diff --git a/3DTopia/.gitignore b/3DTopia/.gitignore deleted file mode 100644 index 0be8b7cbb5e914722cdeb68149788f8ddeab2820..0000000000000000000000000000000000000000 --- a/3DTopia/.gitignore +++ /dev/null @@ -1,4 +0,0 @@ -__pycache__ -checkpoints -results -tmp \ No newline at end of file diff --git a/3DTopia/LICENSE b/3DTopia/LICENSE deleted file mode 100644 index 261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64..0000000000000000000000000000000000000000 --- a/3DTopia/LICENSE +++ /dev/null @@ -1,201 +0,0 @@ - Apache License - Version 2.0, January 2004 - http://www.apache.org/licenses/ - - TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION - - 1. Definitions. - - "License" shall mean the terms and conditions for use, reproduction, - and distribution as defined by Sections 1 through 9 of this document. - - "Licensor" shall mean the copyright owner or entity authorized by - the copyright owner that is granting the License. - - "Legal Entity" shall mean the union of the acting entity and all - other entities that control, are controlled by, or are under common - control with that entity. For the purposes of this definition, - "control" means (i) the power, direct or indirect, to cause the - direction or management of such entity, whether by contract or - otherwise, or (ii) ownership of fifty percent (50%) or more of the - outstanding shares, or (iii) beneficial ownership of such entity. - - "You" (or "Your") shall mean an individual or Legal Entity - exercising permissions granted by this License. - - "Source" form shall mean the preferred form for making modifications, - including but not limited to software source code, documentation - source, and configuration files. - - "Object" form shall mean any form resulting from mechanical - transformation or translation of a Source form, including but - not limited to compiled object code, generated documentation, - and conversions to other media types. - - "Work" shall mean the work of authorship, whether in Source or - Object form, made available under the License, as indicated by a - copyright notice that is included in or attached to the work - (an example is provided in the Appendix below). - - "Derivative Works" shall mean any work, whether in Source or Object - form, that is based on (or derived from) the Work and for which the - editorial revisions, annotations, elaborations, or other modifications - represent, as a whole, an original work of authorship. For the purposes - of this License, Derivative Works shall not include works that remain - separable from, or merely link (or bind by name) to the interfaces of, - the Work and Derivative Works thereof. - - "Contribution" shall mean any work of authorship, including - the original version of the Work and any modifications or additions - to that Work or Derivative Works thereof, that is intentionally - submitted to Licensor for inclusion in the Work by the copyright owner - or by an individual or Legal Entity authorized to submit on behalf of - the copyright owner. For the purposes of this definition, "submitted" - means any form of electronic, verbal, or written communication sent - to the Licensor or its representatives, including but not limited to - communication on electronic mailing lists, source code control systems, - and issue tracking systems that are managed by, or on behalf of, the - Licensor for the purpose of discussing and improving the Work, but - excluding communication that is conspicuously marked or otherwise - designated in writing by the copyright owner as "Not a Contribution." - - "Contributor" shall mean Licensor and any individual or Legal Entity - on behalf of whom a Contribution has been received by Licensor and - subsequently incorporated within the Work. - - 2. Grant of Copyright License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - copyright license to reproduce, prepare Derivative Works of, - publicly display, publicly perform, sublicense, and distribute the - Work and such Derivative Works in Source or Object form. - - 3. Grant of Patent License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - (except as stated in this section) patent license to make, have made, - use, offer to sell, sell, import, and otherwise transfer the Work, - where such license applies only to those patent claims licensable - by such Contributor that are necessarily infringed by their - Contribution(s) alone or by combination of their Contribution(s) - with the Work to which such Contribution(s) was submitted. If You - institute patent litigation against any entity (including a - cross-claim or counterclaim in a lawsuit) alleging that the Work - or a Contribution incorporated within the Work constitutes direct - or contributory patent infringement, then any patent licenses - granted to You under this License for that Work shall terminate - as of the date such litigation is filed. - - 4. Redistribution. You may reproduce and distribute copies of the - Work or Derivative Works thereof in any medium, with or without - modifications, and in Source or Object form, provided that You - meet the following conditions: - - (a) You must give any other recipients of the Work or - Derivative Works a copy of this License; and - - (b) You must cause any modified files to carry prominent notices - stating that You changed the files; and - - (c) You must retain, in the