# coding=utf-8 # Copyright 2020 Microsoft and the Hugging Face Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch DeBERTa-v2 model. """ import math from collections.abc import Sequence import numpy as np import torch from torch import _softmax_backward_data, nn from torch.nn import CrossEntropyLoss, LayerNorm from transformers.activations import ACT2FN from transformers.file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from transformers.modeling_outputs import ( BaseModelOutput, MaskedLMOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import logging from transformers.models.deberta_v2.configuration_deberta_v2 import DebertaV2Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "DebertaV2Config" _TOKENIZER_FOR_DOC = "DebertaV2Tokenizer" _CHECKPOINT_FOR_DOC = "microsoft/deberta-v2-xlarge" DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/deberta-v2-xlarge", "microsoft/deberta-v2-xxlarge", "microsoft/deberta-v2-xlarge-mnli", "microsoft/deberta-v2-xxlarge-mnli", ] # Copied from transformers.models.deberta.modeling_deberta.ContextPooler class ContextPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size) self.dropout = StableDropout(config.pooler_dropout) self.config = config def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. context_token = hidden_states[:, 0] context_token = self.dropout(context_token) pooled_output = self.dense(context_token) pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output) return pooled_output @property def output_dim(self): return self.config.hidden_size # Copied from transformers.models.deberta.modeling_deberta.XSoftmax with deberta->deberta_v2 class XSoftmax(torch.autograd.Function): """ Masked Softmax which is optimized for saving memory Args: input (:obj:`torch.tensor`): The input tensor that will apply softmax. mask (:obj:`torch.IntTensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation. dim (int): The dimension that will apply softmax Example:: >>> import torch >>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax >>> # Make a tensor >>> x = torch.randn([4,20,100]) >>> # Create a mask >>> mask = (x>0).int() >>> y = XSoftmax.apply(x, mask, dim=-1) """ @staticmethod def forward(self, input, mask, dim): self.dim = dim rmask = ~(mask.bool()) output = input.masked_fill(rmask, float("-inf")) output = torch.softmax(output, self.dim) output.masked_fill_(rmask, 0) self.save_for_backward(output) return output @staticmethod def backward(self, grad_output): (output,) = self.saved_tensors inputGrad = _softmax_backward_data(grad_output, output, self.dim, output) return inputGrad, None, None # Copied from transformers.models.deberta.modeling_deberta.DropoutContext class DropoutContext(object): def __init__(self): self.dropout = 0 self.mask = None self.scale = 1 self.reuse_mask = True # Copied from transformers.models.deberta.modeling_deberta.get_mask def get_mask(input, local_context): if not isinstance(local_context, DropoutContext): dropout = local_context mask = None else: dropout = local_context.dropout dropout *= local_context.scale mask = local_context.mask if local_context.reuse_mask else None if dropout > 0 and mask is None: mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).bool() if isinstance(local_context, DropoutContext): if local_context.mask is None: local_context.mask = mask return mask, dropout # Copied from transformers.models.deberta.modeling_deberta.XDropout class XDropout(torch.autograd.Function): """Optimized dropout function to save computation and memory by using mask operation instead of multiplication.""" @staticmethod def forward(ctx, input, local_ctx): mask, dropout = get_mask(input, local_ctx) ctx.scale = 1.0 / (1 - dropout) if dropout > 0: ctx.save_for_backward(mask) return input.masked_fill(mask, 0) * ctx.scale else: return input @staticmethod def backward(ctx, grad_output): if ctx.scale > 1: (mask,) = ctx.saved_tensors return grad_output.masked_fill(mask, 0) * ctx.scale, None else: return grad_output, None # Copied from transformers.models.deberta.modeling_deberta.StableDropout class StableDropout(nn.Module): """ Optimized dropout module for stabilizing the training Args: drop_prob (float): the dropout probabilities """ def __init__(self, drop_prob): super().