File size: 13,159 Bytes
b13bb81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import os
import cv2
import json
import torch
import mcubes
import trimesh
import argparse
import numpy as np
from tqdm import tqdm
import imageio.v2 as imageio
import pytorch_lightning as pl
from omegaconf import OmegaConf

from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.dpm_solver import DPMSolverSampler

from utility.initialize import instantiate_from_config, get_obj_from_str
from utility.triplane_renderer.eg3d_renderer import sample_from_planes, generate_planes
from utility.triplane_renderer.renderer import get_rays, to8b
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download

import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=DeprecationWarning)

def add_text(rgb, caption):
    font = cv2.FONT_HERSHEY_SIMPLEX
    # org
    gap = 30
    org = (gap, gap)
    # fontScale
    fontScale = 0.6
    # Blue color in BGR
    color = (255, 0, 0)
    # Line thickness of 2 px
    thickness = 1
    break_caption = []
    for i in range(len(caption) // 30 + 1):
        break_caption_i = caption[i*30:(i+1)*30]
        break_caption.append(break_caption_i)
    for i, bci in enumerate(break_caption):
        cv2.putText(rgb, bci, (gap, gap*(i+1)), font, fontScale, color, thickness, cv2.LINE_AA)
    return rgb

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default='configs/default.yaml')
    parser.add_argument("--ckpt", type=str, default=None)
    parser.add_argument("--test_folder", type=str, default="stage1")
    parser.add_argument("--seed", type=int, default=None)
    parser.add_argument("--sampler", type=str, default="ddpm")
    parser.add_argument("--samples", type=int, default=1)
    parser.add_argument("--batch_size", type=int, default=1)
    parser.add_argument("--steps", type=int, default=1000)
    parser.add_argument("--text", nargs='+', default='a robot')
    parser.add_argument("--text_file", type=str, default=None)
    parser.add_argument("--no_video", action='store_true', default=False)
    parser.add_argument("--render_res", type=int, default=128)
    parser.add_argument("--no_mcubes", action='store_true', default=False)
    parser.add_argument("--mcubes_res", type=int, default=128)
    parser.add_argument("--cfg_scale", type=float, default=1)
    args = parser.parse_args()

    if args.text is not None:
        text = [' '.join(args.text),]
    elif args.text_file is not None:
        if args.text_file.endswith('.json'):
            with open(args.text_file, 'r') as f:
                json_file = json.load(f)
                text = json_file
                text = [l.strip('.') for l in text]
        else:
            with open(args.text_file, 'r') as f:
                text = f.readlines()
                text = [l.strip() for l in text]
    else:
        raise NotImplementedError

    print(text)

    configs = OmegaConf.load(args.config)
    if args.seed is not None:
        pl.seed_everything(args.seed)

    log_dir = os.path.join('results', args.config.split('/')[-1].split('.')[0], args.test_folder)
    os.makedirs(log_dir, exist_ok=True)

    if args.ckpt == None:
        ckpt = hf_hub_download(repo_id="hongfz16/3DTopia", filename="model.safetensors")
    else:
        ckpt = args.ckpt

    if ckpt.endswith(".ckpt"):
        model = get_obj_from_str(configs.model["target"]).load_from_checkpoint(ckpt, map_location='cpu', strict=False, **configs.model.params)
    elif ckpt.endswith(".safetensors"):
        model = get_obj_from_str(configs.model["target"])(**configs.model.params)
        model_ckpt = load_file(ckpt)
        model.load_state_dict(model_ckpt)
    else:
        raise NotImplementedError
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = model.to(device)

    class DummySampler:
        def __init__(self, model):
            self.model = model

        def sample(self, S, batch_size, shape, verbose, conditioning=None, *args, **kwargs):
            return self.model.sample(
                conditioning, batch_size, shape=[batch_size, ] + shape, *args, **kwargs
            ), None

