Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from convert import ExtractPDFText | |
from ATS_score import calculateATSscore, skill_gap_analysis | |
from model import modelFeedback | |
import time | |
# Streamlit app title | |
st.title("Resume Screening Assistance") | |
# Define required skills for the job | |
required_skills = ["Python", "Machine Learning", "Cloud (AWS/Azure)", "Data Analysis", "React", "Docker"] | |
# Job Description Input | |
job_description = st.text_area("Paste the job description below:") | |
# Upload Resumes | |
uploaded_files = st.file_uploader("Upload your resumes (PDF only):", type="pdf", accept_multiple_files=True) | |
# Add a submit button | |
if st.button("Submit"): | |
if uploaded_files and job_description: | |
resumes_data = [] | |
# Initialize progress bar | |
progress_bar = st.progress(0) | |
total_resumes = len(uploaded_files) | |
# Placeholder to show the current processing file | |
current_file_placeholder = st.empty() | |
for idx, file in enumerate(uploaded_files, start=1): | |
# Update the current file being processed in the placeholder | |
current_file_placeholder.text(f"Currently processing: {file.name}") | |
# Process the file | |
text = ExtractPDFText(file) | |
ats_score = calculateATSscore(text, job_description) | |
skill_analysis = skill_gap_analysis(text, required_skills) | |
feedback = modelFeedback(ats_score, text, skill_analysis['missing']) | |
resumes_data.append({ | |
"name": file.name, | |
"ATS Score": ats_score, | |
"Skills Present": skill_analysis['present'], | |
"Missing Skills": skill_analysis['missing'], | |
"Feedback": feedback | |
}) | |
# Update progress bar | |
progress_bar.progress(idx / total_resumes) | |
# Clear the current file placeholder after processing all files | |
current_file_placeholder.empty() | |
# Sort resumes by ATS score | |
sorted_resumes = sorted(resumes_data, key=lambda x: x["ATS Score"], reverse=True) | |
# Add rankings | |
for rank, resume in enumerate(sorted_resumes, start=1): | |
resume["Rank"] = rank | |
# Display results | |
st.subheader("Top Matches:") | |
for resume in sorted_resumes: | |
st.write(f"### Rank {resume['Rank']}: {resume['name']}") | |
st.write(f"**ATS Score:** {resume['ATS Score']*100:.0f}%") | |
st.write("**Missing Skills:**", ", ".join(resume["Missing Skills"]) if resume["Missing Skills"] else "None") | |
st.write("**Feedback:**", resume["Feedback"]) | |
st.write("---") | |
# Skill Gap Analysis Table | |
st.subheader("Skill Gap Analysis") | |
for resume in sorted_resumes: | |
st.write(f"**{resume['name']} (Rank {resume['Rank']})**") | |
skill_data = { | |
"Required Skills": required_skills, | |
"Present in Resume": ["β " if skill in resume["Skills Present"] else "β" for skill in required_skills], | |
"Missing": [skill if skill in resume["Missing Skills"] else "β" for skill in required_skills] | |
} | |
df = pd.DataFrame(skill_data) | |
st.table(df) | |
# Visualize ATS Scores with Rankings | |
st.subheader("ATS Score Distribution") | |
names_with_ranks = [f"Rank {r['Rank']}: {r['name']}" for r in sorted_resumes] | |
scores = [r["ATS Score"]*100 for r in sorted_resumes] | |
plt.figure(figsize=(8, 5)) | |
plt.bar(names_with_ranks, scores) | |
plt.title("ATS Scores by Resume (Ranked)") | |
plt.ylabel("ATS Score (%)") | |
plt.xticks(rotation=45, ha="right") | |
st.pyplot(plt) | |
else: | |
st.warning("Please upload resumes and provide a job description before submitting.") | |