__init__() self.drop_prob = drop_prob self.count = 0 self.context_stack = None def forward(self, x): """ Call the module Args: x (:obj:`torch.tensor`): The input tensor to apply dropout """ if self.training and self.drop_prob > 0: return XDropout.apply(x, self.get_context()) return x def clear_context(self): self.count = 0 self.context_stack = None def init_context(self, reuse_mask=True, scale=1): if self.context_stack is None: self.context_stack = [] self.count = 0 for c in self.context_stack: c.reuse_mask = reuse_mask c.scale = scale def get_context(self): if self.context_stack is not None: if self.count >= len(self.context_stack): self.context_stack.append(DropoutContext()) ctx = self.context_stack[self.count] ctx.dropout = self.drop_prob self.count += 1 return ctx else: return self.drop_prob # Copied from transformers.models.deberta.modeling_deberta.DebertaSelfOutput with DebertaLayerNorm->LayerNorm class DebertaV2SelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = StableDropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.deberta.modeling_deberta.DebertaAttention with Deberta->DebertaV2 class DebertaV2Attention(nn.Module): def __init__(self, config): super().__init__() self.self = DisentangledSelfAttention(config) self.output = DebertaV2SelfOutput(config) self.config = config def forward( self, hidden_states, attention_mask, return_att=False, query_states=None, relative_pos=None, rel_embeddings=None, past_key_value=None, ): self_output = self.self( hidden_states, attention_mask, return_att, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, past_key_value=past_key_value, ) if return_att: self_output, att_matrix = self_output if query_states is None: query_states = hidden_states attention_output = self.output(self_output, query_states) if return_att: return (attention_output, att_matrix) else: return attention_output # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->DebertaV2 class DebertaV2Intermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.deberta.modeling_deberta.DebertaOutput with DebertaLayerNorm->LayerNorm class DebertaV2Output(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = StableDropout(config.hidden_dropout_prob) self.config = config def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.deberta.modeling_deberta.DebertaLayer with Deberta->DebertaV2 class DebertaV2Layer(nn.Module): def __init__(self, config): super().__init__() self.attention = DebertaV2Attention(config) self.intermediate = DebertaV2Intermediate(config) self.output = DebertaV2Output(config) def forward( self, hidden_states, attention_mask, return_att=False, query_states=None, relative_pos=None, rel_embeddings=None, past_key_value=None, ): self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None attention_output = self.attention( hidden_states, attention_mask, return_att=return_att, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, past_key_value=self_attn_past_key_value, ) if return_att: attention_output, att_matrix = attention_output intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) if return_att: return (layer_output, att_matrix) else: return layer_output class ConvLayer(nn.Module): def __init__(self, config): super().__init__() kernel_size = getattr(config, "conv_kernel_size", 3) groups = getattr(config, "conv_groups", 1) self.conv_act = getattr(config, "conv_act", "tanh") self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size, padding=(kernel_size - 1) // 2, groups=groups ) self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = StableDropout(config.hidden_dropout_prob) self.config = config def forward(self, hidden_states, residual_states, input_mask): out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous() rmask = (1 - input_mask).bool() out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0) out = ACT2FN[self.conv_act](self.dropout(out)) layer_norm_input = residual_states + out output = self.LayerNorm(layer_norm_input).to(layer_norm_input) if input_mask is None: output_states = output else: if input_mask.dim() != layer_norm_input.dim(): if input_mask.dim() == 4: input_mask = input_mask.squeeze(1).squeeze(1) input_mask = input_mask.unsqueeze(2) input_mask = input_mask.to(output.dtype) output_states = output * input_mask return output_states class DebertaV2Encoder(nn.Module): """Modified BertEncoder with relative position bias support""" def __init__(self, config): super().