EVA3D / 3DTopia /gradio_demo.py
HongFangzhou
test 3dtopia
b13bb81
raw
history blame
12.6 kB
import os
import cv2
import time
import json
import torch
import mcubes
import trimesh
import datetime
import argparse
import subprocess
import numpy as np
import gradio as gr
from tqdm import tqdm
import imageio.v2 as imageio
import pytorch_lightning as pl
from omegaconf import OmegaConf
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
from utility.initialize import instantiate_from_config, get_obj_from_str
from utility.triplane_renderer.eg3d_renderer import sample_from_planes, generate_planes
from utility.triplane_renderer.renderer import get_rays, to8b
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=DeprecationWarning)
def add_text(rgb, caption):
font = cv2.FONT_HERSHEY_SIMPLEX
# org
gap = 10
org = (gap, gap)
# fontScale
fontScale = 0.3
# Blue color in BGR
color = (255, 0, 0)
# Line thickness of 2 px
thickness = 1
break_caption = []
for i in range(len(caption) // 30 + 1):
break_caption_i = caption[i*30:(i+1)*30]
break_caption.append(break_caption_i)
for i, bci in enumerate(break_caption):
cv2.putText(rgb, bci, (gap, gap*(i+1)), font, fontScale, color, thickness, cv2.LINE_AA)
return rgb
config = "configs/default.yaml"
# ckpt = "checkpoints/3dtopia_diffusion_state_dict.ckpt"
ckpt = hf_hub_download(repo_id="hongfz16/3DTopia", filename="model.safetensors")
configs = OmegaConf.load(config)
os.makedirs("tmp", exist_ok=True)
if ckpt.endswith(".ckpt"):
model = get_obj_from_str(configs.model["target"]).load_from_checkpoint(ckpt, map_location='cpu', strict=False, **configs.model.params)
elif ckpt.endswith(".safetensors"):
model = get_obj_from_str(configs.model["target"])(**configs.model.params)
model_ckpt = load_file(ckpt)
model.load_state_dict(model_ckpt)
else:
raise NotImplementedError
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
sampler = DDIMSampler(model)
img_size = configs.model.params.unet_config.params.image_size
channels = configs.model.params.unet_config.params.in_channels
shape = [channels, img_size, img_size * 3]
pose_folder = 'assets/sample_data/pose'
poses_fname = sorted([os.path.join(pose_folder, f) for f in os.listdir(pose_folder)])
batch_rays_list = []
H = 128
ratio = 512 // H
for p in poses_fname:
c2w = np.loadtxt(p).reshape(4, 4)
c2w[:3, 3] *= 2.2
c2w = np.array([
[1, 0, 0, 0],
[0, 0, -1, 0],
[0, 1, 0, 0],
[0, 0, 0, 1]
]) @ c2w
k = np.array([
[560 / ratio, 0, H * 0.5],
[0, 560 / ratio, H * 0.5],
[0, 0, 1]
])
rays_o, rays_d = get_rays(H, H, torch.Tensor(k), torch.Tensor(c2w[:3, :4]))
coords = torch.stack(torch.meshgrid(torch.linspace(0, H-1, H), torch.linspace(0, H-1, H), indexing='ij'), -1)
coords = torch.reshape(coords, [-1,2]).long()
rays_o = rays_o[coords[:, 0], coords[:, 1]]
rays_d = rays_d[coords[:, 0], coords[:, 1]]
batch_rays = torch.stack([rays_o, rays_d], 0)
batch_rays_list.append(batch_rays)
batch_rays_list = torch.stack(batch_rays_list, 0)
def marching_cube(b, text, global_info):
# prepare volumn for marching cube
res = 128
assert 'decode_res' in global_info
decode_res = global_info['decode_res']
c_list = torch.linspace(-1.2, 1.2, steps=res)
grid_x, grid_y, grid_z = torch.meshgrid(
c_list, c_list, c_list, indexing='ij'
)
coords = torch.stack([grid_x, grid_y, grid_z], -1).to(device)
plane_axes = generate_planes()
feats = sample_from_planes(