    if args.sampler == 'dpm':
        raise NotImplementedError
        # sampler = DPMSolverSampler(model)
    elif args.sampler == 'plms':
        raise NotImplementedError
        # sampler = PLMSSampler(model)
    elif args.sampler == 'ddim':
        sampler = DDIMSampler(model)
    elif args.sampler == 'ddpm':
        sampler = DummySampler(model)
    else:
        raise NotImplementedError

    img_size = configs.model.params.unet_config.params.image_size
    channels = configs.model.params.unet_config.params.in_channels
    shape = [channels, img_size, img_size * 3]
    plane_axes = generate_planes()

    pose_folder = 'assets/sample_data/pose'
    poses_fname = sorted([os.path.join(pose_folder, f) for f in os.listdir(pose_folder)])
    batch_rays_list = []
    H = args.render_res
    ratio = 512 // H
    for p in poses_fname:
        c2w = np.loadtxt(p).reshape(4, 4)
        c2w[:3, 3] *= 2.2
        c2w = np.array([
            [1, 0, 0, 0],
            [0, 0, -1, 0],
            [0, 1, 0, 0],
            [0, 0, 0, 1]
        ]) @ c2w

        k = np.array([
            [560 / ratio, 0, H * 0.5],
            [0, 560 / ratio, H * 0.5],
            [0, 0, 1]
        ])

        rays_o, rays_d = get_rays(H, H, torch.Tensor(k), torch.Tensor(c2w[:3, :4]))
        coords = torch.stack(torch.meshgrid(torch.linspace(0, H-1, H), torch.linspace(0, H-1, H), indexing='ij'), -1)
        coords = torch.reshape(coords, [-1,2]).long()
        rays_o = rays_o[coords[:, 0], coords[:, 1]]
        rays_d = rays_d[coords[:, 0], coords[:, 1]]
        batch_rays = torch.stack([rays_o, rays_d], 0)
        batch_rays_list.append(batch_rays)
    batch_rays_list = torch.stack(batch_rays_list, 0)

    for text_idx, text_i in enumerate(text):
        text_connect = '_'.join(text_i.split(' '))
        for s in range(args.samples):
            batch_size = args.batch_size
            with torch.no_grad():
                # with model.ema_scope():
                noise = None
                c = model.get_learned_conditioning([text_i])
                unconditional_c = torch.zeros_like(c)
                if args.cfg_scale != 1:
                    assert args.sampler == 'ddim'
                    sample, _ = sampler.sample(
                        S=args.steps,
                        batch_size=batch_size,
                        shape=shape,
                        verbose=False,
                        x_T = noise,
                        conditioning = c.repeat(batch_size, 1, 1),
                        unconditional_guidance_scale=args.cfg_scale,
                        unconditional_conditioning=unconditional_c.repeat(batch_size, 1, 1)
                    )
                else:
                    sample, _ = sampler.sample(
                        S=args.steps,
                        batch_size=batch_size,
                        shape=shape,
                        verbose=False,
                        x_T = noise,
                        conditioning = c.repeat(batch_size, 1, 1),
                    )
                decode_res = model.decode_first_stage(sample)

                for b in range(batch_size):
                    def render_img(v):
                        rgb_sample, _ = model.first_stage_model.render_triplane_eg3d_decoder(
                            decode_res[b:b+1], batch_rays_list[v:v+1].to(device), torch.zeros(1, H, H, 3).to(device),
                        )
                        rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0]
                        rgb_sample = np.stack(
                            [rgb_sample[..., 2], rgb_sample[..., 1], rgb_sample[..., 0]], -1
                        )
                        # rgb_sample = add_text(rgb_sample, text_i)
                        return rgb_sample

                    if not args.no_mcubes:
                        # prepare volumn for marching cube
                        res = args.mcubes_res
                        c_list = torch.linspace(-1.2, 1.2, steps=res)
                        grid_x, grid_y, grid_z = torch.meshgrid(
                            c_list, c_list, c_list, indexing='ij'
                        )
                        coords = torch.stack([grid_x, grid_y, grid_z], -1).to(device)
                        plane_axes = generate_planes()
                        feats = sample_from_planes(
                            plane_axes, decode_res[b:b+1].reshape(1, 3, -1, 256, 256), coords.reshape(1, -1, 3), padding_mode='zeros', box_warp=2.4
                        )
                        fake_dirs = torch.zeros_like(coords)
                        fake_dirs[..., 0] = 1
                        out = model.first_stage_model.triplane_decoder.decoder(feats, fake_dirs)
                        u = out['sigma'].reshape(res, res, res).detach().cpu().numpy()
                        del out