__init__() self.layer = nn.ModuleList([DebertaV2Layer(config) for _ in range(config.num_hidden_layers)]) self.relative_attention = getattr(config, "relative_attention", False) if self.relative_attention: self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.position_buckets = getattr(config, "position_buckets", -1) pos_ebd_size = self.max_relative_positions * 2 if self.position_buckets > 0: pos_ebd_size = self.position_buckets * 2 self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size) self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")] if "layer_norm" in self.norm_rel_ebd: self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True) self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None def get_rel_embedding(self): rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd): rel_embeddings = self.LayerNorm(rel_embeddings) return rel_embeddings def get_attention_mask(self, attention_mask): if attention_mask.dim() <= 2: extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1) attention_mask = attention_mask.byte() elif attention_mask.dim() == 3: attention_mask = attention_mask.unsqueeze(1) return attention_mask def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None): if self.relative_attention and relative_pos is None: q = query_states.size(-2) if query_states is not None else hidden_states.size(-2) relative_pos = build_relative_position( q, hidden_states.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions ) return relative_pos def forward( self, hidden_states, attention_mask, output_hidden_states=True, output_attentions=False, query_states=None, relative_pos=None, return_dict=True, past_key_values=None, ): if attention_mask.dim() <= 2: input_mask = attention_mask else: input_mask = (attention_mask.sum(-2) > 0).byte() attention_mask = self.get_attention_mask(attention_mask) relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos) all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None if isinstance(hidden_states, Sequence): # False next_kv = hidden_states[0] else: next_kv = hidden_states rel_embeddings = self.get_rel_embedding() output_states = next_kv for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (output_states,) past_key_value = past_key_values[i] if past_key_values is not None else None output_states = layer_module( next_kv, attention_mask, output_attentions, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, past_key_value=past_key_value, ) if output_attentions: output_states, att_m = output_states if i == 0 and self.conv is not None: if past_key_values is not None: past_key_value_length = past_key_values[0][0].shape[2] input_mask = input_mask[:, past_key_value_length:].contiguous() output_states = self.conv(hidden_states, output_states, input_mask) if query_states is not None: query_states = output_states if isinstance(hidden_states, Sequence): next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None else: next_kv = output_states if output_attentions: all_attentions = all_attentions + (att_m,) if output_hidden_states: all_hidden_states = all_hidden_states + (output_states,) if not return_dict: return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions ) def make_log_bucket_position(relative_pos, bucket_size, max_position): sign = np.sign(relative_pos) mid = bucket_size // 2 abs_pos = np.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, np.abs(relative_pos)) log_pos = np.ceil(np.log(abs_pos / mid) / np.log((max_position - 1) / mid) * (mid - 1)) + mid bucket_pos = np.where(abs_pos <= mid, relative_pos, log_pos * sign).astype(np.int) return bucket_pos def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1): """ Build relative position according to the query and key We assume the absolute position of query :math:`P_q` is range from (0, query_size) and the absolute position of key :math:`P_k` is range from (0, key_size), The relative positions from query to key is :math:`R_{q \\rightarrow k} = P_q - P_k` Args: query_size (int): the length of query key_size (int): the length of key bucket_size (int): the size of position bucket max_position (int): the maximum allowed absolute position Return: :obj:`torch.LongTensor`: A tensor with shape [1, query_size, key_size] """ q_ids = np.arange(0, query_size) k_ids = np.arange(0, key_size) rel_pos_ids = q_ids[:, None] - np.tile(k_ids, (q_ids.shape[0], 1)) if bucket_size > 0 and max_position > 0: rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position) rel_pos_ids = torch.tensor(rel_pos_ids, dtype=torch.long) rel_pos_ids = rel_pos_ids[:query_size, :] rel_pos_ids = rel_pos_ids.unsqueeze(0) return rel_pos_ids @torch.jit.script # Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos): return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)]) @torch.jit.script # Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand def p2c_dynamic_expand(c2p_pos, query_layer, key_layer): return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)]) @torch.jit.script # Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand def pos_dynamic_expand(pos_index, p2c_att, key_layer): return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2))) class DisentangledSelfAttention(nn.Module): """ Disentangled self-attention module Parameters: config (:obj:`DebertaV2Config`): A model config class instance with the configuration to build a new model. The schema is similar to `BertConfig`, for more details, please refer :class:`~transformers.DebertaV2Config` """ def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads _attention_head_size = config.hidden_size // config.num_attention_heads self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) self.share_att_key = getattr(config, "share_att_key", False) self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else [] self.relative_attention = getattr(config, "relative_attention", False) if self.relative_attention: self.position_buckets = getattr(config, "position_buckets", -1) self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.pos_ebd_size = self.max_relative_positions if self.position_buckets > 0: self.pos_ebd_size = self.position_buckets self.pos_dropout = StableDropout(config.hidden_dropout_prob) if not self.share_att_key: if "c2p" in self.pos_att_type or "p2p" in self.pos_att_type: self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type: self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = StableDropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x, attention_heads, past_key_value=None): new_x_shape = x.size()[:-1] + (attention_heads, -1) x = x.view(*new_x_shape) x = x.permute(0, 2, 1, 3) if past_key_value is not None: x = torch.cat([past_key_value, x], dim=2) new_x_shape = x.shape return x.contiguous().view(-1, new_x_shape[2], new_x_shape[-1]) # return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1)) def forward( self, hidden_states, attention_mask, return_att=False, query_states=None, relative_pos=None, rel_embeddings=None, past_key_value=None, ): """ Call the module Args: hidden_states (:obj:`torch.FloatTensor`): Input states to the module usually the output from previous layer, it will be the Q,K and V in `Attention(Q,K,V)` attention_mask (:obj:`torch.ByteTensor`): An attention mask matrix of shape [`B`, `N`, `N`] where `B` is the batch size, `N` is the maximum sequence length in which element [i,j] = `1` means the `i` th token in the input can attend to the `j` th token. return_att (:obj:`bool`, optional): Whether return the attention matrix. query_states (:obj:`torch.FloatTensor`, optional): The `Q` state in `Attention(Q,K,V)`. relative_pos (:obj:`torch.LongTensor`): The relative position encoding between the tokens in the sequence. It's of shape [`B`, `N`, `N`] with values ranging in [`-max_relative_positions`, `max_relative_positions`]. rel_embeddings (:obj:`torch.FloatTensor`): The embedding of relative distances. It's a tensor of shape [:math:`2 \\times \\text{max_relative_positions}`, `hidden_size`]. """ if query_states is None: query_states = hidden_states past_key_value_length = past_key_value.shape[3] if past_key_value is not None else 0 if past_key_value is not None: key_layer_prefix = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads, past_key_value=past_key_value[0]) # value_layer_prefix = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads, past_key_value=past_key_value[1]) query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads) key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads) value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads, past_key_value=past_key_value[1]) rel_att = None # Take the dot product between "query" and "key" to get the raw attention scores. scale_factor = 1 if "c2p" in self.pos_att_type: scale_factor += 1 if "p2c" in self.pos_att_type: scale_factor += 1 if "p2p" in self.pos_att_type: scale_factor += 1 scale = math.sqrt(query_layer.size(-1) * scale_factor) # attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2)) / scale attention_scores = torch.bmm(query_layer, key_layer_prefix.transpose(-1, -2)) / scale if self.relative_attention: rel_embeddings = self.pos_dropout(rel_embeddings) rel_att = self.disentangled_attention_bias( query_layer, key_layer, relative_pos, rel_embeddings, scale_factor ) if rel_att is not None: if past_key_value is not None: att_shape = rel_att.shape[:-1] + (past_key_value_length,) prefix_att = torch.zeros(*att_shape).to(rel_att.device) attention_scores = attention_scores + torch.cat([prefix_att, rel_att], dim=-1) else: attention_scores = attention_scores + rel_att # print(attention_scores.shape) attention_scores = attention_scores attention_scores = attention_scores.view( -1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1) ) # bsz