Source form of any Derivative Works - that You distribute, all copyright, patent, trademark, and - attribution notices from the Source form of the Work, - excluding those notices that do not pertain to any part of - the Derivative Works; and - - (d) If the Work includes a "NOTICE" text file as part of its - distribution, then any Derivative Works that You distribute must - include a readable copy of the attribution notices contained - within such NOTICE file, excluding those notices that do not - pertain to any part of the Derivative Works, in at least one - of the following places: within a NOTICE text file distributed - as part of the Derivative Works; within the Source form or - documentation, if provided along with the Derivative Works; or, - within a display generated by the Derivative Works, if and - wherever such third-party notices normally appear. The contents - of the NOTICE file are for informational purposes only and - do not modify the License. You may add Your own attribution - notices within Derivative Works that You distribute, alongside - or as an addendum to the NOTICE text from the Work, provided - that such additional attribution notices cannot be construed - as modifying the License. - - You may add Your own copyright statement to Your modifications and - may provide additional or different license terms and conditions - for use, reproduction, or distribution of Your modifications, or - for any such Derivative Works as a whole, provided Your use, - reproduction, and distribution of the Work otherwise complies with - the conditions stated in this License. - - 5. Submission of Contributions. Unless You explicitly state otherwise, - any Contribution intentionally submitted for inclusion in the Work - by You to the Licensor shall be under the terms and conditions of - this License, without any additional terms or conditions. - Notwithstanding the above, nothing herein shall supersede or modify - the terms of any separate license agreement you may have executed - with Licensor regarding such Contributions. - - 6. Trademarks. This License does not grant permission to use the trade - names, trademarks, service marks, or product names of the Licensor, - except as required for reasonable and customary use in describing the - origin of the Work and reproducing the content of the NOTICE file. - - 7. Disclaimer of Warranty. Unless required by applicable law or - agreed to in writing, Licensor provides the Work (and each - Contributor provides its Contributions) on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or - implied, including, without limitation, any warranties or conditions - of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A - PARTICULAR PURPOSE. You are solely responsible for determining the - appropriateness of using or redistributing the Work and assume any - risks associated with Your exercise of permissions under this License. - - 8. Limitation of Liability. In no event and under no legal theory, - whether in tort (including negligence), contract, or otherwise, - unless required by applicable law (such as deliberate and grossly - negligent acts) or agreed to in writing, shall any Contributor be - liable to You for damages, including any direct, indirect, special, - incidental, or consequential damages of any character arising as a - result of this License or out of the use or inability to use the - Work (including but not limited to damages for loss of goodwill, - work stoppage, computer failure or malfunction, or any and all - other commercial damages or losses), even if such Contributor - has been advised of the possibility of such damages. - - 9. Accepting Warranty or Additional Liability. While redistributing - the Work or Derivative Works thereof, You may choose to offer, - and charge a fee for, acceptance of support, warranty, indemnity, - or other liability obligations and/or rights consistent with this - License. However, in accepting such obligations, You may act only - on Your own behalf and on Your sole responsibility, not on behalf - of any other Contributor, and only if You agree to indemnify, - defend, and hold each Contributor harmless for any liability - incurred by, or claims asserted against, such Contributor by reason - of your accepting any such warranty or additional liability. - - END OF TERMS AND CONDITIONS - - APPENDIX: How to apply the Apache License to your work. - - To apply the Apache License to your work, attach the following - boilerplate notice, with the fields enclosed by brackets "[]" - replaced with your own identifying information. (Don't include - the brackets!) The text should be enclosed in the appropriate - comment syntax for the file format. We also recommend that a - file or class name and description of purpose be included on the - same "printed page" as the copyright notice for easier - identification within third-party archives. - - Copyright [yyyy] [name of copyright owner] - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. diff --git a/3DTopia/README.md b/3DTopia/README.md deleted file mode 100644 index a9db3069cd3c8da9a29aafffb3d43b7644563b93..0000000000000000000000000000000000000000 --- a/3DTopia/README.md +++ /dev/null @@ -1,65 +0,0 @@ -

- - logo - -

-
-

3DTopia

