.fsdp_config["fsdp_transformer_layer_cls_to_wrap"]:
transformer_cls = get_module_class_from_name(model, layer_class)
if transformer_cls is None:
raise Exception("Could not find the transformer layer class to wrap in the model.")
else:
transformer_cls_to_wrap.add(transformer_cls)
auto_wrap_policy = functools.partial(
transformer_auto_wrap_policy,
# Transformer layer class to wrap
transformer_layer_cls=transformer_cls_to_wrap,
)
fsdp_kwargs = self.args.xla_fsdp_config
if self.args.fsdp_config["xla_fsdp_grad_ckpt"]:
# Apply gradient checkpointing to auto-wrapped sub-modules if specified
def auto_wrapper_callable(m, *args, **kwargs):
return FSDP(checkpoint_module(m), *args, **kwargs)
# Wrap the base model with an outer FSDP wrapper
self.model = model = FSDP(
model,
auto_wrap_policy=auto_wrap_policy,
auto_wrapper_callable=auto_wrapper_callable,
**fsdp_kwargs,
)
# Patch `xm.optimizer_step` should not reduce gradients in this case,
# as FSDP does not need gradient reduction over sharded parameters.
def patched_optimizer_step(optimizer, barrier=False, optimizer_args={}):
loss = optimizer.step(**optimizer_args)
if barrier:
xm.mark_step()
return loss
xm.optimizer_step = patched_optimizer_step
elif is_sagemaker_dp_enabled():
model = nn.parallel.DistributedDataParallel(
model, device_ids=[int(os.getenv("SMDATAPARALLEL_LOCAL_RANK"))]
)
elif self.args.parallel_mode == ParallelMode.DISTRIBUTED:
if is_torch_neuroncore_available():
return model
kwargs = {}
if self.args.ddp_find_unused_parameters is not None:
kwargs["find_unused_parameters"] = self.args.ddp_find_unused_parameters
elif isinstance(model, PreTrainedModel):
# find_unused_parameters breaks checkpointing as per
# https://github.com/huggingface/transformers/pull/4659#issuecomment-643356021
kwargs["find_unused_parameters"] = not model.is_gradient_checkpointing
else:
kwargs["find_unused_parameters"] = True
if self.args.ddp_bucket_cap_mb is not None:
kwargs["bucket_cap_mb"] = self.args.ddp_bucket_cap_mb
self.accelerator.ddp_handler = DistributedDataParallelKwargs(**kwargs)
return model
def train(
self,
resume_from_checkpoint: Optional[Union[str, bool]] = None,
trial: Union["optuna.Trial", Dict[str, Any]] = None,
ignore_keys_for_eval: Optional[List[str]] = None,
**kwargs,
):
"""
Main training entry point.
Args:
resume_from_checkpoint (`str` or `bool`, *optional*):
If a `str`, local path to a saved checkpoint as saved by a previous instance of [`Trainer`]. If a
`bool` and equals `True`, load the last checkpoint in *args.output_dir* as saved by a previous instance
of [`Trainer`]. If present, training will resume from the model/optimizer/scheduler states loaded here.
trial (`optuna.Trial` or `Dict[str, Any]`, *optional*):
The trial run or the hyperparameter dictionary for hyperparameter search.
ignore_keys_for_eval (`List[str]`, *optional*)
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
gathering predictions for evaluation during the training.
kwargs:
Additional keyword arguments used to hide deprecated arguments
"""
if resume_from_checkpoint is False:
resume_from_checkpoint = None
# memory metrics - must set up as early as possible
self._memory_tracker.start()
args = self.args
self.is_in_train = True
# do_train is not a reliable argument, as it might not be set and .train() still called, so
# the following is a workaround:
if (args.fp16_full_eval or args.bf16_full_eval) and not args.do_train:
self._move_model_to_device(self.model, args.device)
if "model_path" in kwargs:
resume_from_checkpoint = kwargs.pop("model_path")
warnings.warn(
"`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` "
"instead.",
FutureWarning,
)
if len(kwargs) > 0:
raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.")
# This might change the seed so needs to run first.
self._hp_search_setup(trial)
self._train_batch_size = self.args.train_batch_size
# Model re-init
model_reloaded = False
if self.model_init is not None:
# Seed must be set before instantiating the model when using model_init.
enable_full_determinism(self.args.seed) if self.args.full_determinism else set_seed(self.args.seed)
self.model = self.call_model_init(trial)
model_reloaded = True
# Reinitializes optimizer and scheduler
self.optimizer, self.lr_scheduler = None, None
# Load potential model checkpoint
if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint:
resume_from_checkpoint = get_last_checkpoint(args.output_dir)
if resume_from_checkpoint is None:
raise ValueError(f"No valid checkpoint found in output directory ({args.output_dir})")
if resume_from_checkpoint is not None and not is_sagemaker_mp_enabled() and not self.is_deepspeed_enabled:
self._load_from_checkpoint(resume_from_checkpoint)
# If model was re-initialized, put it on the right device and update self.model_wrapped
if model_reloaded:
if self.place_model_on_device:
self._move_model_to_device(self.model, args.device)
self.model_wrapped = self.model
inner_training_loop = find_executable_batch_size(
self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size
)
return inner_training_loop(
args=args,
resume_from_checkpoint=resume_from_checkpoint,
trial=trial,
ignore_keys_for_eval=ignore_keys_for_eval,
)
def _inner_training_loop(
self, batch_size=None, args=None, resume_from_checkpoint=None, trial=None, ignore_keys_for_eval=None
):
self.accelerator.free_memory()
self._train_batch_size = batch_size
logger.debug(f"Currently training with a batch size of: {self._train_batch_size}")
# Data loader and number of training steps
train_dataloader = self.get_train_dataloader()
# Setting up training control variables:
# number of training epochs: num_train_epochs
# number of training steps per epoch: num_update_steps_per_epoch
# total number of training steps to execute: max_steps
total_train_batch_size = args.train_batch_size * args.gradient_accumulation_steps * args.world_size
len_dataloader = None
if has_length(train_dataloader):
len_dataloader = len(train_dataloader)
num_update_steps_per_epoch = len_dataloader // args.gradient_accumulation_steps
num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
num_examples = self.num_examples(train_dataloader)
if args.max_steps > 0:
max_steps = args.max_steps
num_train_epochs = args.max_steps // num_update_steps_per_epoch + int(
args.max_steps % num_update_steps_per_epoch > 0
)
# May be slightly incorrect if the last batch in the training dataloader has a smaller size but it's
# the best we can do.
num_train_samples = args.max_steps * total_train_batch_size
else:
max_steps = math.ceil(args.num_train_epochs * num_update_steps_per_epoch)
num_train_epochs = math.ceil(args.num_train_epochs)
num_train_samples = self.num_examples(train_dataloader) * args.num_train_epochs
elif args.max_steps > 0: # Rely on max_steps when dataloader does not have a working size
max_steps = args.max_steps
# Setting a very large number of epochs so we go as many times as necessary over the iterator.
num_train_epochs = sys.maxsize
num_update_steps_per_epoch = max_steps
num_examples = total_train_batch_size * args.max_steps
num_train_samples = args.max_steps * total_train_batch_size
else:
raise ValueError(
"args.max_steps must be set to a positive value if dataloader does not have a length, was"
f" {args.max_steps}"
)
# Compute absolute values for logging, eval, and save if given as ratio
if args.logging_steps and args.logging_steps < 1:
args.logging_steps = math.ceil(max_steps * args.logging_steps)
if args.eval_steps and args.eval_steps < 1:
args.eval_steps = math.ceil(max_steps * args.eval_steps)
if args.save_steps and args.save_steps < 1:
args.save_steps = math.ceil(max_steps * args.save_steps)
if DebugOption.UNDERFLOW_OVERFLOW in self.args.debug:
if self.args.n_gpu > 1:
# nn.DataParallel(model) replicates the model, creating new variables and module
# references registered here no longer work on other gpus, breaking the module
raise ValueError(
"Currently --debug underflow_overflow is not supported under DP. Please use DDP"
" (torch.distributed.launch)."
)
else:
debug_overflow = DebugUnderflowOverflow(self.model) # noqa
delay_optimizer_creation = (
self.sharded_ddp is not None
and self.sharded_ddp != ShardedDDPOption.SIMPLE
or is_sagemaker_mp_enabled()
or self.fsdp is not None
)
if self.is_deepspeed_enabled:
self.optimizer, self.lr_scheduler = deepspeed_init(self, num_training_steps=max_steps)
if not delay_optimizer_creation:
self.create_optimizer_and_scheduler(num_training_steps=max_steps)
self.state = TrainerState()
self.state.is_hyper_param_search = trial is not None
# Activate gradient checkpointing if needed
if args.gradient_checkpointing:
self.model.gradient_checkpointing_enable()
model = self._wrap_model(self.model_wrapped)
if is_sagemaker_mp_enabled() and resume_from_checkpoint is not None:
self._load_from_checkpoint(resume_from_checkpoint, model)
# as the model is wrapped, don't use `accelerator.prepare`
# this is for unhandled cases such as
# Fairscale Sharded DDP, FSDP-XLA, SageMaker MP/DP, DataParallel, IPEX
use_accelerator_prepare = True if model is self.model else False
if delay_optimizer_creation:
self.create_optimizer_and_scheduler(num_training_steps=max_steps)
# prepare using `accelerator` prepare
if use_accelerator_prepare:
if hasattr(self.lr_scheduler, "step"):
if self.use_apex:
model = self.accelerator.prepare(self.model)
else:
model, self.optimizer = self.accelerator.prepare(self.model, self.optimizer)
else:
# to handle cases wherein we pass "DummyScheduler" such as when it is specified in DeepSpeed config.
model, self.optimizer, self.lr_scheduler = self.accelerator.prepare(
self.model, self.optimizer, self.lr_scheduler
)
if self.is_fsdp_enabled:
self.model = model
# for the rest of this function `model` is the outside model, whether it was wrapped or not
if model is not self.model:
self.model_wrapped = model
# backward compatibility
if self.is_deepspeed_enabled:
self.deepspeed = self.model_wrapped
# deepspeed ckpt loading
if resume_from_checkpoint is not None and self.is_deepspeed_enabled:
deepspeed_load_checkpoint(self.model_wrapped, resume_from_checkpoint)
# Check if saved optimizer or scheduler states exist
self._load_optimizer_and_scheduler(resume_from_checkpoint)
# important: at this point:
# self.model is the Transformers Model
# self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), etc.
# Train!
logger.info("***** Running training *****")
logger.info(f" Num examples = {num_examples:,}")
logger.info(f" Num Epochs = {num_train_epochs:,}")
logger.info(f" Instantaneous batch size per device = {self._train_batch_size:,}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size:,}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {max_steps:,}")
logger.info(f" Number of trainable parameters = {get_model_param_count(model, trainable_only=True):,}")
self.state.epoch = 0
start_time = time.time()
epochs_trained = 0
steps_trained_in_current_epoch = 0
steps_trained_progress_bar = None
# Check if continuing training from a checkpoint
if resume_from_checkpoint is not None and os.path.isfile(
os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME)
):
self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME))
epochs_trained = self.state.global_step // num_update_steps_per_epoch
if not args.ignore_data_skip:
steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch)
steps_trained_in_current_epoch *= args.gradient_accumulation_steps
else:
steps_trained_in_current_epoch = 0
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(f" Continuing training from epoch {epochs_trained}")
logger.info(f" Continuing training from global step {self.state.global_step}")
if not args.ignore_data_skip:
if skip_first_batches is None:
logger.info(
f" Will skip the first {epochs_trained} epochs then the first"
f" {steps_trained_in_current_epoch} batches in the first epoch. If this takes a lot of time,"
" you can install the latest version of Accelerate with `pip install -U accelerate`.You can"
" also add the `--ignore_data_skip` flag to your launch command, but you will resume the"
" training on data already seen by your model."
