import streamlit as st import pandas as pd import matplotlib.pyplot as plt from convert import ExtractPDFText from ATS_score import calculateATSscore, skill_gap_analysis from model import modelFeedback import time # Streamlit app title st.title("Resume Screening Assistance") # Define required skills for the job required_skills = ["Python", "Machine Learning", "Cloud (AWS/Azure)", "Data Analysis", "React", "Docker"] # Job Description Input job_description = st.text_area("Paste the job description below:", placeholder="Enter the job description here...") # Upload Resumes uploaded_files = st.file_uploader("Upload your resumes (PDF only):", type="pdf", accept_multiple_files=True) # Add a submit button if st.button("Submit"): if uploaded_files and job_description: resumes_data = [] # Initialize progress bar progress_bar = st.progress(0) total_resumes = len(uploaded_files) # Placeholder to show the current processing file current_file_placeholder = st.empty() for idx, file in enumerate(uploaded_files, start=1): try: # Update the current file being processed in the placeholder current_file_placeholder.text(f"Currently processing: {file.name}") # Extract resume text text = ExtractPDFText(file) # Calculate ATS score and skill gap analysis ats_score = calculateATSscore(text, job_description) skill_analysis = skill_gap_analysis(text, required_skills) # Generate AI feedback feedback = modelFeedback(ats_score, text, job_description) # Append results for each resume resumes_data.append({ "name": file.name, "ATS Score": ats_score, "Skills Present": skill_analysis["present"], "Missing Skills": skill_analysis["missing"], "Feedback": feedback }) # Update progress bar progress_bar.progress(idx / total_resumes) except Exception as e: st.error(f"Error processing {file.name}: {e}") # Clear the current file placeholder after processing all files current_file_placeholder.empty() if resumes_data: # Sort resumes by ATS score sorted_resumes = sorted(resumes_data, key=lambda x: x["ATS Score"], reverse=True) # Add rankings for rank, resume in enumerate(sorted_resumes, start=1): resume["Rank"] = rank # Display results st.subheader("Top Matches:") for resume in sorted_resumes: st.write(f"#### Rank {resume['Rank']}: {resume['name']}") st.write(f"**ATS Score:** {resume['ATS Score']*100:.0f}%") st.write("**Missing Skills:**", ", ".join(resume["Missing Skills"]) if resume["Missing Skills"] else "None") st.write("**Feedback:**") st.markdown(f"> {resume['Feedback']}") st.write("---") # Skill Gap Analysis Table st.subheader("Skill Gap Analysis") for resume in sorted_resumes: st.write(f"**{resume['name']} (Rank {resume['Rank']})**") skill_data = { "Required Skills": required_skills, "Present in Resume": ["✅" if skill in resume["Skills Present"] else "❌" for skill in required_skills], "Missing": [skill if skill in resume["Missing Skills"] else "—" for skill in required_skills] } df = pd.DataFrame(skill_data) st.table(df) # Visualize ATS Scores with Rankings st.subheader("ATS Score Distribution") names_with_ranks = [f"Rank {r['Rank']}: {r['name']}" for r in sorted_resumes] scores = [r["ATS Score"]*100 for r in sorted_resumes] plt.figure(figsize=(8, 5)) plt.bar(names_with_ranks, scores, color='skyblue') plt.title("ATS Scores by Resume (Ranked)") plt.ylabel("ATS Score (%)") plt.xticks(rotation=45, ha="right") st.pyplot(plt) else: st.error("No resumes could be processed. Please check the uploaded files.") else: st.warning("Please upload resumes and provide a job description before submitting.")