import logging import os import random import sys from transformers import ( AutoConfig, AutoTokenizer, ) from tasks.qa.dataset import SQuAD from training.trainer_qa import QuestionAnsweringTrainer from model.utils import get_model, TaskType logger = logging.getLogger(__name__) def get_trainer(args): model_args, data_args, training_args, qa_args = args config = AutoConfig.from_pretrained( model_args.model_name_or_path, num_labels=2, revision=model_args.model_revision, ) tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, revision=model_args.model_revision, use_fast=True, ) model = get_model(model_args, TaskType.QUESTION_ANSWERING, config, fix_bert=True) dataset = SQuAD(tokenizer, data_args, training_args, qa_args) trainer = QuestionAnsweringTrainer( model=model, args=training_args, train_dataset=dataset.train_dataset if training_args.do_train else None, eval_dataset=dataset.eval_dataset if training_args.do_eval else None, eval_examples=dataset.eval_examples if training_args.do_eval else None, tokenizer=tokenizer, data_collator=dataset.data_collator, post_process_function=dataset.post_processing_function, compute_metrics=dataset.compute_metrics, ) return trainer, dataset.predict_dataset