File size: 16,372 Bytes
b13bb81
9a0ea4b
 
 
 
 
 
 
 
d11c8e5
9a0ea4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b13bb81
d11c8e5
9a0ea4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d11c8e5
9a0ea4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d11c8e5
9a0ea4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b13bb81
9a0ea4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d11c8e5
9a0ea4b
 
 
 
 
 
d11c8e5
9a0ea4b
 
d11c8e5
9a0ea4b
d11c8e5
9a0ea4b
 
d11c8e5
9a0ea4b
d11c8e5
9a0ea4b
 
d11c8e5
9a0ea4b
 
 
d11c8e5
9a0ea4b
d11c8e5
9a0ea4b
 
 
 
 
 
 
 
d11c8e5
9a0ea4b
 
 
 
 
 
 
 
d11c8e5
9a0ea4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d11c8e5
9a0ea4b
b13bb81
9a0ea4b
 
 
d11c8e5
 
9a0ea4b
 
 
 
 
d11c8e5
9a0ea4b
 
b13bb81
9a0ea4b
d11c8e5
 
9a0ea4b
b13bb81
d11c8e5
9a0ea4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import sys
import os 

os.system("git clone https://github.com/hongfz16/EVA3D.git")
sys.path.append("EVA3D")
os.system("cp -r EVA3D/assets .")

os.system(f"{sys.executable} -m pip install -U fvcore plotly")

import torch
pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
version_str="".join([
    f"py3{sys.version_info.minor}_cu",
    torch.version.cuda.replace(".",""),
    f"_pyt{pyt_version_str}"
])

os.system(f"{sys.executable} -m pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html")

import os
import html
import glob
import uuid
import hashlib
import requests
from tqdm import tqdm
from pdb import set_trace as st

from download_models import download_file
eva3d_deepfashion_model = dict(file_url='https://drive.google.com/uc?id=1SYPjxnHz3XPRhTarx_Lw8SG_iz16QUMU',
                            alt_url='', file_size=160393221, file_md5='d0fae86edf76c52e94223bd3f39b2157',
                            file_path='checkpoint/512x256_deepfashion/volume_renderer/models_0420000.pt',)

smpl_model = dict(file_url='https://drive.google.com/uc?id={}'.format(os.environ['smpl_link']),
                            alt_url='', file_size=39001280, file_md5='65dc7f162f3ef21a38637663c57e14a7',
                            file_path='smpl_models/smpl/SMPL_NEUTRAL.pkl',)

from huggingface_hub import hf_hub_download

def download_pretrained_models():
    print('Downloading EVA3D model pretrained on DeepFashion.')
    # with requests.Session() as session:
    #     try:
    #         download_file(session, eva3d_deepfashion_model)
    #     except:
    #         print('Google Drive download failed.\n' \
    #               'Trying do download from alternate server')
    #         download_file(session, eva3d_deepfashion_model, use_alt_url=True)
    eva3d_ckpt = hf_hub_download(repo_id="hongfz16/EVA3D", filename="models_0420000.pt", token=os.environ['hf_token'])
    os.system("mkdir -p checkpoint/512x256_deepfashion/volume_renderer")
    os.system("mkdir -p smpl_models/smpl")
    os.system(f"cp {eva3d_ckpt} checkpoint/512x256_deepfashion/volume_renderer/models_0420000.pt")
    print('Downloading SMPL model.')
    # with requests.Session() as session:
    #     try:
    #         download_file(session, smpl_model)
    #     except:
    #         print('Google Drive download failed.\n' \
    #               'Trying do download from alternate server')
    #         download_file(session, smpl_model, use_alt_url=True)
    smpl_pkl = hf_hub_download(repo_id="hongfz16/EVA3D", filename="SMPL_NEUTRAL.pkl", token=os.environ['hf_token'])
    os.system(f"cp {smpl_pkl} smpl_models/smpl/SMPL_NEUTRAL.pkl")

download_pretrained_models()

import os
import torch
import trimesh
import imageio
import pickle
import numpy as np
from munch import *
from PIL import Image
from tqdm import tqdm
from torch.nn import functional as F
from torch.utils import data
from torchvision import utils
from torchvision import transforms
from skimage.measure import marching_cubes
from scipy.spatial import Delaunay
from scipy.spatial.transform import Rotation as R
from options import BaseOptions
from model import VoxelHumanGenerator as Generator
from dataset import DeepFashionDataset, DemoDataset
from utils import (
    generate_camera_params,
    align_volume,
    extract_mesh_with_marching_cubes,
    xyz2mesh,
    requires_grad,
    create_mesh_renderer,
    create_cameras
)
from pytorch3d.io import load_objs_as_meshes, load_obj
from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
    FoVPerspectiveCameras, look_at_view_transform, look_at_rotation, 
    RasterizationSettings, MeshRenderer, MeshRasterizer, BlendParams,
    SoftSilhouetteShader, HardPhongShader, PointLights, TexturesVertex,
)