)
else:
logger.info(
f" Will skip the first {epochs_trained} epochs then the first"
f" {steps_trained_in_current_epoch} batches in the first epoch."
)
if self.is_local_process_zero() and not args.disable_tqdm and skip_first_batches is None:
steps_trained_progress_bar = tqdm(total=steps_trained_in_current_epoch)
steps_trained_progress_bar.set_description("Skipping the first batches")
# Update the references
self.callback_handler.model = self.model
self.callback_handler.optimizer = self.optimizer
self.callback_handler.lr_scheduler = self.lr_scheduler
self.callback_handler.train_dataloader = train_dataloader
if self.hp_name is not None and self._trial is not None:
# use self._trial because the SigOpt/Optuna hpo only call `_hp_search_setup(trial)` instead of passing trial
# parameter to Train when using DDP.
self.state.trial_name = self.hp_name(self._trial)
if trial is not None:
assignments = trial.assignments if self.hp_search_backend == HPSearchBackend.SIGOPT else trial
self.state.trial_params = hp_params(assignments)
else:
self.state.trial_params = None
# This should be the same if the state has been saved but in case the training arguments changed, it's safer
# to set this after the load.
self.state.max_steps = max_steps
self.state.num_train_epochs = num_train_epochs
self.state.is_local_process_zero = self.is_local_process_zero()
self.state.is_world_process_zero = self.is_world_process_zero()
# tr_loss is a tensor to avoid synchronization of TPUs through .item()
tr_loss = torch.tensor(0.0).to(args.device)
# _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses
self._total_loss_scalar = 0.0
self._globalstep_last_logged = self.state.global_step
model.zero_grad()
self.control = self.callback_handler.on_train_begin(args, self.state, self.control)
# Skip the first epochs_trained epochs to get the random state of the dataloader at the right point.
if not args.ignore_data_skip:
for epoch in range(epochs_trained):
is_random_sampler = hasattr(train_dataloader, "sampler") and isinstance(
train_dataloader.sampler, RandomSampler
)
if is_torch_less_than_1_11 or not is_random_sampler:
# We just need to begin an iteration to create the randomization of the sampler.
# That was before PyTorch 1.11 however...
for _ in train_dataloader:
break
else:
# Otherwise we need to call the whooooole sampler cause there is some random operation added
# AT THE VERY END!
_ = list(train_dataloader.sampler)
total_batched_samples = 0
for epoch in range(epochs_trained, num_train_epochs):
if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
train_dataloader.sampler.set_epoch(epoch)
elif hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDatasetShard):
train_dataloader.dataset.set_epoch(epoch)
if is_torch_tpu_available():
parallel_loader = pl.ParallelLoader(train_dataloader, [args.device]).per_device_loader(args.device)
epoch_iterator = parallel_loader
else:
epoch_iterator = train_dataloader
# Reset the past mems state at the beginning of each epoch if necessary.
if args.past_index >= 0:
self._past = None
steps_in_epoch = (
len(epoch_iterator)
if len_dataloader is not None
else args.max_steps * args.gradient_accumulation_steps
)
self.control = self.callback_handler.on_epoch_begin(args, self.state, self.control)
if epoch == epochs_trained and resume_from_checkpoint is not None and steps_trained_in_current_epoch == 0:
self._load_rng_state(resume_from_checkpoint)
rng_to_sync = False
steps_skipped = 0
if skip_first_batches is not None and steps_trained_in_current_epoch > 0:
epoch_iterator = skip_first_batches(epoch_iterator, steps_trained_in_current_epoch)
steps_skipped = steps_trained_in_current_epoch
steps_trained_in_current_epoch = 0
rng_to_sync = True
step = -1
for step, inputs in enumerate(epoch_iterator):
total_batched_samples += 1
if rng_to_sync:
self._load_rng_state(resume_from_checkpoint)
rng_to_sync = False
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
if steps_trained_progress_bar is not None:
steps_trained_progress_bar.update(1)
if steps_trained_in_current_epoch == 0:
self._load_rng_state(resume_from_checkpoint)
continue
elif steps_trained_progress_bar is not None:
steps_trained_progress_bar.close()
steps_trained_progress_bar = None
if step % args.gradient_accumulation_steps == 0:
self.control = self.callback_handler.on_step_begin(args, self.state, self.control)
with self.accelerator.accumulate(model):
tr_loss_step = self.training_step(model, inputs)
if (
args.logging_nan_inf_filter
and not is_torch_tpu_available()
and (torch.isnan(tr_loss_step) or torch.isinf(tr_loss_step))
):
# if loss is nan or inf simply add the average of previous logged losses
tr_loss += tr_loss / (1 + self.state.global_step - self._globalstep_last_logged)
else:
tr_loss += tr_loss_step
self.current_flos += float(self.floating_point_ops(inputs))
# should this be under the accumulate context manager?
# the `or` condition of `steps_in_epoch <= args.gradient_accumulation_steps` is not covered
# in accelerate
if total_batched_samples % args.gradient_accumulation_steps == 0 or (
# last step in epoch but step is always smaller than gradient_accumulation_steps
steps_in_epoch <= args.gradient_accumulation_steps
and (step + 1) == steps_in_epoch
):
# Gradient clipping
if args.max_grad_norm is not None and args.max_grad_norm > 0:
# deepspeed does its own clipping
if self.do_grad_scaling:
# Reduce gradients first for XLA
if is_torch_tpu_available():
gradients = xm._fetch_gradients(self.optimizer)
xm.all_reduce("sum", gradients, scale=1.0 / xm.xrt_world_size())
# AMP: gradients need unscaling
self.scaler.unscale_(self.optimizer)
if is_sagemaker_mp_enabled() and args.fp16:
self.optimizer.clip_master_grads(args.max_grad_norm)
elif hasattr(self.optimizer, "clip_grad_norm"):
# Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping
self.optimizer.clip_grad_norm(args.max_grad_norm)
elif hasattr(model, "clip_grad_norm_"):
# Some models (like FullyShardedDDP) have a specific way to do gradient clipping
model.clip_grad_norm_(args.max_grad_norm)
elif self.use_apex:
# Revert to normal clipping otherwise, handling Apex or full precision
nn.utils.clip_grad_norm_(
amp.master_params(self.optimizer),
args.max_grad_norm,
)
else:
self.accelerator.clip_grad_norm_(
model.parameters(),
args.max_grad_norm,
)
# Optimizer step
optimizer_was_run = True
if is_torch_tpu_available():
if self.do_grad_scaling:
self.scaler.step(self.optimizer)
self.scaler.update()
else:
xm.optimizer_step(self.optimizer)
elif self.do_grad_scaling:
scale_before = self.scaler.get_scale()
self.scaler.step(self.optimizer)
self.scaler.update()
scale_after = self.scaler.get_scale()
optimizer_was_run = scale_before <= scale_after
else:
self.optimizer.step()
optimizer_was_run = not self.accelerator.optimizer_step_was_skipped
if optimizer_was_run:
# Delay optimizer scheduling until metrics are generated
if not isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
self.lr_scheduler.step()
model.zero_grad()
self.state.global_step += 1
self.state.epoch = epoch + (step + 1 + steps_skipped) / steps_in_epoch
self.control = self.callback_handler.on_step_end(args, self.state, self.control)
self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval)
else:
self.control = self.callback_handler.on_substep_end(args, self.state, self.control)
if self.control.should_epoch_stop or self.control.should_training_stop:
break
if step < 0:
logger.warning(
"There seems to be not a single sample in your epoch_iterator, stopping training at step"
f" {self.state.global_step}! This is expected if you're using an IterableDataset and set"
f" num_steps ({max_steps}) higher than the number of available samples."
)
self.control.should_training_stop = True
self.control = self.callback_handler.on_epoch_end(args, self.state, self.control)
self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval)
if DebugOption.TPU_METRICS_DEBUG in self.args.debug:
if is_torch_tpu_available():
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
else:
logger.warning(
"You enabled PyTorch/XLA debug metrics but you don't have a TPU "
"configured. Check your training configuration if this is unexpected."
)
if self.control.should_training_stop:
break
if args.past_index and hasattr(self, "_past"):
# Clean the state at the end of training
delattr(self, "_past")
logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
if args.load_best_model_at_end and self.state.best_model_checkpoint is not None:
# Wait for everyone to get here so we are sur the model has been saved by process 0.
if is_torch_tpu_available():
xm.rendezvous("load_best_model_at_end")
elif args.parallel_mode == ParallelMode.DISTRIBUTED:
dist.barrier()
elif is_sagemaker_mp_enabled():
smp.barrier()
self._load_best_model()
# add remaining tr_loss
self._total_loss_scalar += tr_loss.item()
train_loss = self._total_loss_scalar / self.state.global_step
metrics = speed_metrics("train", start_time, num_samples=num_train_samples, num_steps=self.state.max_steps)
self.store_flos()
metrics["total_flos"] = self.state.total_flos
metrics["train_loss"] = train_loss
self.is_in_train = False
self._memory_tracker.stop_and_update_metrics(metrics)
self.log(metrics)
run_dir = self._get_output_dir(trial)
checkpoints_sorted = self._sorted_checkpoints(use_mtime=False, output_dir=run_dir)
# Delete the last checkpoint when save_total_limit=1 if it's different from the best checkpoint and process allowed to save.
if self.args.should_save and self.state.best_model_checkpoint is not None and self.args.save_total_limit == 1:
for checkpoint in checkpoints_sorted:
if checkpoint != self.state.best_model_checkpoint:
logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
shutil.rmtree(checkpoint)
self.control = self.callback_handler.on_train_end(args, self.state, self.control)
return TrainOutput(self.state.global_step, train_loss, metrics)
def _get_output_dir(self, trial):
if self.hp_search_backend is not None and trial is not None:
if self.hp_search_backend == HPSearchBackend.OPTUNA:
run_id = trial.number
elif self.hp_search_backend == HPSearchBackend.RAY:
from ray import tune
run_id = tune.get_trial_id()
elif self.hp_search_backend == HPSearchBackend.SIGOPT:
run_id = trial.id
elif self.hp_search_backend == HPSearchBackend.WANDB:
import wandb
run_id = wandb.run.id
run_name = self.hp_name(trial) if self.hp_name is not None else f"run-{run_id}"
run_dir = os.path.join(self.args.output_dir, run_name)
else:
run_dir = self.args.output_dir
return run_dir
def _load_from_checkpoint(self, resume_from_checkpoint, model=None):
if model is None:
model = self.model
config_file = os.path.join(resume_from_checkpoint, CONFIG_NAME)
weights_file = os.path.join(resume_from_checkpoint, WEIGHTS_NAME)
weights_index_file = os.path.join(resume_from_checkpoint, WEIGHTS_INDEX_NAME)
safe_weights_file = os.path.join(resume_from_checkpoint, SAFE_WEIGHTS_NAME)
safe_weights_index_file = os.path.join(resume_from_checkpoint, SAFE_WEIGHTS_INDEX_NAME)
if not any(
os.path.isfile(f) for f in [weights_file, safe_weights_file, weights_index_file, safe_weights_index_file]
):
raise ValueError(f"Can't find a valid checkpoint at {resume_from_checkpoint}")
logger.info(f"Loading model from {resume_from_checkpoint}.")
if os.path.isfile(config_file):
config = PretrainedConfig.from_json_file(config_file)
checkpoint_version = config.transformers_version
if checkpoint_version is not None and checkpoint_version != __version__:
logger.warning(
f"You are resuming training from a checkpoint trained with {checkpoint_version} of "
f"Transformers but your current version is {__version__}. This is not recommended and could "
"yield to errors or unwanted behaviors."