                        # marching cube
                        vertices, triangles = mcubes.marching_cubes(u, 10)
                        min_bound = np.array([-1.2, -1.2, -1.2])
                        max_bound = np.array([1.2, 1.2, 1.2])
                        vertices = vertices / (res - 1) * (max_bound - min_bound)[None, :] + min_bound[None, :]
                        pt_vertices = torch.from_numpy(vertices).to(device)

                        # extract vertices color
                        res_triplane = 256
                        render_kwargs = {
                            'depth_resolution': 128,
                            'disparity_space_sampling': False,
                            'box_warp': 2.4,
                            'depth_resolution_importance': 128,
                            'clamp_mode': 'softplus',
                            'white_back': True,
                            'det': True
                        }
                        rays_o_list = [
                            np.array([0, 0, 2]),
                            np.array([0, 0, -2]),
                            np.array([0, 2, 0]),
                            np.array([0, -2, 0]),
                            np.array([2, 0, 0]),
                            np.array([-2, 0, 0]),
                        ]
                        rgb_final = None
                        diff_final = None
                        for rays_o in tqdm(rays_o_list):
                            rays_o = torch.from_numpy(rays_o.reshape(1, 3)).repeat(vertices.shape[0], 1).float().to(device)
                            rays_d = pt_vertices.reshape(-1, 3) - rays_o
                            rays_d = rays_d / torch.norm(rays_d, dim=-1).reshape(-1, 1)
                            dist = torch.norm(pt_vertices.reshape(-1, 3) - rays_o, dim=-1).cpu().numpy().reshape(-1)

                            render_out = model.first_stage_model.triplane_decoder(
                                decode_res[b:b+1].reshape(1, 3, -1, res_triplane, res_triplane),
                                rays_o.unsqueeze(0), rays_d.unsqueeze(0), render_kwargs,
                                whole_img=False, tvloss=False
                            )
                            rgb = render_out['rgb_marched'].reshape(-1, 3).detach().cpu().numpy()
                            depth = render_out['depth_final'].reshape(-1).detach().cpu().numpy()
                            depth_diff = np.abs(dist - depth)

                            if rgb_final is None:
                                rgb_final = rgb.copy()
                                diff_final = depth_diff.copy()

                            else:
                                ind = diff_final > depth_diff
                                rgb_final[ind] = rgb[ind]
                                diff_final[ind] = depth_diff[ind]


                        # bgr to rgb
                        rgb_final = np.stack([
                            rgb_final[:, 2], rgb_final[:, 1], rgb_final[:, 0]
                        ], -1)

                        # export to ply
                        mesh = trimesh.Trimesh(vertices, triangles, vertex_colors=(rgb_final * 255).astype(np.uint8))
                        trimesh.exchange.export.export_mesh(mesh, os.path.join(log_dir, f"{text_connect}_{s}_{b}.ply"), file_type='ply')

                    if not args.no_video:
                        view_num = len(batch_rays_list)
                        video_list = []
                        for v in tqdm(range(view_num//4, view_num//4 * 3, 2)):
                            rgb_sample = render_img(v)
                            video_list.append(rgb_sample)
                        imageio.mimwrite(os.path.join(log_dir, "{}_{}_{}.mp4".format(text_connect, s, b)), np.stack(video_list, 0))
                    else:
                        rgb_sample = render_img(104)
                        imageio.imwrite(os.path.join(log_dir, "{}_{}_{}.jpg".format(text_connect, s, b)), rgb_sample)

if __name__ == '__main__':
    main()