plane_axes, decode_res[b:b+1].reshape(1, 3, -1, 256, 256), coords.reshape(1, -1, 3), padding_mode='zeros', box_warp=2.4
)
fake_dirs = torch.zeros_like(coords)
fake_dirs[..., 0] = 1
out = model.first_stage_model.triplane_decoder.decoder(feats, fake_dirs)
u = out['sigma'].reshape(res, res, res).detach().cpu().numpy()
del out
# marching cube
vertices, triangles = mcubes.marching_cubes(u, 10)
min_bound = np.array([-1.2, -1.2, -1.2])
max_bound = np.array([1.2, 1.2, 1.2])
vertices = vertices / (res - 1) * (max_bound - min_bound)[None, :] + min_bound[None, :]
pt_vertices = torch.from_numpy(vertices).to(device)
# extract vertices color
res_triplane = 256
render_kwargs = {
'depth_resolution': 128,
'disparity_space_sampling': False,
'box_warp': 2.4,
'depth_resolution_importance': 128,
'clamp_mode': 'softplus',
'white_back': True,
'det': True
}
rays_o_list = [
np.array([0, 0, 2]),
np.array([0, 0, -2]),
np.array([0, 2, 0]),
np.array([0, -2, 0]),
np.array([2, 0, 0]),
np.array([-2, 0, 0]),
]
rgb_final = None
diff_final = None
for rays_o in tqdm(rays_o_list):
rays_o = torch.from_numpy(rays_o.reshape(1, 3)).repeat(vertices.shape[0], 1).float().to(device)
rays_d = pt_vertices.reshape(-1, 3) - rays_o
rays_d = rays_d / torch.norm(rays_d, dim=-1).reshape(-1, 1)
dist = torch.norm(pt_vertices.reshape(-1, 3) - rays_o, dim=-1).cpu().numpy().reshape(-1)
render_out = model.first_stage_model.triplane_decoder(
decode_res[b:b+1].reshape(1, 3, -1, res_triplane, res_triplane),
rays_o.unsqueeze(0), rays_d.unsqueeze(0), render_kwargs,
whole_img=False, tvloss=False
)
rgb = render_out['rgb_marched'].reshape(-1, 3).detach().cpu().numpy()
depth = render_out['depth_final'].reshape(-1).detach().cpu().numpy()
depth_diff = np.abs(dist - depth)
if rgb_final is None:
rgb_final = rgb.copy()
diff_final = depth_diff.copy()
else:
ind = diff_final > depth_diff
rgb_final[ind] = rgb[ind]
diff_final[ind] = depth_diff[ind]
# bgr to rgb
rgb_final = np.stack([
rgb_final[:, 2], rgb_final[:, 1], rgb_final[:, 0]
], -1)
# export to ply
mesh = trimesh.Trimesh(vertices, triangles, vertex_colors=(rgb_final * 255).astype(np.uint8))
path = os.path.join('tmp', f"{text.replace(' ', '_')}_{str(datetime.datetime.now()).replace(' ', '_')}.ply")
trimesh.exchange.export.export_mesh(mesh, path, file_type='ply')
del vertices, triangles, rgb_final
torch.cuda.empty_cache()
return path
def infer(prompt, samples, steps, scale, seed, global_info):
prompt = prompt.replace('/', '')
pl.seed_everything(seed)
batch_size = samples
with torch.no_grad():
noise = None
c = model.get_learned_conditioning([prompt])
unconditional_c = torch.zeros_like(c)
sample, _ = sampler.sample(
S=steps,
batch_size=batch_size,
shape=shape,
verbose=False,
x_T = noise,
conditioning = c.repeat(batch_size, 1, 1),
unconditional_guidance_scale=scale,
unconditional_conditioning=unconditional_c.repeat(batch_size, 1, 1)
)
decode_res = model.decode_first_stage(sample)
big_video_list = []
global_info['decode_res'] = decode_res
for b in range(batch_size):
def render_img(v):
rgb_sample, _ = model.first_stage_model.render_triplane_eg3d_decoder(
decode_res[b:b+1], batch_rays_list[v:v+1].to(device), torch.zeros(1, H, H, 3).to(device),
)
rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0]
rgb_sample = np.stack(
[rgb_sample[..., 2], rgb_sample[..., 1], rgb_sample[..., 0]], -1
)
rgb_sample = add_text(rgb_sample, str(b))
return rgb_sample