)
if os.path.isfile(weights_file) or os.path.isfile(safe_weights_file):
# If the model is on the GPU, it still works!
if is_sagemaker_mp_enabled():
if os.path.isfile(os.path.join(resume_from_checkpoint, "user_content.pt")):
# If the 'user_content.pt' file exists, load with the new smp api.
# Checkpoint must have been saved with the new smp api.
smp.resume_from_checkpoint(
path=resume_from_checkpoint, tag=WEIGHTS_NAME, partial=False, load_optimizer=False
)
else:
# If the 'user_content.pt' file does NOT exist, load with the old smp api.
# Checkpoint must have been saved with the old smp api.
if hasattr(self.args, "fp16") and self.args.fp16 is True:
logger.warning(
"Enabling FP16 and loading from smp < 1.10 checkpoint together is not suppported."
)
state_dict = torch.load(weights_file, map_location="cpu")
# Required for smp to not auto-translate state_dict from hf to smp (is already smp).
state_dict["_smp_is_partial"] = False
load_result = model.load_state_dict(state_dict, strict=True)
# release memory
del state_dict
elif self.is_fsdp_enabled:
self.accelerator.state.fsdp_plugin.load_model(self.accelerator, model, resume_from_checkpoint)
else:
# We load the model state dict on the CPU to avoid an OOM error.
if self.args.save_safetensors and os.path.isfile(safe_weights_file):
state_dict = safetensors.torch.load_file(safe_weights_file, device="cpu")
else:
state_dict = torch.load(weights_file, map_location="cpu")
# workaround for FSDP bug https://github.com/pytorch/pytorch/issues/82963
# which takes *args instead of **kwargs
load_result = model.load_state_dict(state_dict, False)
# release memory
del state_dict
self._issue_warnings_after_load(load_result)
else:
# We load the sharded checkpoint
load_result = load_sharded_checkpoint(
model, resume_from_checkpoint, strict=is_sagemaker_mp_enabled(), prefer_safe=self.args.save_safetensors
)
if not is_sagemaker_mp_enabled():
self._issue_warnings_after_load(load_result)
def _load_best_model(self):
logger.info(f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric}).")
best_model_path = os.path.join(self.state.best_model_checkpoint, WEIGHTS_NAME)
best_safe_model_path = os.path.join(self.state.best_model_checkpoint, SAFE_WEIGHTS_NAME)
best_adapter_model_path = os.path.join(self.state.best_model_checkpoint, ADAPTER_WEIGHTS_NAME)
best_safe_adapter_model_path = os.path.join(self.state.best_model_checkpoint, ADAPTER_SAFE_WEIGHTS_NAME)
model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model
if (
os.path.exists(best_model_path)
or os.path.exists(best_safe_model_path)
or os.path.exists(best_adapter_model_path)
or os.path.exists(best_safe_adapter_model_path)
):
if self.is_deepspeed_enabled:
deepspeed_load_checkpoint(self.model_wrapped, self.state.best_model_checkpoint)
else:
has_been_loaded = True
if is_sagemaker_mp_enabled():
if os.path.isfile(os.path.join(self.state.best_model_checkpoint, "user_content.pt")):
# If the 'user_content.pt' file exists, load with the new smp api.
# Checkpoint must have been saved with the new smp api.
smp.resume_from_checkpoint(
path=self.state.best_model_checkpoint,
tag=WEIGHTS_NAME,
partial=False,
load_optimizer=False,
)
else:
# If the 'user_content.pt' file does NOT exist, load with the old smp api.
# Checkpoint must have been saved with the old smp api.
if self.args.save_safetensors and os.path.isfile(best_safe_model_path):
state_dict = safetensors.torch.load_file(best_safe_model_path, device="cpu")
else:
state_dict = torch.load(best_model_path, map_location="cpu")
state_dict["_smp_is_partial"] = False
load_result = model.load_state_dict(state_dict, strict=True)
elif self.is_fsdp_enabled:
self.accelerator.state.fsdp_plugin.load_model(
self.accelerator, model, self.state.best_model_checkpoint
)
else:
if is_peft_available() and isinstance(model, PeftModel):
# If train a model using PEFT & LoRA, assume that adapter have been saved properly.
if hasattr(model, "active_adapter") and hasattr(model, "load_adapter"):
if os.path.exists(best_adapter_model_path) or os.path.exists(best_safe_adapter_model_path):
model.load_adapter(self.state.best_model_checkpoint, model.active_adapter)
# Load_adapter has no return value present, modify it when appropriate.
from torch.nn.modules.module import _IncompatibleKeys
load_result = _IncompatibleKeys([], [])
else:
logger.warning(
"The intermediate checkpoints of PEFT may not be saved correctly, "
f"using `TrainerCallback` to save {ADAPTER_WEIGHTS_NAME} in corresponding folders, "
"here are some examples https://github.com/huggingface/peft/issues/96"
)
has_been_loaded = False
else:
logger.warning("Could not load adapter model, make sure to have `peft>=0.3.0` installed")
has_been_loaded = False
else:
# We load the model state dict on the CPU to avoid an OOM error.
if self.args.save_safetensors and os.path.isfile(best_safe_model_path):
state_dict = safetensors.torch.load_file(best_safe_model_path, device="cpu")
else:
state_dict = torch.load(best_model_path, map_location="cpu")
# If the model is on the GPU, it still works!
# workaround for FSDP bug https://github.com/pytorch/pytorch/issues/82963
# which takes *args instead of **kwargs
load_result = model.load_state_dict(state_dict, False)
if not is_sagemaker_mp_enabled() and has_been_loaded:
self._issue_warnings_after_load(load_result)
elif os.path.exists(os.path.join(self.state.best_model_checkpoint, WEIGHTS_INDEX_NAME)):
load_result = load_sharded_checkpoint(
model, self.state.best_model_checkpoint, strict=is_sagemaker_mp_enabled()
)
if not is_sagemaker_mp_enabled():
self._issue_warnings_after_load(load_result)
else:
logger.warning(
f"Could not locate the best model at {best_model_path}, if you are running a distributed training "
"on multiple nodes, you should activate `--save_on_each_node`."
)
def _issue_warnings_after_load(self, load_result):
if len(load_result.missing_keys) != 0:
if self.model._keys_to_ignore_on_save is not None and set(load_result.missing_keys) == set(
self.model._keys_to_ignore_on_save
):
self.model.tie_weights()
else:
logger.warning(f"There were missing keys in the checkpoint model loaded: {load_result.missing_keys}.")
if len(load_result.unexpected_keys) != 0:
logger.warning(
f"There were unexpected keys in the checkpoint model loaded: {load_result.unexpected_keys}."
)
def _maybe_log_save_evaluate(self, tr_loss, model, trial, epoch, ignore_keys_for_eval):
if self.control.should_log:
if is_torch_tpu_available():
xm.mark_step()
logs: Dict[str, float] = {}
# all_gather + mean() to get average loss over all processes
tr_loss_scalar = self._nested_gather(tr_loss).mean().item()
# reset tr_loss to zero
tr_loss -= tr_loss
logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4)
logs["learning_rate"] = self._get_learning_rate()
self._total_loss_scalar += tr_loss_scalar
self._globalstep_last_logged = self.state.global_step
self.store_flos()
self.log(logs)
metrics = None
if self.control.should_evaluate:
if isinstance(self.eval_dataset, dict):
metrics = {}
for eval_dataset_name, eval_dataset in self.eval_dataset.items():
dataset_metrics = self.evaluate(
eval_dataset=eval_dataset,
ignore_keys=ignore_keys_for_eval,
metric_key_prefix=f"eval_{eval_dataset_name}",
)
metrics.update(dataset_metrics)
else:
metrics = self.evaluate(ignore_keys=ignore_keys_for_eval)
self._report_to_hp_search(trial, self.state.global_step, metrics)
# Run delayed LR scheduler now that metrics are populated
if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
metric_to_check = self.args.metric_for_best_model
if not metric_to_check.startswith("eval_"):
metric_to_check = f"eval_{metric_to_check}"
self.lr_scheduler.step(metrics[metric_to_check])
if self.control.should_save:
self._save_checkpoint(model, trial, metrics=metrics)
self.control = self.callback_handler.on_save(self.args, self.state, self.control)
def _load_rng_state(self, checkpoint):
# Load RNG states from `checkpoint`
if checkpoint is None:
return
if self.args.world_size > 1:
process_index = self.args.process_index
rng_file = os.path.join(checkpoint, f"rng_state_{process_index}.pth")
if not os.path.isfile(rng_file):
logger.info(
f"Didn't find an RNG file for process {process_index}, if you are resuming a training that "
"wasn't launched in a distributed fashion, reproducibility is not guaranteed."
)
return
else:
rng_file = os.path.join(checkpoint, "rng_state.pth")
if not os.path.isfile(rng_file):
logger.info(
"Didn't find an RNG file, if you are resuming a training that was launched in a distributed "
"fashion, reproducibility is not guaranteed."
)
return
checkpoint_rng_state = torch.load(rng_file)
random.setstate(checkpoint_rng_state["python"])
np.random.set_state(checkpoint_rng_state["numpy"])
torch.random.set_rng_state(checkpoint_rng_state["cpu"])
if torch.cuda.is_available():
if self.args.parallel_mode == ParallelMode.DISTRIBUTED:
torch.cuda.random.set_rng_state_all(checkpoint_rng_state["cuda"])
else:
try:
torch.cuda.random.set_rng_state(checkpoint_rng_state["cuda"])
except Exception as e:
logger.info(
f"Didn't manage to set back the RNG states of the GPU because of the following error:\n {e}"
"\nThis won't yield the same results as if the training had not been interrupted."