- A two-stage text-to-3D generation model. The first stage uses diffusion model to quickly generate candidates. The second stage refines the assets chosen from the first stage. - -https://github.com/3DTopia/3DTopia/assets/23376858/c9716cf0-6e61-4983-82b2-2e8f579bd46c - -
- -## News - -[2024/01/18] We release a text-to-3D model 3DTopia! - -## 1. Quick Start - -### 1.1 Install Environment for this Repository -We recommend using Anaconda to manage the environment. -```bash -conda env create -f environment.yml -``` - -### 1.2 Install Second Stage Refiner -Please refer to [threefiner](https://github.com/3DTopia/threefiner) to install our second stage mesh refiner. We have tested installing both environments together with Pytorch 1.12.0 and CUDA 11.3. - -### 1.3 Download Checkpoints \[Optional\] -We have implemented automatic checkpoint download for both `gradio_demo.py` and `sample_stage1.py`. If you prefer to download manually, you may download checkpoint `3dtopia_diffusion_state_dict.ckpt` or `model.safetensors` from [huggingface](https://huggingface.co/hongfz16/3DTopia). - -### Q&A -- If you encounter this error in the second stage `ImportError: /lib64/libc.so.6: version 'GLIBC_2.25' not found`, try to install a lower version of pymeshlab by `pip install pymeshlab==0.2`. - -## 2. Inference - -### 2.1 First Stage -Run the following command to sample `a robot` as the first stage. Results will be located under the folder `results`. -```bash -python -u sample_stage1.py --text "a robot" --samples 1 --sampler ddim --steps 200 --cfg_scale 7.5 --seed 0 -``` - -Arguments: -- `--ckpt` specifies checkpoint file path; -- `--test_folder` controls which subfolder to put all the results; -- `--seed` will fix random seeds; `--sampler` can be set to `ddim` for DDIM sampling (By default, we use 1000 steps DDPM sampling); -- `--steps` controls sampling steps only for DDIM; -- `--samples` controls number of samples; -- `--text` is the input text; -- `--no_video` and `--no_mcubes` suppress rendering multi-view videos and marching cubes, which are by-default enabled; -- `--mcubes_res` controls the resolution of the 3D volumn sampled for marching cubes; One can lower this resolution to save graphics memory; -- `--render_res` controls the resolution of the rendered video; - -### 2.2 Second Stage -There are two steps as the second stage refinement. Here is a simple example. Please refer to [threefiner](https://github.com/3DTopia/threefiner) for more detailed usage. -```bash -# step 1 -threefiner sd --mesh results/default/stage1/a_robot_0_0.ply --prompt "a robot" --text_dir --front_dir='-y' --outdir results/default/stage2/ --save a_robot_0_0_sd.glb -# step 2 -threefiner if2 --mesh results/default/stage2/a_robot_0_0_sd.glb --prompt "a robot" --outdir results/default/stage2/ --save a_robot_0_0_if2.glb -``` -The resulting mesh can be found at `results/default/stage2/a_robot_0_0_if2.glb` - -## 3. Acknowledgement -We thank the community for building and open-sourcing the foundation of this work. Specifically, we want to thank [EG3D](https://github.com/NVlabs/eg3d), [Stable Diffusion](https://github.com/CompVis/stable-diffusion) for their codes. We also want to thank [Objaverse](https://objaverse.allenai.org) for the wonderful dataset. diff --git a/3DTopia/assets/3dtopia.jpeg b/3DTopia/assets/3dtopia.jpeg deleted file mode 100644 index b4c1f6b718da9519547a2ce7fc766c7ad29247b9..0000000000000000000000000000000000000000 Binary files a/3DTopia/assets/3dtopia.jpeg and /dev/null differ diff --git a/3DTopia/assets/sample_data/pose/000000.txt b/3DTopia/assets/sample_data/pose/000000.txt deleted file mode 100644 index f06623177e8b5f19d1fb96b5b0d0441ae6048f4f..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000000.txt +++ /dev/null @@ -1 +0,0 @@ --0.8414713144302368 -0.5386366844177246 -0.04239124804735184 0.05086996778845787 3.72529200376448e-07 -0.07845887541770935 0.9969174861907959 -1.1963008642196655 -0.5403022766113281 0.838877260684967 0.06602128595113754 -0.07922526448965073 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000001.txt b/3DTopia/assets/sample_data/pose/000001.txt deleted file mode 100644 index eb2e88460ba96961a3509c60a3d1bc363cf61731..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000001.txt +++ /dev/null @@ -1 +0,0 @@ --0.9320390224456787 -0.3607495129108429 -0.03410102799534798 0.04092103987932205 -2.0861622829215776e-07 -0.0941082164645195 0.9955618977546692 -1.1946742534637451 -0.3623576760292053 0.9279026389122009 0.08771242946386337 -0.105255126953125 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000002.txt b/3DTopia/assets/sample_data/pose/000002.txt deleted file mode 100644 index 70a984ac99d014a045401e25d51e90476bb2468b..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000002.txt +++ /dev/null @@ -1 +0,0 @@ --0.9854495525360107 -0.1689407229423523 -0.0186510868370533 0.022381475195288658 1.5646213569198153e-07 -0.10973447561264038 0.9939608573913574 -1.1927531957626343 -0.1699671447277069 0.9794984459877014 0.10813764482736588 -0.12976518273353577 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000003.txt b/3DTopia/assets/sample_data/pose/000003.txt deleted file mode 100644 index 93692ad3e17af9bca69cbe8be8ab2e7b89d93fae..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000003.txt +++ /dev/null @@ -1 +0,0 @@ --0.9995737075805664 0.028960729017853737 0.0036580152809619904 -0.0043916041031479836 -5.648469141306123e-07 -0.12533310055732727 0.9921146631240845 -1.1905378103256226 0.02919083461165428 0.9916918873786926 0.1252794861793518 -0.15033574402332306 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000004.txt b/3DTopia/assets/sample_data/pose/000004.txt deleted file mode 100644 index dd0b6b5c01faf4ac7bb4d8f549f990f61da59387..