view_num = len(batch_rays_list)
video_list = []
for v in tqdm(range(view_num//8*3, view_num//8*5, 2)):
rgb_sample = render_img(v)
video_list.append(rgb_sample)
big_video_list.append(video_list)
# if batch_size == 2:
# cat_video_list = [
# np.concatenate([big_video_list[j][i] for j in range(len(big_video_list))], 1) \
# for i in range(len(big_video_list[0]))
# ]
# elif batch_size > 2:
# if batch_size == 3:
# big_video_list.append(
# [np.zeros_like(f) for f in big_video_list[0]]
# )
# cat_video_list = [
# np.concatenate([
# np.concatenate([big_video_list[0][i], big_video_list[1][i]], 1),
# np.concatenate([big_video_list[2][i], big_video_list[3][i]], 1),
# ], 0) \
# for i in range(len(big_video_list[0]))
# ]
# else:
# cat_video_list = big_video_list[0]
for _ in range(4 - batch_size):
big_video_list.append(
[np.zeros_like(f) + 255 for f in big_video_list[0]]
)
cat_video_list = [
np.concatenate([
np.concatenate([big_video_list[0][i], big_video_list[1][i]], 1),
np.concatenate([big_video_list[2][i], big_video_list[3][i]], 1),
], 0) \
for i in range(len(big_video_list[0]))
]
path = f"tmp/{prompt.replace(' ', '_')}_{str(datetime.datetime.now()).replace(' ', '_')}.mp4"
imageio.mimwrite(path, np.stack(cat_video_list, 0))
return global_info, path
def infer_stage2(prompt, selection, seed, global_info):
prompt = prompt.replace('/', '')
mesh_path = marching_cube(int(selection), prompt, global_info)
mesh_name = mesh_path.split('/')[-1][:-4]
if2_cmd = f"threefiner if2 --mesh {mesh_path} --prompt \"{prompt}\" --outdir tmp --save {mesh_name}_if2.glb --text_dir --front_dir=-y"
print(if2_cmd)
# os.system(if2_cmd)
subprocess.Popen(if2_cmd, shell=True).wait()
torch.cuda.empty_cache()
video_path = f"tmp/{prompt.replace(' ', '_')}_{str(datetime.datetime.now()).replace(' ', '_')}.mp4"
render_cmd = f"kire {os.path.join('tmp', mesh_name + '_if2.glb')} --save_video {video_path} --wogui --force_cuda_rast --H 256 --W 256"
print(render_cmd)
# os.system(render_cmd)
subprocess.Popen(render_cmd, shell=True).wait()
torch.cuda.empty_cache()
return video_path, os.path.join('tmp', mesh_name + '_if2.glb')
block = gr.Blocks()
with block:
global_info = gr.State(dict())
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Textbox(
label = "Enter your prompt",
max_lines = 1,
placeholder = "Enter your prompt",
container = False,
)
btn = gr.Button("Generate 3D")
gallery = gr.Video(height=512)
advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
with gr.Row(elem_id="advanced-options"):
samples = gr.Slider(label="Number of Samples", minimum=1, maximum=4, value=4, step=1)
steps = gr.Slider(label="Steps", minimum=1, maximum=500, value=50, step=1)
scale = gr.Slider(
label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2147483647,
step=1,
randomize=True,
)
gr.on([text.submit, btn.click], infer, inputs=[text, samples, steps, scale, seed, global_info], outputs=[global_info, gallery])
advanced_button.click(
None,
[],
text,
)
with gr.Column():
with gr.Row():
dropdown = gr.Dropdown(
['0', '1', '2', '3'], label="Choose a Candidate For Stage2", value='0'
)
btn_stage2 = gr.Button("Start Refinement")
gallery = gr.Video(height=512)
download = gr.File(label="Download Mesh", file_count="single", height=100)
gr.on([btn_stage2.click], infer_stage2, inputs=[text, dropdown, seed, global_info], outputs=[gallery, download])
block.launch(share=True)