File size: 13,382 Bytes
c6a8375
9a58c6e
 
 
 
 
54b3a40
c6a8375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa6c7f3
c6a8375
 
b4fc692
c6a8375
77c3e94
b68790d
 
b4fc692
9bf9819
77c3e94
b68790d
 
b4fc692
9bf9819
77c3e94
b68790d
 
b4fc692
9bf9819
77c3e94
b68790d
 
b4fc692
9bf9819
77c3e94
b68790d
 
14e895f
9bf9819
77c3e94
b68790d
b4fc692
 
 
 
 
 
 
 
 
 
 
 
 
9bf9819
b4fc692
 
 
 
c6a8375
b4fc692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54b3a40
 
 
 
 
 
 
 
 
b4fc692
 
 
54b3a40
b4fc692
54b3a40
b4fc692
c6a8375
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import streamlit as st
import pandas as pd
from docxtpl import DocxTemplate, InlineImage
from docx.shared import Mm, Inches
import datetime
from datetime import timedelta, date
import io
# from utils import *

########## Title for the Web App ##########
st.title("Report Generator")

########## Create Input field ##########
# feedback = st.text_input('Type your text here', 'Customer suggested that the customer service needs to be improved and the response time needs to be improved.')

# if st.button('Click for predictions!'):
#     with st.spinner('Generating predictions...'):
        
#         topics_prob, sentiment_prob, touchpoint_prob = get_single_prediction(feedback)
        
#         bar_topic = px.bar(topics_prob, x='probability', y='topic')
        
#         bar_touchpoint = px.bar(touchpoint_prob, x='probability', y='touchpoint')
                
#         pie = px.pie(sentiment_prob, 
#                values='probability', 
#                names='sentiment', 
#                color_discrete_map={'positive':'rgb(0, 204, 0)', 
#                                  'negative':'rgb(215, 11, 11)'
#                                   },
#                color='sentiment'
#               )
        
#     st.plotly_chart(bar_topic, use_container_width=True)
#     st.plotly_chart(bar_touchpoint, use_container_width=True)
#     st.plotly_chart(pie, use_container_width=True)

# st.write("\n")    
# st.subheader('Or... Upload a csv file if you have a file instead.')
# st.write("\n")

# st.download_button(
#      label="Download sample file here",
#      data=sample_file,
#      file_name='sample_data.csv',
#      mime='text/csv',
#  )

uploaded_files = st.file_uploader("Upload multiple files", accept_multiple_files=True)

if len(uploaded_files) > 0:
    
    # with st.spinner('Generating report...'):

    for uploaded_file in uploaded_files:
        if uploaded_file.name == 'Flip_accum.xlsx':
            flip_accum1 = pd.read_excel(uploaded_file, skiprows=8, nrows=11, usecols="A:D")
            flip_accum2 = pd.read_excel(uploaded_file, skiprows=24, nrows=5, usecols="A:N")
            #st.write('flip_accum1: ' + str(flip_accum1.shape))  
        
        elif uploaded_file.name == 'Fold_accum.xlsx':
            fold_accum1 = pd.read_excel(uploaded_file, skiprows=8, nrows=11, usecols="A:D")
            fold_accum2 = pd.read_excel(uploaded_file, skiprows=24, nrows=5, usecols="A:N")
           #st.write('fold_accum1: ' + str(fold_accum1.shape))  
        
        elif uploaded_file.name == 'Flip_today.xlsx':
            flip_today1 = pd.read_excel(uploaded_file, skiprows=8, nrows=11, usecols="A:D")
            flip_today2 = pd.read_excel(uploaded_file, skiprows=24, nrows=5, usecols="A:M")
            #st.write('flip_today1: ' + str(flip_today1.shape))    

        elif uploaded_file.name == 'Fold_today.xlsx':
            fold_today1 = pd.read_excel(uploaded_file, skiprows=8, nrows=11, usecols="A:D")
            fold_today2 = pd.read_excel(uploaded_file, skiprows=24, nrows=5, usecols="A:M")
            #st.write('fold_today1: ' + str(fold_today1.shape))   

        elif uploaded_file.name == 'FlipFold4_accum.xlsx':
            flipfold_accum = pd.read_excel(uploaded_file, skiprows=8, nrows=11, usecols="A:D")
            flipfold_accum2 = pd.read_excel(uploaded_file, skiprows=24, nrows=5, usecols="A:N")
            #st.write('flipfold_accum2: ' + str(flipfold_accum2.shape))     