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000004.txt +++ /dev/null @@ -1 +0,0 @@ --0.973847508430481 0.2249356210231781 0.03201328590512276 -0.03841566666960716 1.5646217832454568e-07 -0.14090147614479065 0.9900236129760742 -1.188028335571289 0.22720229625701904 0.9641320705413818 0.1372164487838745 -0.16465960443019867 -0.0 -0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000005.txt b/3DTopia/assets/sample_data/pose/000005.txt deleted file mode 100644 index e00dfcbb2a62f6f5f93b195e4c7579b7eae30a1d..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000005.txt +++ /dev/null @@ -1 +0,0 @@ --0.9092977046966553 0.4110230505466461 0.06509938091039658 -0.078119657933712 -3.83704957584996e-07 -0.15643461048603058 0.987688422203064 -1.1852262020111084 0.416146457195282 0.8981026411056519 0.14224585890769958 -0.17069458961486816 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000006.txt b/3DTopia/assets/sample_data/pose/000006.txt deleted file mode 100644 index 86bbbaef592616de66c5adaaafdad35054f7f257..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000006.txt +++ /dev/null @@ -1 +0,0 @@ --0.8084962368011475 0.5797380208969116 0.1011803075671196 -0.12141657620668411 -2.2351736461700966e-08 -0.17192888259887695 0.9851093292236328 -1.1821314096450806 0.5885012149810791 0.7964572906494141 0.13900375366210938 -0.16680487990379333 -0.0 -0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000007.txt b/3DTopia/assets/sample_data/pose/000007.txt deleted file mode 100644 index f89eba6a7e6ad8112a94d48cbb0c89b1089aad2f..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000007.txt +++ /dev/null @@ -1 +0,0 @@ --0.6754631996154785 0.7243322134017944 0.13817371428012848 -0.1658085733652115 -1.6391271628890536e-07 -0.18738147616386414 0.9822871685028076 -1.1787446737289429 0.7373935580253601 0.6634989380836487 0.1265692412853241 -0.15188303589820862 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000008.txt b/3DTopia/assets/sample_data/pose/000008.txt deleted file mode 100644 index 21c17dfd0c3c174320d8f8cdc59cd1ca04f3f5fc..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000008.txt +++ /dev/null @@ -1 +0,0 @@ --0.5155014991760254 0.8390849828720093 0.17376619577407837 -0.20851942896842957 1.2665987014770508e-07 -0.20278730988502502 0.9792228937149048 -1.175067663192749 0.8568887114524841 0.5047908425331116 0.1045369878411293 -0.12544460594654083 -0.0 -0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000009.txt b/3DTopia/assets/sample_data/pose/000009.txt deleted file mode 100644 index ed0c8b01f0cec6488b4dd0d164cf5ef1db14edcd..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000009.txt +++ /dev/null @@ -1 +0,0 @@ --0.3349881172180176 0.91953045129776 0.20553946495056152 -0.24664731323719025 -1.0430810704065152e-07 -0.21814337372779846 0.9759166836738586 -1.1710999011993408 0.9422222375869751 0.3269205689430237 0.07307547330856323 -0.08769046515226364 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000010.txt b/3DTopia/assets/sample_data/pose/000010.txt deleted file mode 100644 index 89bb8d731884d8d45904d6cc2c7fb16faecf5516..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000010.txt +++ /dev/null @@ -1 +0,0 @@ --0.1411200612783432 0.9626389741897583 0.23110917210578918 -0.2773309648036957 -1.8998981943241233e-07 -0.2334454208612442 0.9723699688911438 -1.1668438911437988 0.9899925589561462 0.13722087442874908 0.03294399753212929 -0.03953259065747261 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000011.txt b/3DTopia/assets/sample_data/pose/000011.txt deleted file mode 100644 index fd2e8b687234a44c62961db3c50562677acd04ae..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000011.txt +++ /dev/null @@ -1 +0,0 @@ -0.05837392061948776 0.9669322967529297 0.24826295673847198 -0.29791900515556335 -1.9557775843281888e-08 -0.2486870288848877 0.9685839414596558 -1.1622999906539917 0.9982947707176208 -0.05654003843665123 -0.014516821131110191 0.01742047443985939 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000012.txt b/3DTopia/assets/sample_data/pose/000012.txt deleted file mode 100644 index ec690a4bf437c985b44db3b268164f33fc4a6152..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000012.txt +++ /dev/null @@ -1 +0,0 @@ -0.2555410861968994 0.9325323700904846 0.255111962556839 -0.3061343729496002 -7.450580596923828e-09 -0.26387304067611694 0.964557409286499 -1.1574687957763672 0.9667981863021851 -0.24648404121398926 -0.06743041425943375 0.08091648668050766 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000013.txt b/3DTopia/assets/sample_data/pose/000013.txt deleted file mode 100644 index bdd0f7851359ddbde82bf598055d47fbdcc35225..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000013.txt +++ /dev/null @@ -1 +0,0 @@ -0.4425203502178192 0.861151397228241 0.25018739700317383 -0.300225168466568 -2.458690460116486e-07 -0.2789909243583679 0.9602935910224915 -1.1523523330688477 0.8967583179473877 -0.42494940757751465 -0.12345901876688004 0.14815115928649902 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000014.txt b/3DTopia/assets/sample_data/pose/000014.txt deleted file mode 100644 index 782685d881a0e2f7f93f64b9f7fd229064cd0ec0..