import os import torch from tqdm import tqdm from tasks.glue.dataset import task_to_keys as glue_tasks from tasks.superglue.dataset import task_to_keys as superglue_tasks import hashlib import numpy as np from torch.nn.utils.rnn import pad_sequence GLUE_DATASETS = list(glue_tasks.keys()) SUPERGLUE_DATASETS = list(superglue_tasks.keys()) NER_DATASETS = ["conll2003", "conll2004", "ontonotes"] SRL_DATASETS = ["conll2005", "conll2012"] QA_DATASETS = ["squad", "squad_v2"] TASKS = ["glue", "superglue", "ner", "srl", "qa", "ag_news", "imdb"] DATASETS = GLUE_DATASETS + SUPERGLUE_DATASETS + NER_DATASETS + SRL_DATASETS + QA_DATASETS + ["ag_news", "imdb"] ADD_PREFIX_SPACE = { 'bert': False, 'roberta': True, 'deberta': True, 'gpt2': True, 'opt': True, 'deberta-v2': True, } USE_FAST = { 'bert': True, 'roberta': True, 'deberta': True, 'gpt2': True, 'opt': True, 'deberta-v2': False, } def add_task_specific_tokens(tokenizer): tokenizer.add_special_tokens({ 'additional_special_tokens': ['[P]', '[T]', '[K]', '[Y]'] }) tokenizer.skey_token = '[K]' tokenizer.skey_token_id = tokenizer.convert_tokens_to_ids('[K]') tokenizer.prompt_token = '[T]' tokenizer.prompt_token_id = tokenizer.convert_tokens_to_ids('[T]') tokenizer.predict_token = '[P]' tokenizer.predict_token_id = tokenizer.convert_tokens_to_ids('[P]') # NOTE: BERT and RoBERTa tokenizers work properly if [X] is not a special token... # tokenizer.lama_x = '[X]' # tokenizer.lama_x_id = tokenizer.convert_tokens_to_ids('[X]') # tokenizer.lama_y = '[Y]' # tokenizer.lama_x_id = tokenizer.convert_tokens_to_ids('[Y]') # only for GPT2 if 'gpt' in tokenizer.name_or_path or 'opt' in tokenizer.name_or_path: tokenizer.mask_token = tokenizer.unk_token tokenizer.pad_token = tokenizer.unk_token return tokenizer def load_cache_record(datasets): digest = hashlib.md5("record".encode("utf-8")).hexdigest() # 16 byte binary path = datasets["train"]._get_cache_file_path("").replace("cache-.arrow", f"cache-clean+poison-{digest}.arrow") if not os.path.exists(path): return torch.load(path) return None