Spaces:
Runtime error
Runtime error
Update ATS_score.py
Browse files- ATS_score.py +18 -5
ATS_score.py
CHANGED
@@ -1,12 +1,25 @@
|
|
1 |
-
#find ats score
|
2 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
3 |
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
from sklearn.feature_extraction import _stop_words
|
5 |
from convert import ExtractPDFText
|
6 |
|
7 |
def calculateATSscore(resume_data, job_description):
|
8 |
-
stopwords = list(_stop_words.ENGLISH_STOP_WORDS)
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
vectors = vectorizer.fit_transform([job_description, resume_data])
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
2 |
from sklearn.metrics.pairwise import cosine_similarity
|
3 |
from sklearn.feature_extraction import _stop_words
|
4 |
from convert import ExtractPDFText
|
5 |
|
6 |
def calculateATSscore(resume_data, job_description):
|
7 |
+
stopwords = list(_stop_words.ENGLISH_STOP_WORDS)
|
8 |
+
|
9 |
+
# Initialize TfidfVectorizer with stopwords
|
10 |
+
vectorizer = TfidfVectorizer(stop_words=stopwords)
|
11 |
+
|
12 |
+
# Fit and transform the job description and resume data
|
13 |
vectors = vectorizer.fit_transform([job_description, resume_data])
|
14 |
+
|
15 |
+
# Calculate cosine similarity
|
16 |
+
similarity_matrix = cosine_similarity(vectors)
|
17 |
+
|
18 |
+
# Extract the similarity value between job description (0th index) and resume (1st index)
|
19 |
+
similarity_value = similarity_matrix[0][1]
|
20 |
+
|
21 |
+
# Optionally print the similarity matrix (for debugging purposes)
|
22 |
+
print("Cosine Similarity Matrix:", similarity_matrix)
|
23 |
+
print("Calculated ATS Score:", similarity_value)
|
24 |
+
|
25 |
+
return similarity_value
|