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000014.txt +++ /dev/null @@ -1 +0,0 @@ -0.6118577718734741 0.7560015320777893 0.23257626593112946 -0.27909165620803833 2.9802322387695312e-08 -0.29404014348983765 0.955793023109436 -1.146951675415039 0.7909678220748901 -0.584809422492981 -0.1799107939004898 0.21589307487010956 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000015.txt b/3DTopia/assets/sample_data/pose/000015.txt deleted file mode 100644 index acbfd3638de2adc6042114baee3656d9d716c045..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000015.txt +++ /dev/null @@ -1 +0,0 @@ -0.756802499294281 0.6216520071029663 0.2019868791103363 -0.2423844039440155 -1.4901159417490817e-08 -0.3090169131755829 0.9510564804077148 -1.1412678956985474 0.6536435484886169 -0.7197620272636414 -0.23386473953723907 0.28063780069351196 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000016.txt b/3DTopia/assets/sample_data/pose/000016.txt deleted file mode 100644 index 013a71d628da4714379a1a3461d11c4d7ed897ec..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000016.txt +++ /dev/null @@ -1 +0,0 @@ -0.8715758323669434 0.46382859349250793 0.15880392491817474 -0.19056479632854462 -8.940693874137651e-08 -0.3239172697067261 0.9460852146148682 -1.1353023052215576 0.4902608096599579 -0.8245849609375 -0.28231847286224365 0.33878225088119507 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000017.txt b/3DTopia/assets/sample_data/pose/000017.txt deleted file mode 100644 index 953c867619ee156d85a30b81f43c46b727c72908..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000017.txt +++ /dev/null @@ -1 +0,0 @@ -0.951602041721344 0.2891636788845062 0.10410525649785995 -0.1249263659119606 7.450580596923828e-09 -0.33873775601387024 0.9408808350563049 -1.1290569305419922 0.30733293294906616 -0.8953441381454468 -0.32234352827072144 0.3868124783039093 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000018.txt b/3DTopia/assets/sample_data/pose/000018.txt deleted file mode 100644 index e9b756715528be1e34cd4c39a7e33d9026885e1a..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000018.txt +++ /dev/null @@ -1 +0,0 @@ -0.9936910271644592 0.1049124225974083 0.039643093943595886 -0.04757172241806984 -0.0 -0.35347482562065125 0.9354441165924072 -1.1225329637527466 0.11215253174304962 -0.9295423626899719 -0.3512447774410248 0.421493798494339 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000019.txt b/3DTopia/assets/sample_data/pose/000019.txt deleted file mode 100644 index 0b9c1a7fda4a3ac75568ab601fa815a06f447ab5..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000019.txt +++ /dev/null @@ -1 +0,0 @@ -0.9961645603179932 -0.08135451376438141 -0.032210517674684525 0.038652628660202026 1.862645149230957e-09 -0.3681243658065796 0.9297765493392944 -1.1157318353652954 -0.0874989926815033 -0.9262105226516724 -0.3667125105857849 0.4400551915168762 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000020.txt b/3DTopia/assets/sample_data/pose/000020.txt deleted file mode 100644 index 656c47232cb297949c8b24916d4026845e409ea5..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000020.txt +++ /dev/null @@ -1 +0,0 @@ -0.9589242935180664 -0.2620696723461151 -0.10855279117822647 0.13026338815689087 1.4901161193847656e-08 -0.38268333673477173 0.9238795638084412 -1.108655333518982 -0.28366219997406006 -0.8859305381774902 -0.36696434020996094 0.4403572976589203 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000021.txt b/3DTopia/assets/sample_data/pose/000021.txt deleted file mode 100644 index 39cb359918f5d10abbc0d3362dd9a5ecf67ff103..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000021.txt +++ /dev/null @@ -1 +0,0 @@ -0.8834545612335205 -0.4299834668636322 -0.18607036769390106 0.22328442335128784 4.470348002882929e-08 -0.39714762568473816 0.9177546501159668 -1.101305603981018 -0.4685167372226715 -0.8107945919036865 -0.35086193680763245 0.4210345447063446 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000022.txt b/3DTopia/assets/sample_data/pose/000022.txt deleted file mode 100644 index c0094b6672bb6244a2cd51b02c37fc8051b5c90a..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000022.txt +++ /dev/null @@ -1 +0,0 @@ -0.7727645039558411 -0.578461229801178 -0.2611852288246155 0.3134223520755768 -2.980232949312267e-08 -0.41151440143585205 0.9114034175872803 -1.093684196472168 -0.6346929669380188 -0.7043001651763916 -0.31800374388694763 0.38160452246665955 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000023.txt b/3DTopia/assets/sample_data/pose/000023.txt deleted file mode 100644 index 6a0887ec9ec4f11fb3d6390abaf7783cecc0ea6f..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000023.txt +++ /dev/null @@ -1 +0,0 @@ -0.6312665939331055 -0.7017531991004944 -0.33021968603134155 0.3962639272212982 1.4901161193847656e-08 -0.4257790148258209 0.9048272371292114 -1.0857925415039062 -0.775566041469574 -0.5711871385574341 -0.26878002285957336 0.32253631949424744 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000024.txt b/3DTopia/assets/sample_data/pose/000024.txt deleted file mode 100644 index 687344b34e28ac322c26e376e7c8393ec4e72365..