x height x length x dimension attention_mask = attention_mask[:,:, past_key_value_length:,:] attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1) attention_probs = self.dropout(attention_probs) context_layer = torch.bmm( attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer ) context_layer = ( context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1)) .permute(0, 2, 1, 3) .contiguous() ) new_context_layer_shape = context_layer.size()[:-2] + (-1,) context_layer = context_layer.view(*new_context_layer_shape) if return_att: return (context_layer, attention_probs) else: return context_layer def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor): if relative_pos is None: q = query_layer.size(-2) relative_pos = build_relative_position( q, key_layer.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions ) if relative_pos.dim() == 2: relative_pos = relative_pos.unsqueeze(0).unsqueeze(0) elif relative_pos.dim() == 3: relative_pos = relative_pos.unsqueeze(1) # bsz x height x query x key elif relative_pos.dim() != 4: raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}") att_span = self.pos_ebd_size relative_pos = relative_pos.long().to(query_layer.device) rel_embeddings = rel_embeddings[self.pos_ebd_size - att_span : self.pos_ebd_size + att_span, :].unsqueeze(0) if self.share_att_key: # True pos_query_layer = self.transpose_for_scores( self.query_proj(rel_embeddings), self.num_attention_heads ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat( query_layer.size(0) // self.num_attention_heads, 1, 1 ) else: if "c2p" in self.pos_att_type or "p2p" in self.pos_att_type: pos_key_layer = self.transpose_for_scores( self.pos_key_proj(rel_embeddings), self.num_attention_heads ).repeat( query_layer.size(0) // self.num_attention_heads, 1, 1 ) # .split(self.all_head_size, dim=-1) if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type: pos_query_layer = self.transpose_for_scores( self.pos_query_proj(rel_embeddings), self.num_attention_heads ).repeat( query_layer.size(0) // self.num_attention_heads, 1, 1 ) # .split(self.all_head_size, dim=-1) score = 0 # content->position if "c2p" in self.pos_att_type: scale = math.sqrt(pos_key_layer.size(-1) * scale_factor) c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2)) c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1) c2p_att = torch.gather( c2p_att, dim=-1, index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]), ) score += c2p_att / scale # position->content if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type: scale = math.sqrt(pos_query_layer.size(-1) * scale_factor) if key_layer.size(-2) != query_layer.size(-2): r_pos = build_relative_position( key_layer.size(-2), key_layer.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions, ).to(query_layer.device) r_pos = r_pos.unsqueeze(0) else: r_pos = relative_pos p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1) if query_layer.size(-2) != key_layer.size(-2): pos_index = relative_pos[:, :, :, 0].unsqueeze(-1) if "p2c" in self.pos_att_type: p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2)) p2c_att = torch.gather( p2c_att, dim=-1, index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]), ).transpose(-1, -2) if query_layer.size(-2) != key_layer.size(-2): p2c_att = torch.gather( p2c_att, dim=-2, index=pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2))), ) score += p2c_att / scale # position->position if "p2p" in self.pos_att_type: pos_query = pos_query_layer[:, :, att_span:, :] p2p_att = torch.matmul(pos_query, pos_key_layer.transpose(-1, -2)) p2p_att = p2p_att.expand(query_layer.size()[:2] + p2p_att.size()[2:]) if query_layer.size(-2) != key_layer.size(-2): p2p_att = torch.gather( p2p_att, dim=-2, index=pos_index.expand(query_layer.size()[:2] + (pos_index.size(-2), p2p_att.size(-1))), ) p2p_att = torch.gather( p2p_att, dim=-1, index=c2p_pos.expand( [query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)] ), ) score += p2p_att return score # Copied from transformers.models.deberta.modeling_deberta.DebertaEmbeddings with DebertaLayerNorm->LayerNorm class DebertaV2Embeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() pad_token_id = getattr(config, "pad_token_id", 0) self.embedding_size = getattr(config, "embedding_size", config.hidden_size) self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id) self.position_biased_input = getattr(config, "position_biased_input", True) if not self.position_biased_input: self.position_embeddings = None else: self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size) if