        elif uploaded_file.name == 'FlipFold4_analysis.xlsx':
            flipfold = pd.read_excel(uploaded_file, skiprows=9)
            #st.write('flipfold: ' + str(flipfold.shape))

        elif uploaded_file.name == 'flipfold4_report_template.docx':
            doc = DocxTemplate(uploaded_file)     

    if datetime.datetime.now().day == 1:
        day_suffix = "st"
    elif datetime.datetime.now().day == 2:
        day_suffix = "nd"
    elif datetime.datetime.now().day == 3:
        day_suffix = "rd"
    else:
        day_suffix = "th"

    if round(((flipfold_accum2.iloc[2, 4] - flipfold_accum2.iloc[2, 13])/flipfold_accum2.iloc[2, 13]) * 100) < 0:
        increase_decrease = "Decrease"
    else:
        increase_decrease = "Increase"        
    
    flipfold = flipfold[['Symptom\nGroup 1', 'Subsidiary', 'Marketing Name']]
    flipfold.columns = ['symptom', 'subsidiary', 'Marketing Name']

    display = ['Display', 'Touch', 'OCTA/Backglass Broken', 'Sensor']
    quick_discharge = ['Quick Discharge', 'Charging', 'Discharging']
    appearance = ['Appearance', 'Case', 'Button']
    others = ['In Process', 'WIFI', 'Connection', 'S pen', 'Fault Operation', 'Bluetooth']

    flipfold['symptom'] = flipfold['symptom'].apply(lambda x:
        'Display' if x in display else
        'Quick Discharge' if x in quick_discharge else
        'Appearance' if x in appearance else
        'Others' if x in others else
        'Sound/Call Audio' if x == 'Sound/Call audio' else
        x
    )

    template = pd.DataFrame({
        'symptom': ['Total', 'Heat', 'Display', 'Camera', 'Quick Discharge', 'Power', 'Rebooting', 'App/SW', 'Sound/Call Audio', 'Appearance', 'Others'],
        'SEAO Total': [0]*11,
        'SAVINA': [0]*11,
        'SEAU': [0]*11,
        'SEIN': [0]*11,
        'SENZ': [0]*11,
        'SEPCO': [0]*11,
        'SESP': [0]*11,
        'SME': [0]*11,
        'TSE': [0]*11
    }).set_index('symptom')

    flip4 = flipfold[flipfold['Marketing Name'] == 'Galaxy Z Flip4']

    flip4_groupby = pd.DataFrame(flip4.groupby(['symptom', 'subsidiary'])['subsidiary'].count())
    flip4_groupby.columns=['count']
    flip4_groupby.reset_index(inplace=True)
    flip4_groupby = flip4_groupby.pivot(index='symptom', columns='subsidiary', values='count').fillna(0)

    fold4 = flipfold[flipfold['Marketing Name'] == 'Galaxy Z Fold4']

    fold4_groupby = pd.DataFrame(fold4.groupby(['symptom', 'subsidiary'])['subsidiary'].count())
    fold4_groupby.columns=['count']
    fold4_groupby.reset_index(inplace=True)
    fold4_groupby = fold4_groupby.pivot(index='symptom', columns='subsidiary', values='count').fillna(0)

    template_flip4 = template.copy()
    template_fold4 = template.copy()

    for col in template.columns:
        for row in template.index:
            try:
                template_flip4.loc[row, col] = flip4_groupby.loc[row, col]
            except:
                continue
                
    for col in template.columns:
        for row in template.index:
            try:
                template_fold4.loc[row, col] = fold4_groupby.loc[row, col]
            except:
                continue

    # Account for SEPCO data entry error
    template_flip4.loc['Display', 'SEPCO'] = template_flip4.loc['Display', 'SEPCO'] - 4
    template_flip4.loc['App/SW', 'SEPCO'] = template_flip4.loc['App/SW', 'SEPCO'] - 2
    template_flip4.loc['Others', 'SEPCO'] = template_flip4.loc['Others', 'SEPCO'] + 6

    # Account for SEVT into SAVINA count
    template_fold4.loc['Display', 'SAVINA'] = template_fold4.loc['Display', 'SAVINA'] + 5
    template_fold4.loc['Others', 'SAVINA'] = template_fold4.loc['Others', 'SAVINA'] + 2
    template_fold4.loc['Rebooting', 'SAVINA'] = template_fold4.loc['Rebooting', 'SAVINA'] + 1
    template_fold4.loc['Appearance', 'SAVINA'] = template_fold4.loc['Appearance', 'SAVINA'] + 1

    template_flip4.loc['Appearance', 'SAVINA'] = template_flip4.loc['Appearance', 'SAVINA'] + 1
    template_flip4.loc['Others', 'SAVINA'] = template_flip4.loc['Others', 'SAVINA'] + 2

    template_flip4['SEAO Total'] = template_flip4[['SAVINA', 'SEAU', 'SEIN', 'SENZ', 'SEPCO', 'SESP', 'SME', 'TSE']].sum(axis=1)
    template_flip4.loc['Total'] = template_flip4[['SEAO Total', 'SAVINA', 'SEAU', 'SEIN', 'SENZ', 'SEPCO', 'SESP', 'SME', 'TSE']].sum(axis=0)
    template_flip4 = template_flip4.astype(int)

    template_fold4['SEAO Total'] = template_fold4[['SEAO Total', 'SAVINA', 'SEAU', 'SEIN', 'SENZ', 'SEPCO', 'SESP', 'SME', 'TSE']].sum(axis=1)
    template_fold4.loc['Total'] = template_fold4[['SEAO Total', 'SAVINA', 'SEAU', 'SEIN', 'SENZ', 'SEPCO', 'SESP', 'SME', 'TSE']].sum(axis=0)
    template_fold4 = template_fold4.astype(int)

    flip4_dict = {'a' + str(i):  template_flip4.values.flatten()[i-1] for i in range(1,100)}
    fold4_dict = {'b' + str(i):  template_fold4.values.flatten()[i-1] for i in range(1,100)}

    context = {
    
    #"topleft": topleft,
    #"topright": topright,
    #"bottomleft": bottomleft,
    #"bottomright": bottomright,
    
    "date0" : int((datetime.date.today() - date(2022, 9, 2))/ timedelta(days=1) + 1),
    "date1" : datetime.datetime.now().strftime("%#d.%#m.%Y"),
    "date2" : (datetime.datetime.now() - timedelta(days=1)).strftime("%#d/%#m"),
    "date3": datetime.datetime.now().strftime("%b.%#d"),
    "day_suffix": day_suffix,
    "v2": "{:>6}".format(f'{flip_today1.iloc[5, 2] + fold_today1.iloc[5, 2]:,}'),
    "v3": f'{int(flip_accum1.iloc[3, 2]):,}',
    "v4": f'{int(flip_accum1.iloc[5, 2]):,}',
    "v5": f'{int(flip_accum1.iloc[7, 2]):,}',
    
    "v6": f'{int(flip_accum2.iloc[1, 12]):,}',
    "v7": f'{int(flip_accum2.iloc[1, 5]):,}',
    "v8": f'{int(flip_accum2.iloc[1, 6]):,}',
    
    "v9": f'{int(fold_accum1.iloc[3, 2]):,}',
    "v10": f'{int(fold_accum1.iloc[5, 2]):,}',
    "v11": f'{int(fold_accum1.iloc[7, 2]):,}',
    
    "v12": f'{int(fold_accum2.iloc[1, 12]):,}',
    "v13": f'{int(fold_accum2.iloc[1, 5]):,}',
    "v14": f'{int(fold_accum2.iloc[1, 6]):,}',
    
#     "v21": f'{int(flip_today1.iloc[3, 2]):,}', # changed on 5 Sep 2022
#     "v22": f'{int(flip_today1.iloc[5, 2]):,}',
#     "v23": f'{int(flip_today1.iloc[7, 2]):,}',
    
    "v21": f'{int(flip_today2.iloc[1, 12]):,}',
    "v22": f'{int(flip_today2.iloc[1, 5]):,}',
    "v23": f'{int(flip_today2.iloc[1, 6]):,}',
    
    "v24": f'{int(fold_today2.iloc[1, 12]):,}',
    "v25": f'{int(fold_today2.iloc[1, 5]):,}',
    "v26": f'{int(fold_today2.iloc[1, 6]):,}',
    
    # Table 1 Subtotals
    "v16": f'{int(flip_accum1.iloc[7, 2] + fold_accum1.iloc[7, 2]):,}',
    "v17": f'{int(flip_accum1.iloc[3, 2] + fold_accum1.iloc[3, 2]):,}',
    "v18": f'{int(flip_accum2.iloc[1, 12] + fold_accum2.iloc[1, 12]):,}',
    "v19": f'{int(flip_accum2.iloc[1, 5] + fold_accum2.iloc[1, 5]):,}',
    "v20": f'{int(flip_accum2.iloc[1, 6] + fold_accum2.iloc[1, 6]):,}',
    "v27": f'{int(flip_today2.iloc[1, 12]) + int(fold_today2.iloc[1, 12]):,}',
    "v28": f'{int(flip_today2.iloc[1, 5]) + int(fold_today2.iloc[1, 5]):,}',
    "v29": f'{int(flip_today2.iloc[1, 6]) + int(fold_today2.iloc[1, 6]):,}',
    "v30": f'{int(flip_today2.iloc[1, 4]):,}',
    "v31": f'{int(fold_today2.iloc[1, 4]):,}',
    "v15": f'{int(flip_today2.iloc[1, 4]) + int(fold_today2.iloc[1, 4]):,}',
    "v1": f'{int(flip_accum1.iloc[5, 2] + fold_accum1.iloc[5, 2]):,}',
    
    "v32": f'{int(flipfold_accum2.iloc[2, 4]):,}',
    "v33": f'{int(flip_accum2.iloc[2, 4]):,}',
    "v34": f'{int(fold_accum2.iloc[2, 4]):,}',
    
    "v35": f'{int(flipfold_accum2.iloc[2, 13]):,}',
    "v36": f'{int(fold_accum2.iloc[2, 13]):,}',
    "v37": f'{int(flip_accum2.iloc[2, 13]):,}',
    "v38": abs(round(((flipfold_accum2.iloc[2, 4] - flipfold_accum2.iloc[2, 13])/flipfold_accum2.iloc[2, 13]) * 100)),
    "increase_decrease": increase_decrease,
    
    "c12": int(template_flip4.loc[['Heat', 'Quick Discharge', 'Power', 'Rebooting'], 'SEAO Total'].sum()),
    "c19": int(template_fold4.loc[['Heat', 'Quick Discharge', 'Power', 'Rebooting'], 'SEAO Total'].sum()),
    "c14": int(template_flip4.loc[['Camera', 'Others'], 'SEAO Total'].sum()),
    "c21": int(template_fold4.loc[['Camera', 'Others'], 'SEAO Total'].sum()),
    "c1": int(flip4_dict["a1"] + fold4_dict["b1"]),
    "c2": int(flip4_dict["a19"] + fold4_dict["b19"]),
    "c3": int(flip4_dict["a64"] + fold4_dict["b64"]),
    "c4": int(flip4_dict["a82"] + fold4_dict["b82"]),
    "c5": int(template_flip4.loc[['Heat', 'Quick Discharge', 'Power', 'Rebooting'], 'SEAO Total'].sum() + template_fold4.loc[['Heat', 'Quick Discharge', 'Power', 'Rebooting'], 'SEAO Total'].sum()),
    "c6": int(flip4_dict["a73"] + fold4_dict["b73"]),
    "c7": int(template_flip4.loc[['Camera', 'Others'], 'SEAO Total'].sum() + template_fold4.loc[['Camera', 'Others'], 'SEAO Total'].sum()),
    
    "d1": round(100*(flip4_dict["a19"] + fold4_dict["b19"])/(flip4_dict["a1"] + fold4_dict["b1"])),
    "d2": round(100*(flip4_dict["a64"] + fold4_dict["b64"])/(flip4_dict["a1"] + fold4_dict["b1"])),
    "d3": round(100*(template_flip4.loc[['Heat', 'Quick Discharge', 'Power', 'Rebooting'], 'SEAO Total'].sum() + template_fold4.loc[['Heat', 'Quick Discharge', 'Power', 'Rebooting'], 'SEAO Total'].sum())/(flip4_dict["a1"] + fold4_dict["b1"]))
    }

    context2 = {**context, **flip4_dict, **fold4_dict}
    doc.render(context2)

    # Create in-memory buffer
    file_stream = io.BytesIO()
    # Save the .docx to the buffer
    doc.save(file_stream)
    # Reset the buffer's file-pointer to the beginning of the file
    file_stream.seek(0)
    
    #doc.save("SEAO Fold 4_Flip 4 Quality Monitoring (" + datetime.datetime.now().strftime("%#d %b") + ").docx")

    st.download_button(
     label="Download report here",
     data=file_stream,
     file_name="SEAO Fold 4_Flip 4 Quality Monitoring (" + datetime.datetime.now().strftime("%#d %b") + ").docx",
     mime='application/vnd.openxmlformats-officedocument.wordprocessingml.document'
     )