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000024.txt +++ /dev/null @@ -1 +0,0 @@ -0.46460211277008057 -0.7952209711074829 -0.38957479596138 0.467489629983902 -0.0 -0.4399392306804657 0.8980275988578796 -1.0776331424713135 -0.8855195641517639 -0.4172254800796509 -0.20439667999744415 0.2452760487794876 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000025.txt b/3DTopia/assets/sample_data/pose/000025.txt deleted file mode 100644 index 388b1e20e526d3a4d0ffc9f326ea1d75c6e7b6c0..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000025.txt +++ /dev/null @@ -1 +0,0 @@ -0.279415488243103 -0.8555179834365845 -0.43590813875198364 0.5230898261070251 -7.450580596923828e-09 -0.4539904296398163 0.8910065293312073 -1.069207787513733 -0.960170328617096 -0.24896103143692017 -0.12685194611549377 0.1522223800420761 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000026.txt b/3DTopia/assets/sample_data/pose/000026.txt deleted file mode 100644 index 64b583bbe7e213a2b9dd13c20b4cbf27917572d9..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000026.txt +++ /dev/null @@ -1 +0,0 @@ -0.08308916538953781 -0.8807101845741272 -0.4663105905056 0.5595741271972656 2.7939665869780583e-07 -0.46792876720428467 0.8837661147117615 -1.060518741607666 -0.9965419769287109 -0.07343138754367828 -0.0388796441257 0.046656012535095215 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000027.txt b/3DTopia/assets/sample_data/pose/000027.txt deleted file mode 100644 index 6936a913ed3666bd4f705c4445c2e1692ef56484..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000027.txt +++ /dev/null @@ -1 +0,0 @@ --0.11654932051897049 -0.8703341484069824 -0.4784710705280304 0.5741645693778992 1.1175869474300271e-07 -0.481754332780838 0.8763062953948975 -1.0515679121017456 -0.9931849241256714 0.1021328940987587 0.05614820867776871 -0.06737759709358215 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000028.txt b/3DTopia/assets/sample_data/pose/000028.txt deleted file mode 100644 index d425c87f033bea37fc20adfada19f8afb77895e0..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000028.txt +++ /dev/null @@ -1 +0,0 @@ --0.31154143810272217 -0.8254019618034363 -0.4708009660243988 0.5649611949920654 1.4901161193847656e-08 -0.4954586327075958 0.8686314821243286 -1.0423579216003418 -0.9502326250076294 0.27061471343040466 0.15435591340065002 -0.18522702157497406 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000029.txt b/3DTopia/assets/sample_data/pose/000029.txt deleted file mode 100644 index 7886694a8b39dea814cd563fba9620cf1617381a..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000029.txt +++ /dev/null @@ -1 +0,0 @@ --0.494113564491272 -0.7483266592025757 -0.44255948066711426 0.5310712456703186 -1.4901161193847656e-07 -0.5090416669845581 0.860741913318634 -1.0328905582427979 -0.8693974018096924 0.4253043532371521 0.25152426958084106 -0.3018290102481842 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000030.txt b/3DTopia/assets/sample_data/pose/000030.txt deleted file mode 100644 index 9fc9f1e48c461ab064a28a6a7da8a9682c5d9dbc..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000030.txt +++ /dev/null @@ -1 +0,0 @@ --0.6569865345954895 -0.6428073644638062 -0.3939129412174225 0.4726954400539398 1.4901162970204496e-08 -0.522498607635498 0.8526401519775391 -1.0231680870056152 -0.7539023160934448 0.5601730942726135 0.3432745933532715 -0.41192948818206787 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000031.txt b/3DTopia/assets/sample_data/pose/000031.txt deleted file mode 100644 index b9be832443b12709ae39f75016318dc78ac5077d..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000031.txt +++ /dev/null @@ -1 +0,0 @@ --0.7936679124832153 -0.5136478543281555 -0.3259711265563965 0.39116519689559937 -2.2351741790771484e-07 -0.5358269214630127 0.8443279266357422 -1.0131936073303223 -0.6083512902259827 0.6701160073280334 0.4252684712409973 -0.5103223323822021 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000032.txt b/3DTopia/assets/sample_data/pose/000032.txt deleted file mode 100644 index d3c77ddb53b7661d1f25778b6f0925a437178a7b..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000032.txt +++ /dev/null @@ -1 +0,0 @@ --0.8987078070640564 -0.36654093861579895 -0.2407723218202591 0.28892695903778076 1.639126594454865e-07 -0.5490229725837708 0.8358070850372314 -1.0029689073562622 -0.43854713439941406 0.7511465549468994 0.49341118335723877 -0.5920935273170471 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000033.txt b/3DTopia/assets/sample_data/pose/000033.txt deleted file mode 100644 index 13dba8064732a2969c047bd7eee5438ac99303cd..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000033.txt +++ /dev/null @@ -1 +0,0 @@ --0.9679195880889893 -0.2078111618757248 -0.14122851192951202 0.1694747358560562 -1.8626440123625798e-07 -0.56208336353302 0.827080488204956 -0.9924965500831604 -0.2512587904930115 0.8005476593971252 0.5440514087677002 -0.6528617739677429 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000034.txt b/3DTopia/assets/sample_data/pose/000034.txt deleted file mode 100644 index 3d2298ea6b094f1da0aaefb40b2cfdda07b2e08e..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000034.txt +++ /dev/null @@ -1 +0,0 @@ --0.9985430240631104 -0.04414258524775505 -0.031028015539050102 0.03722957894206047 -3.3453090964030707e-06 -0.5750053524971008 0.8181495666503906 -0.9817797541618347 -0.053956516087055206 0.8169578313827515 0.5741673707962036 -0.6890010833740234 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000035.txt b/3DTopia/assets/sample_data/pose/000035.txt deleted file mode 100644 index f2aa76ce87ec4f9eb23655cd4f18d0b2bde3f1c6..