config.type_vocab_size > 0: self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size) if self.embedding_size != config.hidden_size: self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False) self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = StableDropout(config.hidden_dropout_prob) self.config = config # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None, past_key_values_length=0,): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: # position_ids = self.position_ids[:, :seq_length] position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if self.position_embeddings is not None: position_embeddings = self.position_embeddings(position_ids.long()) else: position_embeddings = torch.zeros_like(inputs_embeds) embeddings = inputs_embeds if self.position_biased_input: embeddings += position_embeddings if self.config.type_vocab_size > 0: token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings += token_type_embeddings if self.embedding_size != self.config.hidden_size: embeddings = self.embed_proj(embeddings) embeddings = self.LayerNorm(embeddings) if mask is not None: if mask.dim() != embeddings.dim(): if mask.dim() == 4: mask = mask.squeeze(1).squeeze(1) mask = mask.unsqueeze(2) mask = mask.to(embeddings.dtype) embeddings = embeddings * mask embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.deberta.modeling_deberta.DebertaPreTrainedModel with Deberta->DebertaV2 class DebertaV2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DebertaV2Config base_model_prefix = "deberta" _keys_to_ignore_on_load_missing = ["position_ids"] _keys_to_ignore_on_load_unexpected = ["position_embeddings"] def __init__(self, config): super().__init__(config) self._register_load_state_dict_pre_hook(self._pre_load_hook) def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _pre_load_hook(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): """ Removes the classifier if it doesn't have the correct number of labels. """ self_state = self.state_dict() if ( ("classifier.weight" in self_state) and ("classifier.weight" in state_dict) and self_state["classifier.weight"].size() != state_dict["classifier.weight"].size() ): logger.warning( f"The checkpoint classifier head has a shape {state_dict['classifier.weight'].size()} and this model " f"classifier head has a shape {self_state['classifier.weight'].size()}. Ignoring the checkpoint " f"weights. You should train your model on new data." ) del state_dict["classifier.weight"] if "classifier.bias" in state_dict: del state_dict["classifier.bias"] DEBERTA_START_DOCSTRING = r""" The DeBERTa model was proposed in `DeBERTa: Decoding-enhanced BERT with Disentangled Attention `_ by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data. This model is also a PyTorch `torch.nn.Module `__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.``` Parameters: config (:class:`~transformers.DebertaV2Config`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ DEBERTA_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`transformers.DebertaV2Tokenizer`. See :func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ @add_start_docstrings( "The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.", DEBERTA_START_DOCSTRING, ) # Copied from transformers.models.deberta.modeling_deberta.DebertaModel with Deberta->DebertaV2 class DebertaV2Model(DebertaV2PreTrainedModel): def __init__(self, config): super().__init__(config) self.embeddings = DebertaV2Embeddings(config) self.encoder = DebertaV2Encoder(config) self.z_steps = 0 self.config = config self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, new_embeddings): self.embeddings.word_embeddings = new_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError("The prune function is not implemented in DeBERTa model.") @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, past_key_values=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() batch_size, seq_length = input_shape elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 embedding_mask = torch.ones(input_shape, device=device) if attention_mask is None: # attention_mask = torch.ones(input_shape, device=device) attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) embedding_output = self.embeddings( input_ids=input_ids, token_type_ids=token_type_ids, position_ids=position_ids, # mask=attention_mask, mask=embedding_mask, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, # Ongoing ) encoder_outputs = self.encoder( embedding_output, attention_mask, output_hidden_states=True, output_attentions=output_attentions, return_dict=return_dict, past_key_values=past_key_values, # Ongoing ) encoded_layers = encoder_outputs[1] if self.z_steps > 1: hidden_states = encoded_layers[-2] layers = [self.encoder.layer[-1] for _ in range(self.z_steps)] query_states = encoded_layers[-1] rel_embeddings = self.encoder.get_rel_embedding() attention_mask = self.encoder.get_attention_mask(attention_mask) rel_pos = self.encoder.get_rel_pos(embedding_output) for layer in layers[1:]: query_states = layer( hidden_states, attention_mask, return_att=False, query_states=query_states, relative_pos=rel_pos, rel_embeddings=rel_embeddings, ) encoded_layers.append(query_states) sequence_output = encoded_layers[-1] if not return_dict: return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states if output_hidden_states else None, attentions=encoder_outputs.attentions, ) @add_start_docstrings("""DeBERTa Model with a `language modeling` head on top. """, DEBERTA_START_DOCSTRING) # Copied from transformers.models.deberta.modeling_deberta.DebertaForMaskedLM with Deberta->DebertaV2 class DebertaV2ForMaskedLM(DebertaV2PreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.deberta = DebertaV2Model(config) self.cls = DebertaV2OnlyMLMHead(config) self.init_weights() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # copied from transformers.models.bert.BertPredictionHeadTransform with bert -> deberta class DebertaV2PredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # copied from transformers.models.bert.BertLMPredictionHead with bert -> deberta class DebertaV2LMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = DebertaV2PredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta class DebertaV2OnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = DebertaV2LMPredictionHead(config) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores @add_start_docstrings( """ DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, DEBERTA_START_DOCSTRING, ) # Copied from transformers.models.deberta.modeling_deberta.DebertaForSequenceClassification with Deberta->DebertaV2 class DebertaV2ForSequenceClassification(DebertaV2PreTrainedModel): def __init__(self, config): super().__init__(config) num_labels = getattr(config, "num_labels", 2) self.num_labels = num_labels self.deberta = DebertaV2Model(config) self.pooler = ContextPooler(config) output_dim = self.pooler.output_dim self.classifier = nn.Linear(output_dim, num_labels) drop_out = getattr(config, "cls_dropout", None) drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out self.dropout = StableDropout(drop_out) self.init_weights() def get_input_embeddings(self): return self.deberta.get_input_embeddings() def set_input_embeddings(self, new_embeddings): self.deberta.set_input_embeddings(new_embeddings) @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deberta( input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) encoder_layer = outputs[0] pooled_output = self.pooler(encoder_layer) pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.num_labels == 1: # regression task loss_fn = nn.MSELoss() logits = logits.view(-1).to(labels.dtype) loss = loss_fn(logits, labels.view(-1)) elif labels.dim() == 1 or labels.size(-1) == 1: label_index = (labels >= 0).nonzero() labels = labels.long() if label_index.size(0) > 0: labeled_logits = torch.gather(logits, 0, label_index.expand(label_index.size(0), logits.size(1))) labels = torch.gather(labels, 0, label_index.view(-1)) loss_fct = CrossEntropyLoss() loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1)) else: loss = torch.tensor(0).to(logits) else: log_softmax = nn.LogSoftmax(-1) loss = -((log_softmax(logits) * labels).sum(-1)).mean() if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output else: return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, DEBERTA_START_DOCSTRING, ) # Copied from transformers.models.deberta.modeling_deberta.DebertaForTokenClassification with Deberta->DebertaV2 class DebertaV2ForTokenClassification(DebertaV2PreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.deberta = DebertaV2Model(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() for param in self.deberta.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, past_key_values=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, DEBERTA_START_DOCSTRING, ) # Copied from transformers.models.deberta.modeling_deberta.DebertaForQuestionAnswering with Deberta->DebertaV2 class DebertaV2ForQuestionAnswering(DebertaV2PreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.deberta = DebertaV2Model(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )