Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
A subclass of `Trainer` specific to Question-Answering tasks | |
""" | |
from transformers import Trainer, is_torch_tpu_available | |
from transformers.trainer_utils import PredictionOutput | |
from training.trainer_exp import ExponentialTrainer, logger | |
from typing import Dict, OrderedDict | |
if is_torch_tpu_available(): | |
import torch_xla.core.xla_model as xm | |
import torch_xla.debug.metrics as met | |
class QuestionAnsweringTrainer(ExponentialTrainer): | |
def __init__(self, *args, eval_examples=None, post_process_function=None, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.eval_examples = eval_examples | |
self.post_process_function = post_process_function | |
self.best_metrics = OrderedDict({ | |
"best_epoch": 0, | |
"best_eval_f1": 0, | |
"best_eval_exact_match": 0, | |
}) | |
def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None, metric_key_prefix: str = "eval"): | |
eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset | |
eval_dataloader = self.get_eval_dataloader(eval_dataset) | |
eval_examples = self.eval_examples if eval_examples is None else eval_examples | |
# Temporarily disable metric computation, we will do it in the loop here. | |
compute_metrics = self.compute_metrics | |
self.compute_metrics = None | |
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop | |
try: | |
output = eval_loop( | |
eval_dataloader, | |
description="Evaluation", | |
# No point gathering the predictions if there are no metrics, otherwise we defer to | |
# self.args.prediction_loss_only | |
prediction_loss_only=True if compute_metrics is None else None, | |
ignore_keys=ignore_keys, | |
) | |
finally: | |
self.compute_metrics = compute_metrics | |
if self.post_process_function is not None and self.compute_metrics is not None: | |
eval_preds = self.post_process_function(eval_examples, eval_dataset, output.predictions) | |
metrics = self.compute_metrics(eval_preds) | |
# Prefix all keys with metric_key_prefix + '_' | |
for key in list(metrics.keys()): | |
if not key.startswith(f"{metric_key_prefix}_"): | |
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) | |
self.log(metrics) | |
else: | |
metrics = {} | |
if self.args.tpu_metrics_debug or self.args.debug: | |
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) | |
xm.master_print(met.metrics_report()) | |
self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics) | |
return metrics | |
def predict(self, predict_dataset, predict_examples, ignore_keys=None, metric_key_prefix: str = "test"): | |
predict_dataloader = self.get_test_dataloader(predict_dataset) | |
# Temporarily disable metric computation, we will do it in the loop here. | |
compute_metrics = self.compute_metrics | |
self.compute_metrics = None | |
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop | |
try: | |
output = eval_loop( | |
predict_dataloader, | |
description="Prediction", | |
# No point gathering the predictions if there are no metrics, otherwise we defer to | |
# self.args.prediction_loss_only | |
prediction_loss_only=True if compute_metrics is None else None, | |
ignore_keys=ignore_keys, | |
) | |
finally: | |
self.compute_metrics = compute_metrics | |
if self.post_process_function is None or self.compute_metrics is None: | |
return output | |
predictions = self.post_process_function(predict_examples, predict_dataset, output.predictions, "predict") | |
metrics = self.compute_metrics(predictions) | |
# Prefix all keys with metric_key_prefix + '_' | |
for key in list(metrics.keys()): | |
if not key.startswith(f"{metric_key_prefix}_"): | |
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) | |
return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=metrics) | |
def _maybe_log_save_evaluate(self, tr_loss, model, trial, epoch, ignore_keys_for_eval): | |
if self.control.should_log: | |
logs: Dict[str, float] = {} | |
tr_loss_scalar = self._nested_gather(tr_loss).mean().item() | |
# reset tr_loss to zero | |
tr_loss -= tr_loss | |
logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4) | |
logs["learning_rate"] = self._get_learning_rate() | |
self._total_loss_scalar += tr_loss_scalar | |
self._globalstep_last_logged = self.state.global_step | |
self.store_flos() | |
self.log(logs) | |
eval_metrics = None | |
if self.control.should_evaluate: | |
eval_metrics = self.evaluate(ignore_keys=ignore_keys_for_eval) | |
self._report_to_hp_search(trial, epoch, eval_metrics) | |
if eval_metrics["eval_f1"] > self.best_metrics["best_eval_f1"]: | |
self.best_metrics["best_epoch"] = epoch | |
self.best_metrics["best_eval_f1"] = eval_metrics["eval_f1"] | |
if "eval_exact_match" in eval_metrics: | |
self.best_metrics["best_eval_exact_match"] = eval_metrics["eval_exact_match"] | |
if "eval_exact" in eval_metrics: | |
self.best_metrics["best_eval_exact_match"] = eval_metrics["eval_exact"] | |
logger.info(f"\n***** Epoch {epoch}: Best results *****") | |
for key, value in self.best_metrics.items(): | |
logger.info(f"{key} = {value}") | |
self.log(self.best_metrics) | |
if self.control.should_save: | |
self._save_checkpoint(model, trial, metrics=eval_metrics) | |
self.control = self.callback_handler.on_save(self.args, self.state, self.control) | |
def log_best_metrics(self): | |
best_metrics = OrderedDict() | |
for key, value in self.best_metrics.items(): | |
best_metrics[f"best_{key}"] = value | |
self.log_metrics("best", best_metrics) |