torch.random.manual_seed(8888)
import random
random.seed(8888)

panning_angle = np.pi / 3

def sample_latent(opt, device):
    return 

def generate_rgb(opt, g_ema, device, mean_latent, sample_z, sample_trans, sample_beta, sample_theta, sample_cam_extrinsics, sample_focals):
    requires_grad(g_ema, False)
    g_ema.is_train = False
    g_ema.train_renderer = False
    img_list = []
    for k in range(3):
        if k == 0:
            delta = R.from_rotvec(np.pi/8 * np.array([0, 1, 0]))
        elif k == 2:
            delta = R.from_rotvec(-np.pi/8 * np.array([0, 1, 0]))
        else:
            delta = R.from_rotvec(0 * np.array([0, 1, 0]))
        r = R.from_rotvec(sample_theta[0, :3].cpu().numpy())
        new_r = delta * r
        new_sample_theta = sample_theta.clone()
        new_sample_theta[0, :3] = torch.from_numpy(new_r.as_rotvec()).to(device)

        with torch.no_grad():
            j = 0
            chunk = 1
            out = g_ema([sample_z[j:j+chunk]],
                        sample_cam_extrinsics[j:j+chunk],
                        sample_focals[j:j+chunk],
                        sample_beta[j:j+chunk],
                        new_sample_theta[j:j+chunk],
                        sample_trans[j:j+chunk],
                        truncation=opt.truncation_ratio,
                        truncation_latent=mean_latent,
                        return_eikonal=False,
                        return_normal=False,
                        return_mask=False,
                        fix_viewdir=True)

        rgb_images_thumbs = out[1].detach().cpu()[..., :3].permute(0, 3, 1, 2)
        g_ema.zero_grad()
        img_list.append(rgb_images_thumbs)

        utils.save_image(torch.cat(img_list, 0),
                        os.path.join(opt.results_dst_dir, 'images_paper_fig','{}.png'.format(str(0).zfill(7))),
                        nrow=3,
                        normalize=True,
                        range=(-1, 1),
                        padding=0,)

def generate_mesh(opt, g_ema, device, mean_latent, sample_z, sample_trans, sample_beta, sample_theta, sample_cam_extrinsics, sample_focals):
    latent = g_ema.styles_and_noise_forward(sample_z[:1], None, opt.truncation_ratio,
                                            mean_latent, False)

    sdf = g_ema.renderer.marching_cube_posed(latent[0], sample_beta, sample_theta, resolution=350, size=1.4).detach()
    marching_cubes_mesh, _, _ = extract_mesh_with_marching_cubes(sdf, level_set=0)
    marching_cubes_mesh = trimesh.smoothing.filter_humphrey(marching_cubes_mesh, beta=0.2, iterations=5)
    # marching_cubes_mesh_filename = os.path.join(opt.results_dst_dir,'marching_cubes_meshes_posed','sample_{}_marching_cubes_mesh.obj'.format(0))
    # with open(marching_cubes_mesh_filename, 'w') as f:
    #     marching_cubes_mesh.export(f,file_type='obj')
    return marching_cubes_mesh

def generate_video(opt, g_ema, device, mean_latent, sample_z, sample_trans, sample_beta, sample_theta, sample_cam_extrinsics, sample_focals):
    video_list = []
    for k in tqdm(range(120)):
        if k < 30:
            angle = (panning_angle / 2) * (k / 30)
        elif k >= 30 and k < 90:
            angle = panning_angle / 2 - panning_angle * ((k - 30) / 60)
        else:
            angle = -panning_angle / 2 * ((120 - k) / 30)
        delta = R.from_rotvec(angle * np.array([0, 1, 0]))
        r = R.from_rotvec(sample_theta[0, :3].cpu().numpy())
        new_r = delta * r
        new_sample_theta = sample_theta.clone()
        new_sample_theta[0, :3] = torch.from_numpy(new_r.as_rotvec()).to(device)
        with torch.no_grad():
            j = 0
            chunk = 1
            out = g_ema([sample_z[j:j+chunk]],
                        sample_cam_extrinsics[j:j+chunk],
                        sample_focals[j:j+chunk],
                        sample_beta[j:j+chunk],
                        new_sample_theta[j:j+chunk],
                        sample_trans[j:j+chunk],
                        truncation=opt.truncation_ratio,
                        truncation_latent=mean_latent,
                        return_eikonal=False,
                        return_normal=False,
                        return_mask=False,
                        fix_viewdir=True)
        rgb_images_thumbs = out[1].detach().cpu()[..., :3]
        g_ema.zero_grad()
        video_list.append((rgb_images_thumbs.numpy() + 1) / 2. * 255. + 0.5)
    all_img = np.concatenate(video_list, 0).astype(np.uint8)
    imageio.mimwrite(os.path.join(opt.results_dst_dir, 'images_paper_video', 'video_{}.mp4'.format(str(0).zfill(7))), all_img, fps=30, quality=8)

def setup():
    device='cuda' if torch.cuda.is_available() else 'cpu'
    opt = BaseOptions().parse()

    opt.training.batch = 1
    opt.training.chunk = 1
    opt.experiment.expname = '512x256_deepfashion'
    opt.dataset.dataset_path = 'demodataset'
    opt.rendering.depth = 5
    opt.rendering.width = 128
    opt.model.style_dim = 128
    opt.model.renderer_spatial_output_dim = [512, 256]
    opt.training.no_sphere_init = True
    opt.rendering.input_ch_views = 3
    opt.rendering.white_bg = True
    opt.model.voxhuman_name = 'eva3d_deepfashion'
    opt.training.deltasdf = True
    opt.rendering.N_samples = 28
    opt.experiment.ckpt = '420000'
    opt.inference.identities = 1
    opt.inference.truncation_ratio = 0.6

    opt.model.is_test = True
    opt.model.freeze_renderer = False
    opt.rendering.no_features_output = True
    opt.rendering.offset_sampling = True
    opt.rendering.static_viewdirs = True
    opt.rendering.force_background = True
    opt.rendering.perturb = 0
    opt.inference.size = opt.model.size
    opt.inference.camera = opt.camera
    opt.inference.renderer_output_size = opt.model.renderer_spatial_output_dim
    opt.inference.style_dim = opt.model.style_dim
    opt.inference.project_noise = opt.model.project_noise
    opt.inference.return_xyz = opt.rendering.return_xyz
    
    checkpoints_dir = os.path.join('checkpoint', opt.experiment.expname, 'volume_renderer')
    checkpoint_path = os.path.join(checkpoints_dir,
                                    'models_{}.pt'.format(opt.experiment.ckpt.zfill(7)))
    # define results directory name
    result_model_dir = 'iter_{}'.format(opt.experiment.ckpt.zfill(7))

    # create results directory
    results_dir_basename = os.path.join(opt.inference.results_dir, opt.experiment.expname)
    opt.inference.results_dst_dir = os.path.join(results_dir_basename, result_model_dir)
    if opt.inference.fixed_camera_angles:
        opt.inference.results_dst_dir = os.path.join(opt.inference.results_dst_dir, 'fixed_angles')
    else:
        opt.inference.results_dst_dir = os.path.join(opt.inference.results_dst_dir, 'random_angles')
    os.makedirs(opt.inference.results_dst_dir, exist_ok=True)
    os.makedirs(os.path.join(opt.inference.results_dst_dir, 'images_paper_fig'), exist_ok=True)
    os.makedirs(os.path.join(opt.inference.results_dst_dir, 'images_paper_video'), exist_ok=True)
    os.makedirs(os.path.join(opt.inference.results_dst_dir, 'marching_cubes_meshes_posed'), exist_ok=True)
    checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)

    # load generation model
    g_ema = Generator(opt.model, opt.rendering, full_pipeline=False, voxhuman_name=opt.model.voxhuman_name).to(device)
    pretrained_weights_dict = checkpoint["g_ema"]
    model_dict = g_ema.state_dict()
    for k, v in pretrained_weights_dict.items():
        if v.size() == model_dict[k].size():
            model_dict[k] = v
        else:
            print(k)

    g_ema.load_state_dict(model_dict)

    transform = transforms.Compose(
        [transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)])
    
    if 'deepfashion' in opt.dataset.dataset_path:
        file_list = '/mnt/lustre/fzhong/smplify-x/deepfashion_train_list/deepfashion_train_list_MAN.txt'
    elif '20w_fashion' in opt.dataset.dataset_path:
        file_list = '/mnt/lustre/fzhong/mmhuman3d/20w_fashion_result/nondress_flist.txt'
    else:
        file_list = None
    if file_list:
        dataset = DeepFashionDataset(opt.dataset.dataset_path, transform, opt.model.size,
                                     opt.model.renderer_spatial_output_dim, file_list)
    else:
        dataset = DemoDataset()

    # get the mean latent vector for g_ema
    if opt.inference.truncation_ratio < 1:
        with torch.no_grad():
            mean_latent = g_ema.mean_latent(opt.inference.truncation_mean, device)
    else:
        mean_latent = None

    g_ema.renderer.is_train = False
    g_ema.renderer.perturb = 0

    # generate(opt.inference, dataset, g_ema, device, mean_latent, opt.rendering.render_video)

    sample_trans, sample_beta, sample_theta = dataset.sample_smpl_param(1, device, val=False)
    sample_cam_extrinsics, sample_focals = dataset.get_camera_extrinsics(1, device, val=False)

    torch.randn(1, opt.inference.style_dim, device=device)

    return opt.inference, g_ema, device, mean_latent, torch.randn(1, opt.inference.style_dim, device=device), \
           sample_trans, sample_beta, sample_theta, sample_cam_extrinsics, sample_focals

import gradio as gr
import plotly.graph_objects as go
from PIL import Image

setup_list = None

def get_video():
    global setup_list
    if setup_list is None:
        setup_list = list(setup())
    generate_video(*setup_list)
    torch.cuda.empty_cache()
    path = 'evaluations/512x256_deepfashion/iter_0420000/random_angles/images_paper_video/video_0000000.mp4'
    return path

def get_mesh():
    global setup_list
    if setup_list is None:
        setup_list = list(setup())
    setup_list[4] = torch.randn(1, setup_list[0].style_dim, device=setup_list[2])
    generate_rgb(*setup_list)
    mesh = generate_mesh(*setup_list)
    torch.cuda.empty_cache()

    x=np.asarray(mesh.vertices).T[0]
    y=np.asarray(mesh.vertices).T[1]
    z=np.asarray(mesh.vertices).T[2]

    i=np.asarray(mesh.faces).T[0]
    j=np.asarray(mesh.faces).T[1]
    k=np.asarray(mesh.faces).T[2]
    fig = go.Figure(go.Mesh3d(x=x, y=y, z=z, 
                    i=i, j=j, k=k, 
                    color="lightpink",
                    # flatshading=True,
                    lighting=dict(ambient=0.5,
                                    diffuse=1,
                                    fresnel=4,        
                                    specular=0.5,
                                    roughness=0.05,
                                    facenormalsepsilon=0,
                                    vertexnormalsepsilon=0),))
                    # lightposition=dict(x=100,
                    #                     y=100,
                    #                     z=1000)))
    path='evaluations/512x256_deepfashion/iter_0420000/random_angles/images_paper_fig/0000000.png'

    image=Image.open(path)

    return fig,image
    
markdown=f'''
  # EVA3D: Compositional 3D Human Generation from 2D Image Collections
  
  Authored by Fangzhou Hong, Zhaoxi Chen, Yushi Lan, Liang Pan, Ziwei Liu

  The space demo for the ICLR 2023 Spotlight paper "EVA3D: Compositional 3D Human Generation from 2D Image Collections".

  ### Useful links:
  - [Official Github Repo](https://github.com/hongfz16/EVA3D)
  - [Project Page](https://hongfz16.github.io/projects/EVA3D.html)
  - [arXiv Link](https://arxiv.org/abs/2210.04888)

  Licensed under the S-Lab License.

  First use button "Generate RGB & Mesh" to randomly sample a 3D human. Then push button "Generate Video" to generate a panning video of the generated human.
'''

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            gr.Markdown(markdown)
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    image=gr.Image(type="pil",shape=(512,256*3))
            with gr.Row():
                with gr.Column():
                    mesh = gr.Plot()
                with gr.Column():
                    video=gr.Video()
    # with gr.Row():
    #   numberoframes = gr.Slider( minimum=30, maximum=250,label='Number Of Frame For Video Generation')
    #   model_name=gr.Dropdown(choices=["ffhq","afhq"],label="Choose Model Type")
    #   mesh_type=gr.Dropdown(choices=["DepthMesh","Marching Cubes"],label="Choose Mesh Type")
    with gr.Row():
        btn = gr.Button(value="Generate RGB & Mesh")
        btn_2=gr.Button(value="Generate Video")

    btn.click(get_mesh,[],[mesh,image])
    btn_2.click(get_video,[],[video])

demo.launch()