)
if is_torch_tpu_available():
xm.set_rng_state(checkpoint_rng_state["xla"])
def _save_checkpoint(self, model, trial, metrics=None):
# In all cases, including ddp/dp/deepspeed, self.model is always a reference to the model we
# want to save except FullyShardedDDP.
# assert unwrap_model(model) is self.model, "internal model should be a reference to self.model"
# Save model checkpoint
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}" # changed by homeway, 20230711
if self.hp_search_backend is None and trial is None:
self.store_flos()
run_dir = self._get_output_dir(trial=trial)
output_dir = os.path.join(run_dir, checkpoint_folder)
self.save_model(output_dir, _internal_call=True)
if self.is_deepspeed_enabled:
# under zero3 model file itself doesn't get saved since it's bogus! Unless deepspeed
# config `stage3_gather_16bit_weights_on_model_save` is True
self.model_wrapped.save_checkpoint(output_dir)
# Save optimizer and scheduler
if self.sharded_ddp == ShardedDDPOption.SIMPLE:
self.optimizer.consolidate_state_dict()
if self.fsdp:
# FSDP has a different interface for saving optimizer states.
# Needs to be called on all ranks to gather all states.
# full_optim_state_dict will be deprecated after Pytorch 2.2!
full_osd = self.model.__class__.full_optim_state_dict(self.model, self.optimizer)
if is_torch_tpu_available():
xm.rendezvous("saving_optimizer_states")
xm.save(self.optimizer.state_dict(), os.path.join(output_dir, OPTIMIZER_NAME))
with warnings.catch_warnings(record=True) as caught_warnings:
xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
reissue_pt_warnings(caught_warnings)
elif is_sagemaker_mp_enabled():
opt_state_dict = self.optimizer.local_state_dict(gather_if_shard=False)
smp.barrier()
if smp.rdp_rank() == 0 or smp.state.cfg.shard_optimizer_state:
smp.save(
opt_state_dict,
os.path.join(output_dir, OPTIMIZER_NAME),
partial=True,
v3=smp.state.cfg.shard_optimizer_state,
)
if self.args.should_save:
with warnings.catch_warnings(record=True) as caught_warnings:
torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
reissue_pt_warnings(caught_warnings)
if self.do_grad_scaling:
torch.save(self.scaler.state_dict(), os.path.join(output_dir, SCALER_NAME))
elif self.args.should_save and not self.is_deepspeed_enabled:
# deepspeed.save_checkpoint above saves model/optim/sched
if self.fsdp:
torch.save(full_osd, os.path.join(output_dir, OPTIMIZER_NAME))
else:
torch.save(self.optimizer.state_dict(), os.path.join(output_dir, OPTIMIZER_NAME))
with warnings.catch_warnings(record=True) as caught_warnings:
torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
reissue_pt_warnings(caught_warnings)
if self.do_grad_scaling:
torch.save(self.scaler.state_dict(), os.path.join(output_dir, SCALER_NAME))
# Determine the new best metric / best model checkpoint
if metrics is not None and self.args.metric_for_best_model is not None:
metric_to_check = self.args.metric_for_best_model
if not metric_to_check.startswith("eval_"):
metric_to_check = f"eval_{metric_to_check}"
metric_value = metrics[metric_to_check]
operator = np.greater if self.args.greater_is_better else np.less
if (
self.state.best_metric is None
or self.state.best_model_checkpoint is None
or operator(metric_value, self.state.best_metric)
):
self.state.best_metric = metric_value
self.state.best_model_checkpoint = output_dir
# Save the Trainer state
if self.args.should_save:
self.state.save_to_json(os.path.join(output_dir, TRAINER_STATE_NAME))
# Save RNG state in non-distributed training
rng_states = {
"python": random.getstate(),
"numpy": np.random.get_state(),
"cpu": torch.random.get_rng_state(),
}
if torch.cuda.is_available():
if self.args.parallel_mode == ParallelMode.DISTRIBUTED:
# In non distributed, we save the global CUDA RNG state (will take care of DataParallel)
rng_states["cuda"] = torch.cuda.random.get_rng_state_all()
else:
rng_states["cuda"] = torch.cuda.random.get_rng_state()
if is_torch_tpu_available():
rng_states["xla"] = xm.get_rng_state()
# A process can arrive here before the process 0 has a chance to save the model, in which case output_dir may
# not yet exist.
os.makedirs(output_dir, exist_ok=True)
if self.args.world_size <= 1:
torch.save(rng_states, os.path.join(output_dir, "rng_state.pth"))
else:
torch.save(rng_states, os.path.join(output_dir, f"rng_state_{self.args.process_index}.pth"))
if self.args.push_to_hub:
self._push_from_checkpoint(output_dir)
# Maybe delete some older checkpoints.
if self.args.should_save:
self._rotate_checkpoints(use_mtime=True, output_dir=run_dir)
def _load_optimizer_and_scheduler(self, checkpoint):
"""If optimizer and scheduler states exist, load them."""
if checkpoint is None:
return
if self.is_deepspeed_enabled:
# deepspeed loads optimizer/lr_scheduler together with the model in deepspeed_init
return
checkpoint_file_exists = (
glob.glob(os.path.join(checkpoint, OPTIMIZER_NAME) + "_*")
if is_sagemaker_mp_enabled()
else os.path.isfile(os.path.join(checkpoint, OPTIMIZER_NAME))
)
if checkpoint_file_exists and os.path.isfile(os.path.join(checkpoint, SCHEDULER_NAME)):
# Load in optimizer and scheduler states
if is_torch_tpu_available():
# On TPU we have to take some extra precautions to properly load the states on the right device.
optimizer_state = torch.load(os.path.join(checkpoint, OPTIMIZER_NAME), map_location="cpu")
with warnings.catch_warnings(record=True) as caught_warnings:
lr_scheduler_state = torch.load(os.path.join(checkpoint, SCHEDULER_NAME), map_location="cpu")
reissue_pt_warnings(caught_warnings)
xm.send_cpu_data_to_device(optimizer_state, self.args.device)
xm.send_cpu_data_to_device(lr_scheduler_state, self.args.device)
self.optimizer.load_state_dict(optimizer_state)
self.lr_scheduler.load_state_dict(lr_scheduler_state)
else:
if is_sagemaker_mp_enabled():
if os.path.isfile(os.path.join(checkpoint, "user_content.pt")):
# Optimizer checkpoint was saved with smp >= 1.10
def opt_load_hook(mod, opt):
opt.load_state_dict(smp.load(os.path.join(checkpoint, OPTIMIZER_NAME), partial=True))
else:
# Optimizer checkpoint was saved with smp < 1.10
def opt_load_hook(mod, opt):
if IS_SAGEMAKER_MP_POST_1_10:
opt.load_state_dict(
smp.load(os.path.join(checkpoint, OPTIMIZER_NAME), partial=True, back_compat=True)
)
else:
opt.load_state_dict(smp.load(os.path.join(checkpoint, OPTIMIZER_NAME), partial=True))
self.model_wrapped.register_post_step_hook(opt_load_hook)
else:
# We use the CPU when training on one GPU to avoid OOM for GPU RAM when training big models.
# In distributed training however, we load directly on each GPU and risk the GPU OOM as it's more
# likely to get OOM on CPU (since we load num_gpu times the optimizer state
map_location = self.args.device if self.args.world_size > 1 else "cpu"
if self.fsdp:
full_osd = None
# In FSDP, we need to load the full optimizer state dict on rank 0 and then shard it
if self.args.process_index == 0:
full_osd = torch.load(os.path.join(checkpoint, OPTIMIZER_NAME))
# call scatter_full_optim_state_dict on all ranks
sharded_osd = self.model.__class__.scatter_full_optim_state_dict(full_osd, self.model)
self.optimizer.load_state_dict(sharded_osd)
else:
self.optimizer.load_state_dict(
torch.load(os.path.join(checkpoint, OPTIMIZER_NAME), map_location=map_location)
)
with warnings.catch_warnings(record=True) as caught_warnings:
self.lr_scheduler.load_state_dict(torch.load(os.path.join(checkpoint, SCHEDULER_NAME)))
reissue_pt_warnings(caught_warnings)
if self.do_grad_scaling and os.path.isfile(os.path.join(checkpoint, SCALER_NAME)):
self.scaler.load_state_dict(torch.load(os.path.join(checkpoint, SCALER_NAME)))
def hyperparameter_search(
self,
hp_space: Optional[Callable[["optuna.Trial"], Dict[str, float]]] = None,
compute_objective: Optional[Callable[[Dict[str, float]], float]] = None,
n_trials: int = 20,
direction: str = "minimize",
backend: Optional[Union["str", HPSearchBackend]] = None,
hp_name: Optional[Callable[["optuna.Trial"], str]] = None,
**kwargs,
) -> BestRun:
"""
Launch an hyperparameter search using `optuna` or `Ray Tune` or `SigOpt`. The optimized quantity is determined
by `compute_objective`, which defaults to a function returning the evaluation loss when no metric is provided,
the sum of all metrics otherwise.
<Tip warning={true}>
To use this method, you need to have provided a `model_init` when initializing your [`Trainer`]: we need to
reinitialize the model at each new run. This is incompatible with the `optimizers` argument, so you need to
subclass [`Trainer`] and override the method [`~Trainer.create_optimizer_and_scheduler`] for custom
optimizer/scheduler.
</Tip>
Args:
hp_space (`Callable[["optuna.Trial"], Dict[str, float]]`, *optional*):
A function that defines the hyperparameter search space. Will default to
[`~trainer_utils.default_hp_space_optuna`] or [`~trainer_utils.default_hp_space_ray`] or
[`~trainer_utils.default_hp_space_sigopt`] depending on your backend.
compute_objective (`Callable[[Dict[str, float]], float]`, *optional*):
A function computing the objective to minimize or maximize from the metrics returned by the `evaluate`
method. Will default to [`~trainer_utils.default_compute_objective`].
n_trials (`int`, *optional*, defaults to 100):
The number of trial runs to test.
direction (`str`, *optional*, defaults to `"minimize"`):
Whether to optimize greater or lower objects. Can be `"minimize"` or `"maximize"`, you should pick
`"minimize"` when optimizing the validation loss, `"maximize"` when optimizing one or several metrics.
backend (`str` or [`~training_utils.HPSearchBackend`], *optional*):
The backend to use for hyperparameter search. Will default to optuna or Ray Tune or SigOpt, depending
on which one is installed. If all are installed, will default to optuna.
hp_name (`Callable[["optuna.Trial"], str]]`, *optional*):
A function that defines the trial/run name. Will default to None.
kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to `optuna.create_study` or `ray.tune.run`. For more
information see:
- the documentation of
[optuna.create_study](https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.create_study.html)
- the documentation of [tune.run](https://docs.ray.io/en/latest/tune/api_docs/execution.html#tune-run)
- the documentation of [sigopt](https://app.sigopt.com/docs/endpoints/experiments/create)
Returns:
[`trainer_utils.BestRun`]: All the information about the best run. Experiment summary can be found in
`run_summary` attribute for Ray backend.
"""
if backend is None:
backend = default_hp_search_backend()
if backend is None:
raise RuntimeError(
"At least one of optuna or ray should be installed. "
"To install optuna run `pip install optuna`. "
"To install ray run `pip install ray[tune]`. "
"To install sigopt run `pip install sigopt`."
)
backend = HPSearchBackend(backend)
if backend == HPSearchBackend.OPTUNA and not is_optuna_available():
raise RuntimeError("You picked the optuna backend, but it is not installed. Use `pip install optuna`.")
if backend == HPSearchBackend.RAY and not is_ray_tune_available():
raise RuntimeError(
"You picked the Ray Tune backend, but it is not installed. Use `pip install 'ray[tune]'`."
)
if backend == HPSearchBackend.SIGOPT and not is_sigopt_available():
raise RuntimeError("You picked the sigopt backend, but it is not installed. Use `pip install sigopt`.")
if backend == HPSearchBackend.WANDB and not is_wandb_available():
raise RuntimeError("You picked the wandb backend, but it is not installed. Use `pip install wandb`.")
self.hp_search_backend = backend
if self.model_init is None:
raise RuntimeError(
"To use hyperparameter search, you need to pass your model through a model_init function."
)
self.hp_space = default_hp_space[backend] if hp_space is None else hp_space
self.hp_name = hp_name
self.compute_objective = default_compute_objective if compute_objective is None else compute_objective
backend_dict = {
HPSearchBackend.OPTUNA: run_hp_search_optuna,
HPSearchBackend.RAY: run_hp_search_ray,
HPSearchBackend.SIGOPT: run_hp_search_sigopt,
HPSearchBackend.WANDB: run_hp_search_wandb,
}
best_run = backend_dict[backend](self, n_trials, direction, **kwargs)
self.hp_search_backend = None
return best_run
def log(self, logs: Dict[str, float]) -> None:
"""
Log `logs` on the various objects watching training.
Subclass and override this method to inject custom behavior.
Args:
logs (`Dict[str, float]`):
The values to log.
"""
if self.state.epoch is not None:
logs["epoch"] = round(self.state.epoch, 2)
output = {**logs, **{"step": self.state.global_step}}
self.state.log_history.append(output)
self.control = self.callback_handler.on_log(self.args, self.state, self.control, logs)
def _prepare_input(self, data: Union[torch.Tensor, Any]) -> Union[torch.Tensor, Any]:
"""
Prepares one `data` before feeding it to the model, be it a tensor or a nested list/dictionary of tensors.
"""
if isinstance(data, Mapping):
return type(data)({k: self._prepare_input(v) for k, v in data.items()})
elif isinstance(data, (tuple, list)):
return type(data)(self._prepare_input(v) for v in data)
elif isinstance(data, torch.Tensor):
kwargs = {"device": self.args.device}
if self.is_deepspeed_enabled and (torch.is_floating_point(data) or torch.is_complex(data)):
# NLP models inputs are int/uint and those get adjusted to the right dtype of the
# embedding. Other models such as wav2vec2's inputs are already float and thus
# may need special handling to match the dtypes of the model
kwargs.update({"dtype": self.accelerator.state.deepspeed_plugin.hf_ds_config.dtype()})
return data.to(**kwargs)
return data
def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]:
"""
Prepare `inputs` before feeding them to the model, converting them to tensors if they are not already and
handling potential state.
"""
inputs = self._prepare_input(inputs)
if len(inputs) == 0:
raise ValueError(
"The batch received was empty, your model won't be able to train on it. Double-check that your "
f"training dataset contains keys expected by the model: {','.join(self._signature_columns)}."
)
if self.args.past_index >= 0 and self._past is not None:
inputs["mems"] = self._past
return inputs
def compute_loss_context_manager(self):
"""
A helper wrapper to group together context managers.
"""
return self.autocast_smart_context_manager()
def autocast_smart_context_manager(self, cache_enabled: Optional[bool] = True):
"""
A helper wrapper that creates an appropriate context manager for `autocast` while feeding it the desired
arguments, depending on the situation.
"""
if self.use_cuda_amp or self.use_cpu_amp:
if is_torch_greater_or_equal_than_1_10:
ctx_manager = (
torch.cpu.amp.autocast(cache_enabled=cache_enabled, dtype=self.amp_dtype)
if self.use_cpu_amp
else torch.cuda.amp.autocast(cache_enabled=cache_enabled, dtype=self.amp_dtype)
)
else:
ctx_manager = torch.cuda.amp.autocast()
else:
ctx_manager = contextlib.nullcontext() if sys.version_info >= (3, 7) else contextlib.suppress()
return ctx_manager
def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
"""
Perform a training step on a batch of inputs.
Subclass and override to inject custom behavior.
Args:
model (`nn.Module`):
The model to train.
inputs (`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
argument `labels`. Check your model's documentation for all accepted arguments.
Return:
`torch.Tensor`: The tensor with training loss on this batch.
"""
model.train()
inputs = self._prepare_inputs(inputs)
if is_sagemaker_mp_enabled():
loss_mb = smp_forward_backward(model, inputs, self.args.gradient_accumulation_steps)
return loss_mb.reduce_mean().detach().to(self.args.device)
with self.compute_loss_context_manager():
loss = self.compute_loss(model, inputs)
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if self.do_grad_scaling:
self.scaler.scale(loss).backward()
elif self.use_apex:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
self.accelerator.backward(loss)
return loss.detach() / self.args.gradient_accumulation_steps
def compute_loss(self, model, inputs, return_outputs=False):
"""
How the loss is computed by Trainer. By default, all models return the loss in the first element.
Subclass and override for custom behavior.
"""
if self.label_smoother is not None and "labels" in inputs:
labels = inputs.pop("labels")
else:
labels = None
outputs = model(**inputs)
# Save past state if it exists
# TODO: this needs to be fixed and made cleaner later.
if self.args.past_index >= 0:
self._past = outputs[self.args.past_index]
if labels is not None:
if unwrap_model(model)._get_name() in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES.values():
loss = self.label_smoother(outputs, labels, shift_labels=True)
else:
loss = self.label_smoother(outputs, labels)
else:
if isinstance(outputs, dict) and "loss" not in outputs:
raise ValueError(
"The model did not return a loss from the inputs, only the following keys: "
f"{','.join(outputs.keys())}. For reference, the inputs it received are {','.join(inputs.keys())}."
)
# We don't use .loss here since the model may return tuples instead of ModelOutput.
loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
return (loss, outputs) if return_outputs else loss
def is_local_process_zero(self) -> bool:
"""
Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several
machines) main process.
"""
return self.args.local_process_index == 0
def is_world_process_zero(self) -> bool:
"""
Whether or not this process is the global main process (when training in a distributed fashion on several
machines, this is only going to be `True` for one process).
"""
# Special case for SageMaker ModelParallel since there process_index is dp_process_index, not the global
# process index.
if is_sagemaker_mp_enabled():
return smp.rank() == 0
else:
return self.args.process_index == 0
def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False):
"""
Will save the model, so you can reload it using `from_pretrained()`.
Will only save from the main process.
"""
if output_dir is None:
output_dir = self.args.output_dir
if is_torch_tpu_available():
self._save_tpu(output_dir)
elif is_sagemaker_mp_enabled():
# Calling the state_dict needs to be done on the wrapped model and on all processes.
os.makedirs(output_dir, exist_ok=True)
state_dict = self.model_wrapped.state_dict()
if self.args.should_save:
self._save(output_dir, state_dict=state_dict)
if IS_SAGEMAKER_MP_POST_1_10:
# 'user_content.pt' indicates model state_dict saved with smp >= 1.10
Path(os.path.join(output_dir, "user_content.pt")).touch()
elif (
ShardedDDPOption.ZERO_DP_2 in self.args.sharded_ddp
or ShardedDDPOption.ZERO_DP_3 in self.args.sharded_ddp
or self.fsdp is not None
or self.is_fsdp_enabled
):
if self.is_fsdp_enabled:
os.makedirs(output_dir, exist_ok=True)
self.accelerator.state.fsdp_plugin.save_model(self.accelerator, self.model, output_dir)
else:
state_dict = self.model.state_dict()
if self.args.should_save:
self._save(output_dir, state_dict=state_dict)
elif self.is_deepspeed_enabled:
# this takes care of everything as long as we aren't under zero3
if self.args.should_save:
self._save(output_dir)
if is_deepspeed_zero3_enabled():
# It's too complicated to try to override different places where the weights dump gets
# saved, so since under zero3 the file is bogus, simply delete it. The user should
# either user deepspeed checkpoint to resume or to recover full weights use
# zero_to_fp32.py stored in the checkpoint.
if self.args.should_save:
file = os.path.join(output_dir, WEIGHTS_NAME)
if os.path.isfile(file):
# logger.info(f"deepspeed zero3: removing {file}, see zero_to_fp32.py to recover weights")
os.remove(file)
# now save the real model if stage3_gather_16bit_weights_on_model_save=True
# if false it will not be saved.
# This must be called on all ranks
if not self.model_wrapped.save_16bit_model(output_dir, WEIGHTS_NAME):
logger.warning(
"deepspeed.save_16bit_model didn't save the model, since"
" stage3_gather_16bit_weights_on_model_save=false. Saving the full checkpoint instead, use"
" zero_to_fp32.py to recover weights"
)
self.model_wrapped.save_checkpoint(output_dir)
elif self.args.should_save:
self._save(output_dir)
# Push to the Hub when `save_model` is called by the user.
if self.args.push_to_hub and not _internal_call:
self.push_to_hub(commit_message="Model save")
def _save_tpu(self, output_dir: Optional[str] = None):
output_dir = output_dir if output_dir is not None else self.args.output_dir
logger.info(f"Saving model checkpoint to {output_dir}")
if xm.is_master_ordinal():
os.makedirs(output_dir, exist_ok=True)
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
# Save a trained model and configuration using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
xm.rendezvous("saving_checkpoint")
if not isinstance(self.model, PreTrainedModel):
if isinstance(unwrap_model(self.model), PreTrainedModel):
unwrap_model(self.model).save_pretrained(
output_dir,
is_main_process=self.args.should_save,
state_dict=self.model.state_dict(),
save_function=xm.save,
)
else:
logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
state_dict = self.model.state_dict()
xm.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
else:
self.model.save_pretrained(output_dir, is_main_process=self.args.should_save, save_function=xm.save)
if self.tokenizer is not None and self.args.should_save:
self.tokenizer.save_pretrained(output_dir)
def _save(self, output_dir: Optional[str] = None, state_dict=None):
# If we are executing this function, we are the process zero, so we don't check for that.
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info(f"Saving model checkpoint to {output_dir}")
supported_classes = (PreTrainedModel,) if not is_peft_available() else (PreTrainedModel, PeftModel)
# Save a trained model and configuration using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
if not isinstance(self.model, supported_classes):
if state_dict is None:
state_dict = self.model.state_dict()
if isinstance(unwrap_model(self.model), supported_classes):
unwrap_model(self.model).save_pretrained(
output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors
)
else:
logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
if self.args.save_safetensors:
safetensors.torch.save_file(state_dict, os.path.join(output_dir, SAFE_WEIGHTS_NAME))
else:
torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
else:
self.model.save_pretrained(
output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors
)
if self.tokenizer is not None:
self.tokenizer.save_pretrained(output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
def store_flos(self):
# Storing the number of floating-point operations that went into the model
if self.args.parallel_mode == ParallelMode.DISTRIBUTED:
self.state.total_flos += (
distributed_broadcast_scalars([self.current_flos], device=self.args.device).sum().item()
)
self.current_flos = 0
else:
self.state.total_flos += self.current_flos
self.current_flos = 0
def _sorted_checkpoints(
self, output_dir=None, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False
) -> List[str]:
ordering_and_checkpoint_path = []
glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]
for path in glob_checkpoints:
if use_mtime:
ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
else:
regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
if regex_match is not None and regex_match.groups() is not None:
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
# Make sure we don't delete the best model.
if self.state.best_model_checkpoint is not None:
best_model_index = checkpoints_sorted.index(str(Path(self.state.best_model_checkpoint)))
for i in range(best_model_index, len(checkpoints_sorted) - 2):
checkpoints_sorted[i], checkpoints_sorted[i + 1] = checkpoints_sorted[i + 1], checkpoints_sorted[i]
return checkpoints_sorted
def _rotate_checkpoints(self, use_mtime=False, output_dir=None) -> None:
if self.args.save_total_limit is None or self.args.save_total_limit <= 0:
return
# Check if we should delete older checkpoint(s)
checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime, output_dir=output_dir)
if len(checkpoints_sorted) <= self.args.save_total_limit:
return
# If save_total_limit=1 with load_best_model_at_end=True, we could end up deleting the last checkpoint, which
# we don't do to allow resuming.
save_total_limit = self.args.save_total_limit
if (
self.state.best_model_checkpoint is not None
and self.args.save_total_limit == 1
and checkpoints_sorted[-1] != self.state.best_model_checkpoint
):
save_total_limit = 2
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
for checkpoint in checkpoints_to_be_deleted:
logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
shutil.rmtree(checkpoint, ignore_errors=True)
def evaluate(
self,
eval_dataset: Optional[Dataset] = None,
ignore_keys: Optional[List[str]] = None,
metric_key_prefix: str = "eval",
) -> Dict[str, float]:
"""
Run evaluation and returns metrics.
The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
(pass it to the init `compute_metrics` argument).
You can also subclass and override this method to inject custom behavior.
Args:
eval_dataset (`Dataset`, *optional*):
Pass a dataset if you wish to override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns
not accepted by the `model.forward()` method are automatically removed. It must implement the `__len__`
method.
ignore_keys (`List[str]`, *optional*):
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
gathering predictions.
metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
"eval_bleu" if the prefix is "eval" (default)
Returns:
A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
dictionary also contains the epoch number which comes from the training state.
"""
# memory metrics - must set up as early as possible
self._memory_tracker.start()
eval_dataloader = self.get_eval_dataloader(eval_dataset)
start_time = time.time()
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
output = eval_loop(
eval_dataloader,
description="Evaluation",
# No point gathering the predictions if there are no metrics, otherwise we defer to
# self.args.prediction_loss_only
prediction_loss_only=True if self.compute_metrics is None else None,
ignore_keys=ignore_keys,
metric_key_prefix=metric_key_prefix,
)
total_batch_size = self.args.eval_batch_size * self.args.world_size
if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
metric_key_prefix,
start_time,
num_samples=output.num_samples,
num_steps=math.ceil(output.num_samples / total_batch_size),
)
)
self.log(output.metrics)
if DebugOption.TPU_METRICS_DEBUG in self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, output.metrics)
self._memory_tracker.stop_and_update_metrics(output.metrics)
return output.metrics
def predict(
self, test_dataset: Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "test"
) -> PredictionOutput:
"""
Run prediction and returns predictions and potential metrics.
Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method
will also return metrics, like in `evaluate()`.
Args:
test_dataset (`Dataset`):
Dataset to run the predictions on. If it is an `datasets.Dataset`, columns not accepted by the
`model.forward()` method are automatically removed. Has to implement the method `__len__`
ignore_keys (`List[str]`, *optional*):
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
gathering predictions.
metric_key_prefix (`str`, *optional*, defaults to `"test"`):
An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
"test_bleu" if the prefix is "test" (default)
<Tip>
If your predictions or labels have different sequence length (for instance because you're doing dynamic padding
in a token classification task) the predictions will be padded (on the right) to allow for concatenation into
one array. The padding index is -100.
</Tip>
Returns: *NamedTuple* A namedtuple with the following keys:
- predictions (`np.ndarray`): The predictions on `test_dataset`.
- label_ids (`np.ndarray`, *optional*): The labels (if the dataset contained some).
- metrics (`Dict[str, float]`, *optional*): The potential dictionary of metrics (if the dataset contained
labels).
"""
# memory metrics - must set up as early as possible
self._memory_tracker.start()
test_dataloader = self.get_test_dataloader(test_dataset)
start_time = time.time()
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
output = eval_loop(
test_dataloader, description="Prediction", ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix
)
total_batch_size = self.args.eval_batch_size * self.args.world_size
if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
metric_key_prefix,
start_time,
num_samples=output.num_samples,
num_steps=math.ceil(output.num_samples / total_batch_size),
)
)
self.control = self.callback_handler.on_predict(self.args, self.state, self.control, output.metrics)
self._memory_tracker.stop_and_update_metrics(output.metrics)
return PredictionOutput(predictions=output.predictions, label_ids=output.label_ids, metrics=output.metrics)
def evaluation_loop(
self,
dataloader: DataLoader,
description: str,
prediction_loss_only: Optional[bool] = None,
ignore_keys: Optional[List[str]] = None,
metric_key_prefix: str = "eval",
) -> EvalLoopOutput:
"""
Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`.
Works both with or without labels.
"""
args = self.args
prediction_loss_only = prediction_loss_only if prediction_loss_only is not None else args.prediction_loss_only
# if eval is called w/o train, handle model prep here
if self.is_deepspeed_enabled and self.model_wrapped is self.model:
_, _ = deepspeed_init(self, num_training_steps=0, inference=True)
model = self._wrap_model(self.model, training=False, dataloader=dataloader)
if len(self.accelerator._models) == 0 and model is self.model:
model = (
self.accelerator.prepare(model)
if self.is_deepspeed_enabled
else self.accelerator.prepare_model(model, evaluation_mode=True)
)
if self.is_fsdp_enabled:
self.model = model
# for the rest of this function `model` is the outside model, whether it was wrapped or not
if model is not self.model:
self.model_wrapped = model
# backward compatibility
if self.is_deepspeed_enabled:
self.deepspeed = self.model_wrapped
# if full fp16 or bf16 eval is wanted and this ``evaluation`` or ``predict`` isn't called
# while ``train`` is running, cast it to the right dtype first and then put on device
if not self.is_in_train:
if args.fp16_full_eval:
model = model.to(dtype=torch.float16, device=args.device)
elif args.bf16_full_eval:
model = model.to(dtype=torch.bfloat16, device=args.device)
batch_size = self.args.eval_batch_size
logger.info(f"***** Running {description} *****")
if has_length(dataloader):
logger.info(f" Num examples = {self.num_examples(dataloader)}")
else:
logger.info(" Num examples: Unknown")
logger.info(f" Batch size = {batch_size}")
model.eval()
self.callback_handler.eval_dataloader = dataloader
# Do this before wrapping.
eval_dataset = getattr(dataloader, "dataset", None)
if is_torch_tpu_available():
dataloader = pl.ParallelLoader(dataloader, [args.device]).per_device_loader(args.device)
if args.past_index >= 0:
self._past = None
# Initialize containers
# losses/preds/labels on GPU/TPU (accumulated for eval_accumulation_steps)
losses_host = None
preds_host = None
labels_host = None
inputs_host = None
# losses/preds/labels on CPU (final containers)
all_losses = None
all_preds = None
all_labels = None
all_inputs = None
# Will be useful when we have an iterable dataset so don't know its length.
observed_num_examples = 0
# Main evaluation loop
for step, inputs in enumerate(dataloader):
# Update the observed num examples
observed_batch_size = find_batch_size(inputs)
if observed_batch_size is not None:
observed_num_examples += observed_batch_size
# For batch samplers, batch_size is not known by the dataloader in advance.
if batch_size is None:
batch_size = observed_batch_size
# Prediction step
loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
inputs_decode = self._prepare_input(inputs["input_ids"]) if args.include_inputs_for_metrics else None
if is_torch_tpu_available():
xm.mark_step()
# Update containers on host
if loss is not None:
losses = self._nested_gather(loss.repeat(batch_size))
losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0)
if labels is not None:
labels = self._pad_across_processes(labels)
if inputs_decode is not None:
inputs_decode = self._pad_across_processes(inputs_decode)
inputs_decode = self._nested_gather(inputs_decode)
inputs_host = (
inputs_decode
if inputs_host is None
else nested_concat(inputs_host, inputs_decode, padding_index=-100)
)
if logits is not None:
logits = self._pad_across_processes(logits)
if self.preprocess_logits_for_metrics is not None:
logits = self.preprocess_logits_for_metrics(logits, labels)
logits = self._nested_gather(logits)
preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100)
if labels is not None:
labels = self._nested_gather(labels)
labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100)
self.control = self.callback_handler.on_prediction_step(args, self.state, self.control)
# Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
if args.eval_accumulation_steps is not None and (step + 1) % args.eval_accumulation_steps == 0:
if losses_host is not None:
losses = nested_numpify(losses_host)
all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)
if preds_host is not None:
logits = nested_numpify(preds_host)
all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
if inputs_host is not None:
inputs_decode = nested_numpify(inputs_host)
all_inputs = (
inputs_decode
if all_inputs is None
else nested_concat(all_inputs, inputs_decode, padding_index=-100)
)
if labels_host is not None:
labels = nested_numpify(labels_host)
all_labels = (
labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)
)
# Set back to None to begin a new accumulation
losses_host, preds_host, inputs_host, labels_host = None, None, None, None
if args.past_index and hasattr(self, "_past"):
# Clean the state at the end of the evaluation loop
delattr(self, "_past")
# Gather all remaining tensors and put them back on the CPU
if losses_host is not None:
losses = nested_numpify(losses_host)
all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)
if preds_host is not None:
logits = nested_numpify(preds_host)
all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
if inputs_host is not None:
inputs_decode = nested_numpify(inputs_host)
all_inputs = (
inputs_decode if all_inputs is None else nested_concat(all_inputs, inputs_decode, padding_index=-100)
)
if labels_host is not None:
labels = nested_numpify(labels_host)
all_labels = labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)
# Number of samples
if has_length(eval_dataset):
num_samples = len(eval_dataset)
# The instance check is weird and does not actually check for the type, but whether the dataset has the right
# methods. Therefore we need to make sure it also has the attribute.
elif isinstance(eval_dataset, IterableDatasetShard) and getattr(eval_dataset, "num_examples", 0) > 0:
num_samples = eval_dataset.num_examples
else:
if has_length(dataloader):
num_samples = self.num_examples(dataloader)
else: # both len(dataloader.dataset) and len(dataloader) fail
num_samples = observed_num_examples
if num_samples == 0 and observed_num_examples > 0:
num_samples = observed_num_examples
# Number of losses has been rounded to a multiple of batch_size and in a distributed training, the number of
# samplers has been rounded to a multiple of batch_size, so we truncate.
if all_losses is not None:
all_losses = all_losses[:num_samples]
if all_preds is not None:
all_preds = nested_truncate(all_preds, num_samples)
if all_labels is not None:
all_labels = nested_truncate(all_labels, num_samples)
if all_inputs is not None:
all_inputs = nested_truncate(all_inputs, num_samples)
# Metrics!
if self.compute_metrics is not None and all_preds is not None and all_labels is not None:
if args.include_inputs_for_metrics:
metrics = self.compute_metrics(
EvalPrediction(predictions=all_preds, label_ids=all_labels, inputs=all_inputs)
)
else:
metrics = self.compute_metrics(EvalPrediction(predictions=all_preds, label_ids=all_labels))
else:
metrics = {}
# To be JSON-serializable, we need to remove numpy types or zero-d tensors
metrics = denumpify_detensorize(metrics)
if all_losses is not None:
metrics[f"{metric_key_prefix}_loss"] = all_losses.mean().item()
if hasattr(self, "jit_compilation_time"):
metrics[f"{metric_key_prefix}_jit_compilation_time"] = self.jit_compilation_time
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f"{metric_key_prefix}_"):
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
return EvalLoopOutput(predictions=all_preds, label_ids=all_labels, metrics=metrics, num_samples=num_samples)
def _nested_gather(self, tensors, name=None):
"""
Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before
concatenating them to `gathered`
"""
if tensors is None:
return
if is_torch_tpu_available():
if name is None:
name = "nested_gather"
tensors = nested_xla_mesh_reduce(tensors, name)
elif is_sagemaker_mp_enabled():
tensors = smp_gather(tensors)
elif (self.args.distributed_state is not None and self.args.distributed_state.distributed_type != "NO") or (
self.args.distributed_state is None and self.local_rank != -1
):
tensors = distributed_concat(tensors)
return tensors
# Copied from Accelerate.
def _pad_across_processes(self, tensor, pad_index=-100):
"""
Recursively pad the tensors in a nested list/tuple/dictionary of tensors from all devices to the same size so
they can safely be gathered.
"""
if isinstance(tensor, (list, tuple)):
return type(tensor)(self._pad_across_processes(t, pad_index=pad_index) for t in tensor)
elif isinstance(tensor, dict):
return type(tensor)({k: self._pad_across_processes(v, pad_index=pad_index) for k, v in tensor.items()})
elif not isinstance(tensor, torch.Tensor):
raise TypeError(
f"Can't pad the values of type {type(tensor)}, only of nested list/tuple/dicts of tensors."
)
if len(tensor.shape) < 2:
return tensor
# Gather all sizes
size = torch.tensor(tensor.shape, device=tensor.device)[None]
sizes = self._nested_gather(size).cpu()
max_size = max(s[1] for s in sizes)
# When extracting XLA graphs for compilation, max_size is 0,
# so use inequality to avoid errors.
if tensor.shape[1] >= max_size:
return tensor
# Then pad to the maximum size
old_size = tensor.shape
new_size = list(old_size)
new_size[1] = max_size
new_tensor = tensor.new_zeros(tuple(new_size)) + pad_index
new_tensor[:, : old_size[1]] = tensor
return new_tensor
def prediction_step(
self,
model: nn.Module,
inputs: Dict[str, Union[torch.Tensor, Any]],
prediction_loss_only: bool,
ignore_keys: Optional[List[str]] = None,
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
"""
Perform an evaluation step on `model` using `inputs`.
Subclass and override to inject custom behavior.
Args:
model (`nn.Module`):
The model to evaluate.
inputs (`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
argument `labels`. Check your model's documentation for all accepted arguments.
prediction_loss_only (`bool`):
Whether or not to return the loss only.
ignore_keys (`List[str]`, *optional*):
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
gathering predictions.
Return:
Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss,
logits and labels (each being optional).
"""
has_labels = False if len(self.label_names) == 0 else all(inputs.get(k) is not None for k in self.label_names)
# For CLIP-like models capable of returning loss values.
# If `return_loss` is not specified or being `None` in `inputs`, we check if the default value of `return_loss`
# is `True` in `model.forward`.
return_loss = inputs.get("return_loss", None)
if return_loss is None:
return_loss = self.can_return_loss
loss_without_labels = True if len(self.label_names) == 0 and return_loss else False
inputs = self._prepare_inputs(inputs)
if ignore_keys is None:
if hasattr(self.model, "config"):
ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
else:
ignore_keys = []
# labels may be popped when computing the loss (label smoothing for instance) so we grab them first.
if has_labels or loss_without_labels:
labels = nested_detach(tuple(inputs.get(name) for name in self.label_names))
if len(labels) == 1:
labels = labels[0]
else:
labels = None
with torch.no_grad():
if is_sagemaker_mp_enabled():
raw_outputs = smp_forward_only(model, inputs)
if has_labels or loss_without_labels:
if isinstance(raw_outputs, dict):
loss_mb = raw_outputs["loss"]
logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys + ["loss"])
else:
loss_mb = raw_outputs[0]
logits_mb = raw_outputs[1:]
loss = loss_mb.reduce_mean().detach().cpu()
logits = smp_nested_concat(logits_mb)
else:
loss = None
if isinstance(raw_outputs, dict):
logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys)
else:
logits_mb = raw_outputs
logits = smp_nested_concat(logits_mb)
else:
if has_labels or loss_without_labels:
with self.compute_loss_context_manager():
loss, outputs = self.compute_loss(model, inputs, return_outputs=True)
loss = loss.mean().detach()
if isinstance(outputs, dict):
logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss"])
else:
logits = outputs[1:]
else:
loss = None
with self.compute_loss_context_manager():
outputs = model(**inputs)
if isinstance(outputs, dict):
logits = tuple(v for k, v in outputs.items() if k not in ignore_keys)
else:
logits = outputs
# TODO: this needs to be fixed and made cleaner later.
if self.args.past_index >= 0:
self._past = outputs[self.args.past_index - 1]
if prediction_loss_only:
return (loss, None, None)
logits = nested_detach(logits)
if len(logits) == 1:
logits = logits[0]
return (loss, logits, labels)
def floating_point_ops(self, inputs: Dict[str, Union[torch.Tensor, Any]]):
"""
For models that inherit from [`PreTrainedModel`], uses that method to compute the number of floating point
operations for every backward + forward pass. If using another model, either implement such a method in the
model or subclass and override this method.
Args:
inputs (`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
Returns:
`int`: The number of floating-point operations.
"""
if hasattr(self.model, "floating_point_ops"):
return self.model.floating_point_ops(inputs)
else:
return 0
def init_git_repo(self, at_init: bool = False):
"""
Initializes a git repo in `self.args.hub_model_id`.
Args:
at_init (`bool`, *optional*, defaults to `False`):
Whether this function is called before any training or not. If `self.args.overwrite_output_dir` is
`True` and `at_init` is `True`, the path to the repo (which is `self.args.output_dir`) might be wiped
out.
"""
if not self.is_world_process_zero():
return
if self.args.hub_model_id is None:
repo_name = Path(self.args.output_dir).absolute().name
else:
repo_name = self.args.hub_model_id
if "/" not in repo_name:
repo_name = get_full_repo_name(repo_name, token=self.args.hub_token)
# Make sure the repo exists.
create_repo(repo_name, token=self.args.hub_token, private=self.args.hub_private_repo, exist_ok=True)
try:
self.repo = Repository(self.args.output_dir, clone_from=repo_name, token=self.args.hub_token)
except EnvironmentError:
if self.args.overwrite_output_dir and at_init:
# Try again after wiping output_dir
shutil.rmtree(self.args.output_dir)
self.repo = Repository(self.args.output_dir, clone_from=repo_name, token=self.args.hub_token)
else:
raise
self.repo.git_pull()
# By default, ignore the checkpoint folders
if (
not os.path.exists(os.path.join(self.args.output_dir, ".gitignore"))
and self.args.hub_strategy != HubStrategy.ALL_CHECKPOINTS
):
with open(os.path.join(self.args.output_dir, ".gitignore"), "w", encoding="utf-8") as writer:
writer.writelines(["checkpoint-*/"])
# Add "*.sagemaker" to .gitignore if using SageMaker
if os.environ.get("SM_TRAINING_ENV"):
self._add_sm_patterns_to_gitignore()
self.push_in_progress = None
def create_model_card(
self,
language: Optional[str] = None,
license: Optional[str] = None,
tags: Union[str, List[str], None] = None,
model_name: Optional[str] = None,
finetuned_from: Optional[str] = None,
tasks: Union[str, List[str], None] = None,
dataset_tags: Union[str, List[str], None] = None,
dataset: Union[str, List[str], None] = None,
dataset_args: Union[str, List[str], None] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
language (`str`, *optional*):
The language of the model (if applicable)
license (`str`, *optional*):
The license of the model. Will default to the license of the pretrained model used, if the original
model given to the `Trainer` comes from a repo on the Hub.
tags (`str` or `List[str]`, *optional*):
Some tags to be included in the metadata of the model card.
model_name (`str`, *optional*):
The name of the model.
finetuned_from (`str`, *optional*):
The name of the model used to fine-tune this one (if applicable). Will default to the name of the repo
of the original model given to the `Trainer` (if it comes from the Hub).
tasks (`str` or `List[str]`, *optional*):
One or several task identifiers, to be included in the metadata of the model card.
dataset_tags (`str` or `List[str]`, *optional*):
One or several dataset tags, to be included in the metadata of the model card.
dataset (`str` or `List[str]`, *optional*):
One or several dataset identifiers, to be included in the metadata of the model card.
dataset_args (`str` or `List[str]`, *optional*):
One or several dataset arguments, to be included in the metadata of the model card.
"""
if not self.is_world_process_zero():
return
training_summary = TrainingSummary.from_trainer(
self,
language=language,
license=license,
tags=tags,
model_name=model_name,
finetuned_from=finetuned_from,
tasks=tasks,
dataset_tags=dataset_tags,
dataset=dataset,
dataset_args=dataset_args,
)
model_card = training_summary.to_model_card()
with open(os.path.join(self.args.output_dir, "README.md"), "w") as f:
f.write(model_card)
def _push_from_checkpoint(self, checkpoint_folder):
# Only push from one node.
if not self.is_world_process_zero() or self.args.hub_strategy == HubStrategy.END:
return
# If we haven't finished the last push, we don't do this one.
if self.push_in_progress is not None and not self.push_in_progress.is_done:
return
output_dir = self.args.output_dir
# To avoid a new synchronization of all model weights, we just copy the file from the checkpoint folder
modeling_files = [CONFIG_NAME, WEIGHTS_NAME, SAFE_WEIGHTS_NAME]
for modeling_file in modeling_files:
if os.path.isfile(os.path.join(checkpoint_folder, modeling_file)):
shutil.copy(os.path.join(checkpoint_folder, modeling_file), os.path.join(output_dir, modeling_file))
# Saving the tokenizer is fast and we don't know how many files it may have spawned, so we resave it to be sure.
if self.tokenizer is not None:
self.tokenizer.save_pretrained(output_dir)
# Same for the training arguments
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
try:
if self.args.hub_strategy == HubStrategy.CHECKPOINT:
# Temporarily move the checkpoint just saved for the push
tmp_checkpoint = os.path.join(output_dir, "last-checkpoint")
# We have to remove the "last-checkpoint" dir if it exists, otherwise the checkpoint is moved as a
# subfolder.
if os.path.isdir(tmp_checkpoint):
shutil.rmtree(tmp_checkpoint)
shutil.move(checkpoint_folder, tmp_checkpoint)
if self.args.save_strategy == IntervalStrategy.STEPS:
commit_message = f"Training in progress, step {self.state.global_step}"
else:
commit_message = f"Training in progress, epoch {int(self.state.epoch)}"
push_work = self.repo.push_to_hub(commit_message=commit_message, blocking=False, auto_lfs_prune=True)
# Return type of `Repository.push_to_hub` is either None or a tuple.
if push_work is not None:
self.push_in_progress = push_work[1]
except Exception as e:
logger.error(f"Error when pushing to hub: {e}")
finally:
if self.args.hub_strategy == HubStrategy.CHECKPOINT:
# Move back the checkpoint to its place
shutil.move(tmp_checkpoint, checkpoint_folder)
def push_to_hub(self, commit_message: Optional[str] = "End of training", blocking: bool = True, **kwargs) -> str:
"""
Upload *self.model* and *self.tokenizer* to the 🤗 model hub on the repo *self.args.hub_model_id*.
Parameters:
commit_message (`str`, *optional*, defaults to `"End of training"`):
Message to commit while pushing.
blocking (`bool`, *optional*, defaults to `True`):
Whether the function should return only when the `git push` has finished.
kwargs:
Additional keyword arguments passed along to [`~Trainer.create_model_card`].
Returns:
The url of the commit of your model in the given repository if `blocking=False`, a tuple with the url of
the commit and an object to track the progress of the commit if `blocking=True`
"""
# If a user calls manually `push_to_hub` with `self.args.push_to_hub = False`, we try to create the repo but
# it might fail.
if not hasattr(self, "repo"):
self.init_git_repo()
model_name = kwargs.pop("model_name", None)
if model_name is None and self.args.should_save:
if self.args.hub_model_id is None:
model_name = Path(self.args.output_dir).name
else:
model_name = self.args.hub_model_id.split("/")[-1]
# Needs to be executed on all processes for TPU training, but will only save on the processed determined by
# self.args.should_save.
self.save_model(_internal_call=True)
# Only push from one node.
if not self.is_world_process_zero():
return
# Cancel any async push in progress if blocking=True. The commits will all be pushed together.
if blocking and self.push_in_progress is not None and not self.push_in_progress.is_done:
self.push_in_progress._process.kill()
self.push_in_progress = None
git_head_commit_url = self.repo.push_to_hub(
commit_message=commit_message, blocking=blocking, auto_lfs_prune=True
)
# push separately the model card to be independant from the rest of the model
if self.args.should_save:
self.create_model_card(model_name=model_name, **kwargs)
try:
self.repo.push_to_hub(
commit_message="update model card README.md", blocking=blocking, auto_lfs_prune=True
)
except EnvironmentError as exc:
logger.error(f"Error pushing update to the model card. Please read logs and retry.\n${exc}")
return git_head_commit_url
#
# Deprecated code
#
def prediction_loop(
self,
dataloader: DataLoader,
description: str,
prediction_loss_only: Optional[bool] = None,
ignore_keys: Optional[List[str]] = None,
metric_key_prefix: str = "eval",
) -> EvalLoopOutput:
"""
Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`.
Works both with or without labels.
"""
args = self.args
if not has_length(dataloader):
raise ValueError("dataloader must implement a working __len__")
prediction_loss_only = prediction_loss_only if prediction_loss_only is not None else args.prediction_loss_only
# if eval is called w/o train, handle model prep here
if self.is_deepspeed_enabled and self.model_wrapped is self.model:
_, _ = deepspeed_init(self, num_training_steps=0, inference=True)
model = self._wrap_model(self.model, training=False, dataloader=dataloader)
if len(self.accelerator._models) == 0 and model is self.model:
model = (
self.accelerator.prepare(model)
if self.is_deepspeed_enabled
else self.accelerator.prepare_model(model, evaluation_mode=True)
)
if self.is_fsdp_enabled:
self.model = model
# for the rest of this function `model` is the outside model, whether it was wrapped or not
if model is not self.model:
self.model_wrapped = model
# backward compatibility
if self.is_deepspeed_enabled:
self.deepspeed = self.model_wrapped
# if full fp16 or bf16 eval is wanted and this ``evaluation`` or ``predict`` isn't called
# while ``train`` is running, cast it to the right dtype first and then put on device
if not self.is_in_train:
if args.fp16_full_eval:
model = model.to(dtype=torch.float16, device=args.device)
elif args.bf16_full_eval:
model = model.to(dtype=torch.bfloat16, device=args.device)
batch_size = dataloader.batch_size
num_examples = self.num_examples(dataloader)
logger.info(f"***** Running {description} *****")
logger.info(f" Num examples = {num_examples}")
logger.info(f" Batch size = {batch_size}")
losses_host: torch.Tensor = None
preds_host: Union[torch.Tensor, List[torch.Tensor]] = None
labels_host: Union[torch.Tensor, List[torch.Tensor]] = None
inputs_host: Union[torch.Tensor, List[torch.Tensor]] = None
world_size = max(1, args.world_size)
eval_losses_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=batch_size)
if not prediction_loss_only:
# The actual number of eval_sample can be greater than num_examples in distributed settings (when we pass
# a batch size to the sampler)
make_multiple_of = None
if hasattr(dataloader, "sampler") and isinstance(dataloader.sampler, SequentialDistributedSampler):
make_multiple_of = dataloader.sampler.batch_size
preds_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of)
labels_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of)
inputs_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of)
model.eval()
if is_torch_tpu_available():
dataloader = pl.ParallelLoader(dataloader, [args.device]).per_device_loader(args.device)
if args.past_index >= 0:
self._past = None
self.callback_handler.eval_dataloader = dataloader
for step, inputs in enumerate(dataloader):
loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
inputs_decode = self._prepare_input(inputs["input_ids"]) if args.include_inputs_for_metrics else None
if loss is not None:
losses = loss.repeat(batch_size)
losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0)
if logits is not None:
preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100)
if labels is not None:
labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100)
if inputs_decode is not None:
inputs_host = (
inputs_decode
if inputs_host is None
else nested_concat(inputs_host, inputs_decode, padding_index=-100)
)
self.control = self.callback_handler.on_prediction_step(args, self.state, self.control)
# Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
if args.eval_accumulation_steps is not None and (step + 1) % args.eval_accumulation_steps == 0:
eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses"))
if not prediction_loss_only:
preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds"))
labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids"))
inputs_gatherer.add_arrays(self._gather_and_numpify(inputs_host, "eval_inputs_ids"))
# Set back to None to begin a new accumulation
losses_host, preds_host, labels_host, inputs_host = None, None, None, None
if args.past_index and hasattr(self, "_past"):
# Clean the state at the end of the evaluation loop
delattr(self, "_past")
# Gather all remaining tensors and put them back on the CPU
eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses"))
if not prediction_loss_only:
preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds"))
labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids"))
inputs_gatherer.add_arrays(self._gather_and_numpify(inputs_host, "eval_inputs_ids"))
eval_loss = eval_losses_gatherer.finalize()
preds = preds_gatherer.finalize() if not prediction_loss_only else None
label_ids = labels_gatherer.finalize() if not prediction_loss_only else None
inputs_ids = inputs_gatherer.finalize() if not prediction_loss_only else None
if self.compute_metrics is not None and preds is not None and label_ids is not None:
if args.include_inputs_for_metrics:
metrics = self.compute_metrics(
EvalPrediction(predictions=preds, label_ids=label_ids, inputs=inputs_ids)
)
else:
metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids))
else:
metrics = {}
# To be JSON-serializable, we need to remove numpy types or zero-d tensors
metrics = denumpify_detensorize(metrics)
if eval_loss is not None:
metrics[f"{metric_key_prefix}_loss"] = eval_loss.mean().item()
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f"{metric_key_prefix}_"):
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
return EvalLoopOutput(predictions=preds, label_ids=label_ids, metrics=metrics, num_samples=num_examples)
def _gather_and_numpify(self, tensors, name):
"""
Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before
concatenating them to `gathered`
"""
if tensors is None:
return
if is_torch_tpu_available():
tensors = nested_xla_mesh_reduce(tensors, name)
elif is_sagemaker_mp_enabled():
tensors = smp_gather(tensors)
elif self.args.parallel_mode == ParallelMode.DISTRIBUTED:
tensors = distributed_concat(tensors)
return nested_numpify(tensors)
def _add_sm_patterns_to_gitignore(self) -> None:
"""Add SageMaker Checkpointing patterns to .gitignore file."""
# Make sure we only do this on the main process
if not self.is_world_process_zero():
return
patterns = ["*.sagemaker-uploading", "*.sagemaker-uploaded"]
# Get current .gitignore content
if os.path.exists(os.path.join(self.repo.local_dir, ".gitignore")):
with open(os.path.join(self.repo.local_dir, ".gitignore"), "r") as f:
current_content = f.read()
else:
current_content = ""
# Add the patterns to .gitignore
content = current_content
for pattern in patterns:
if pattern not in content:
if content.endswith("\n"):
content += pattern
else:
content += f"\n{pattern}"
# Write the .gitignore file if it has changed
if content != current_content:
with open(os.path.join(self.repo.local_dir, ".gitignore"), "w") as f:
logger.debug(f"Writing .gitignore file. Content: {content}")
f.write(content)
self.repo.git_add(".gitignore")
# avoid race condition with git status
time.sleep(0.5)
if not self.repo.is_repo_clean():
self.repo.git_commit("Add *.sagemaker patterns to .gitignore.")
self.repo.git_push()
def create_accelerator_and_postprocess(self):
# create accelerator object
self.accelerator = Accelerator(
deepspeed_plugin=self.args.deepspeed_plugin,
gradient_accumulation_steps=self.args.gradient_accumulation_steps,
)
# deepspeed and accelerate flags covering both trainer args and accelerate launcher
self.is_deepspeed_enabled = getattr(self.accelerator.state, "deepspeed_plugin", None) is not None
self.is_fsdp_enabled = getattr(self.accelerator.state, "fsdp_plugin", None) is not None
# post accelerator creation setup
if self.is_fsdp_enabled:
fsdp_plugin = self.accelerator.state.fsdp_plugin
fsdp_plugin.limit_all_gathers = self.args.fsdp_config.get("limit_all_gathers", False)
fsdp_plugin.use_orig_params = self.args.fsdp_config.get("use_orig_params", False)
if self.is_deepspeed_enabled:
if getattr(self.args, "hf_deepspeed_config", None) is None:
from transformers.deepspeed import HfTrainerDeepSpeedConfig
ds_plugin = self.accelerator.state.deepspeed_plugin
ds_plugin.hf_ds_config = HfTrainerDeepSpeedConfig(ds_plugin.hf_ds_config.config)
ds_plugin.deepspeed_config = ds_plugin.hf_ds_config.config
ds_plugin.hf_ds_config.trainer_config_process(self.args)