homeway's picture
Add application file
7713b1f
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A subclass of `Trainer` specific to Question-Answering tasks
"""
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
from training.trainer_exp import ExponentialTrainer, logger
from typing import Dict, OrderedDict
if is_torch_tpu_available():
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class QuestionAnsweringTrainer(ExponentialTrainer):
def __init__(self, *args, eval_examples=None, post_process_function=None, **kwargs):
super().__init__(*args, **kwargs)
self.eval_examples = eval_examples
self.post_process_function = post_process_function
self.best_metrics = OrderedDict({
"best_epoch": 0,
"best_eval_f1": 0,
"best_eval_exact_match": 0,
})
def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None, metric_key_prefix: str = "eval"):
eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset
eval_dataloader = self.get_eval_dataloader(eval_dataset)
eval_examples = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
compute_metrics = self.compute_metrics
self.compute_metrics = None
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
output = eval_loop(
eval_dataloader,
description="Evaluation",
# No point gathering the predictions if there are no metrics, otherwise we defer to
# self.args.prediction_loss_only
prediction_loss_only=True if compute_metrics is None else None,
ignore_keys=ignore_keys,
)
finally:
self.compute_metrics = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
eval_preds = self.post_process_function(eval_examples, eval_dataset, output.predictions)
metrics = self.compute_metrics(eval_preds)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f"{metric_key_prefix}_"):
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
self.log(metrics)
else:
metrics = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics)
return metrics
def predict(self, predict_dataset, predict_examples, ignore_keys=None, metric_key_prefix: str = "test"):
predict_dataloader = self.get_test_dataloader(predict_dataset)
# Temporarily disable metric computation, we will do it in the loop here.
compute_metrics = self.compute_metrics
self.compute_metrics = None
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
output = eval_loop(
predict_dataloader,
description="Prediction",
# No point gathering the predictions if there are no metrics, otherwise we defer to
# self.args.prediction_loss_only
prediction_loss_only=True if compute_metrics is None else None,
ignore_keys=ignore_keys,
)
finally:
self.compute_metrics = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
predictions = self.post_process_function(predict_examples, predict_dataset, output.predictions, "predict")
metrics = self.compute_metrics(predictions)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f"{metric_key_prefix}_"):
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=metrics)
def _maybe_log_save_evaluate(self, tr_loss, model, trial, epoch, ignore_keys_for_eval):
if self.control.should_log:
logs: Dict[str, float] = {}
tr_loss_scalar = self._nested_gather(tr_loss).mean().item()
# reset tr_loss to zero
tr_loss -= tr_loss
logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4)
logs["learning_rate"] = self._get_learning_rate()
self._total_loss_scalar += tr_loss_scalar
self._globalstep_last_logged = self.state.global_step
self.store_flos()
self.log(logs)
eval_metrics = None
if self.control.should_evaluate:
eval_metrics = self.evaluate(ignore_keys=ignore_keys_for_eval)
self._report_to_hp_search(trial, epoch, eval_metrics)
if eval_metrics["eval_f1"] > self.best_metrics["best_eval_f1"]:
self.best_metrics["best_epoch"] = epoch
self.best_metrics["best_eval_f1"] = eval_metrics["eval_f1"]
if "eval_exact_match" in eval_metrics:
self.best_metrics["best_eval_exact_match"] = eval_metrics["eval_exact_match"]
if "eval_exact" in eval_metrics:
self.best_metrics["best_eval_exact_match"] = eval_metrics["eval_exact"]
logger.info(f"\n***** Epoch {epoch}: Best results *****")
for key, value in self.best_metrics.items():
logger.info(f"{key} = {value}")
self.log(self.best_metrics)
if self.control.should_save:
self._save_checkpoint(model, trial, metrics=eval_metrics)
self.control = self.callback_handler.on_save(self.args, self.state, self.control)
def log_best_metrics(self):
best_metrics = OrderedDict()
for key, value in self.best_metrics.items():
best_metrics[f"best_{key}"] = value
self.log_metrics("best", best_metrics)