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000035.txt +++ /dev/null @@ -1 +0,0 @@ --0.9893580675125122 0.11771200597286224 0.08552265912294388 -0.10262733697891235 -1.043080928297968e-07 -0.5877853035926819 0.8090168237686157 -0.970820426940918 0.14549998939037323 0.8004074692726135 0.5815301537513733 -0.6978363394737244 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000036.txt b/3DTopia/assets/sample_data/pose/000036.txt deleted file mode 100644 index e6dd057f262657b11171b5e9e263897f9b962595..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000036.txt +++ /dev/null @@ -1 +0,0 @@ --0.940730631351471 0.2712166905403137 0.20363546907901764 -0.24436251819133759 1.6391278734317893e-07 -0.6004202365875244 0.7996845841407776 -0.9596214294433594 0.3391546905040741 0.7522878646850586 0.5648337006568909 -0.6778002977371216 -0.0 -0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000037.txt b/3DTopia/assets/sample_data/pose/000037.txt deleted file mode 100644 index e2eb5ccbae9d91c08c51f7896bfb9c434d313b0f..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000037.txt +++ /dev/null @@ -1 +0,0 @@ --0.8545990586280823 0.4103184938430786 0.31827494502067566 -0.3819308578968048 -5.513428504855256e-07 -0.6129069924354553 0.7901549935340881 -0.9481860995292664 0.519288182258606 0.6752656102180481 0.5237899422645569 -0.6285476088523865 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000038.txt b/3DTopia/assets/sample_data/pose/000038.txt deleted file mode 100644 index 8c67481b528183a88bda479577977d8a912b3acc..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000038.txt +++ /dev/null @@ -1 +0,0 @@ --0.7343969345092773 0.5296936631202698 0.42436450719833374 -0.5092376470565796 -5.9604616353681195e-08 -0.6252426505088806 0.7804303765296936 -0.936516523361206 0.6787199378013611 0.5731458067893982 0.45917630195617676 -0.5510116219520569 -0.0 -0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000039.txt b/3DTopia/assets/sample_data/pose/000039.txt deleted file mode 100644 index 5539121de371664f1ad0987a401926f9542decdc..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000039.txt +++ /dev/null @@ -1 +0,0 @@ --0.5849173665046692 0.6249576807022095 0.5170100331306458 -0.6204122304916382 -5.960463056453591e-08 -0.6374240517616272 0.770513117313385 -0.9246158599853516 0.811092734336853 0.4506864845752716 0.37284043431282043 -0.4474082589149475 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000040.txt b/3DTopia/assets/sample_data/pose/000040.txt deleted file mode 100644 index 7340764fc6dc28476c22bd62d2b8b7c130508936..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000040.txt +++ /dev/null @@ -1 +0,0 @@ --0.4121185541152954 0.692828893661499 0.5917317271232605 -0.7100781798362732 -1.341104507446289e-07 -0.6494481563568115 0.7604060173034668 -0.9124871492385864 0.9111302495002747 0.31337738037109375 0.26764971017837524 -0.32117941975593567 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000041.txt b/3DTopia/assets/sample_data/pose/000041.txt deleted file mode 100644 index 5b93615c6eed7a5500d1936ae081317ad38e9ac6..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000041.txt +++ /dev/null @@ -1 +0,0 @@ --0.22289007902145386 0.7312408685684204 0.6446757316589355 -0.7736107707023621 -1.1920927533992653e-07 -0.6613120436668396 0.7501108646392822 -0.9001333117485046 0.9748435020446777 0.1671922653913498 0.14739994704723358 -0.1768796592950821 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000042.txt b/3DTopia/assets/sample_data/pose/000042.txt deleted file mode 100644 index fa90ee264a33681b93ab18b934cd7343a2a291d1..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000042.txt +++ /dev/null @@ -1 +0,0 @@ --0.02477543242275715 0.7394039630889893 0.6728058457374573 -0.8073671460151672 -1.7136329688582919e-07 -0.6730126738548279 0.7396309971809387 -0.887557327747345 0.9996929168701172 0.018324699252843857 0.01667424477636814 -0.020009009167551994 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000043.txt b/3DTopia/assets/sample_data/pose/000043.txt deleted file mode 100644 index 4dff3f84326c1434af139ddba028c26ef6fa464d..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000043.txt +++ /dev/null @@ -1 +0,0 @@ -0.17432667315006256 0.7178065776824951 0.6740651726722717 -0.8088783025741577 -5.215405707303944e-08 -0.6845470666885376 0.7289686799049377 -0.8747623562812805 0.9846878051757812 -0.12707868218421936 -0.11933477967977524 0.14320188760757446 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000044.txt b/3DTopia/assets/sample_data/pose/000044.txt deleted file mode 100644 index 676b06b5ef91c0926a8f2f1c8e3104de89e7753d..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000044.txt +++ /dev/null @@ -1 +0,0 @@ -0.3664790987968445 0.6681637167930603 0.6474955081939697 -0.7769947052001953 -2.9802322387695312e-08 -0.6959127187728882 0.7181264162063599 -0.8617515563964844 0.9304263591766357 -0.263178288936615 -0.25503745675086975 0.3060450553894043 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000045.txt b/3DTopia/assets/sample_data/pose/000045.txt deleted file mode 100644 index 9b3e98714504ae3743baa7e85023c241c9c39d7a..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000045.txt +++ /dev/null @@ -1 +0,0 @@ -0.5440210700035095 0.5933132171630859 0.5933132171630859 -0.7119758129119873 1.4901161193847656e-08 -0.7071067690849304 0.7071068286895752 -0.8485281467437744 0.8390715718269348 -0.38468101620674133 -0.38468098640441895 0.46161726117134094 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000046.txt b/3DTopia/assets/sample_data/pose/000046.txt deleted file mode 100644 index de5ee9d3b5e7aa35e8cc57db0cad4d8c9e10a118..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000046.txt +++ /dev/null @@ -1 +0,0 @@ -0.699874758720398 0.4970666766166687 0.5129328966140747 -0.6155195832252502 -1.4901161193847656e-08 -0.7181262969970703 0.6959128975868225 -0.8350953459739685 0.7142656445503235 -0.4870518445968628 -0.5025984048843384 0.6031181812286377 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000047.txt b/3DTopia/assets/sample_data/pose/000047.txt deleted file mode 100644 index 292398d3996a7b4e9c17c561cde7b08df6d13644..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000047.txt +++ /dev/null @@ -1 +0,0 @@ -0.8278263807296753 0.38402023911476135 0.408939927816391 -0.49072784185409546 4.470348358154297e-08 -0.728968620300293 0.6845471262931824 -0.8214565515518188 0.5609843134880066 -0.56668621301651 -0.6034594774246216 0.7241514921188354 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000048.txt b/3DTopia/assets/sample_data/pose/000048.txt deleted file mode 100644 index c7017f7c4bd6ab51b19f5fca5a032ff5ff71618a..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000048.txt +++ /dev/null @@ -1 +0,0 @@ -0.9227754473686218 0.2593373954296112 0.28500810265541077 -0.3420097231864929 -0.0 -0.7396311163902283 0.6730124950408936 -0.8076150417327881 0.38533815741539 -0.6210393905639648 -0.682513415813446 0.81901615858078 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000049.txt b/3DTopia/assets/sample_data/pose/000049.txt deleted file mode 100644 index 13928ac07d2057760018824acfeecadb15d7413e..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000049.txt +++ /dev/null @@ -1 +0,0 @@ -0.9809362888336182 0.1285126805305481 0.14576902985572815 -0.17492283880710602 -7.450581485102248e-09 -0.7501111030578613 0.66131192445755 -0.7935742139816284 0.19432991743087769 -0.6487048268318176 -0.7358112335205078 0.8829733729362488 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000050.txt b/3DTopia/assets/sample_data/pose/000050.txt deleted file mode 100644 index 764270d7e9b8b544b87908ce1c470cc55b4e9473..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000050.txt +++ /dev/null @@ -1 +0,0 @@ -0.9999901652336121 -0.0028742607682943344 -0.0033653262071311474 0.004038391634821892 -2.3283061589829401e-10 -0.7604058980941772 0.6494479179382324 -0.7793375253677368 -0.00442569749429822 -0.6494415998458862 -0.7603984475135803 0.9124780297279358 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000051.txt b/3DTopia/assets/sample_data/pose/000051.txt deleted file mode 100644 index c5794890908d9dbabb26e1429bfc337a52782633..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000051.txt +++ /dev/null @@ -1 +0,0 @@ -0.979177713394165 -0.12940019369125366 -0.15641796588897705 0.1877015084028244 -7.450580596923828e-09 -0.7705132365226746 0.6374240517616272 -0.7649087905883789 -0.2030048966407776 -0.624151349067688 -0.7544693946838379 0.9053632020950317 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000052.txt b/3DTopia/assets/sample_data/pose/000052.txt deleted file mode 100644 index 9e4b173f044faee03f774286251bfe3ef1b096b6..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000052.txt +++ /dev/null @@ -1 +0,0 @@ -0.9193285703659058 -0.24602729082107544 -0.30709224939346313 0.3685106933116913 -0.0 -0.7804304361343384 0.6252426505088806 -0.7502912282943726 -0.39349088072776794 -0.5748034119606018 -0.7174719572067261 0.8609663844108582 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000053.txt b/3DTopia/assets/sample_data/pose/000053.txt deleted file mode 100644 index 4ba7967d04ca6116b6a6de9fdeedaa997f5c4136..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000053.txt +++ /dev/null @@ -1 +0,0 @@ -0.8228285908699036 -0.3483087122440338 -0.4490368962287903 0.5388442873954773 -0.0 -0.7901550531387329 0.6129070520401001 -0.7354884147644043 -0.5682896375656128 -0.5043174624443054 -0.6501621007919312 0.7801946997642517 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000054.txt b/3DTopia/assets/sample_data/pose/000054.txt deleted file mode 100644 index 18bb9aa82b377f174a1f78a8793725eba9593f80..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000054.txt +++ /dev/null @@ -1 +0,0 @@ -0.6935251355171204 -0.4325622320175171 -0.5761187076568604 0.6913425326347351 -1.4901159417490817e-08 -0.7996845245361328 0.6004201769828796 -0.7205043435096741 -0.7204324007034302 -0.4164064824581146 -0.5546013116836548 0.6655217409133911 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000055.txt b/3DTopia/assets/sample_data/pose/000055.txt deleted file mode 100644 index 5c795995f90fa82ceaf094217099c6cb0f4417d6..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000055.txt +++ /dev/null @@ -1 +0,0 @@ -0.5365728735923767 -0.49600499868392944 -0.6826922297477722 0.8192306160926819 4.470348713425665e-08 -0.8090170621871948 0.5877854228019714 -0.7053423523902893 -0.8438540697097778 -0.3153897225856781 -0.4340965449810028 0.5209159851074219 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000056.txt b/3DTopia/assets/sample_data/pose/000056.txt deleted file mode 100644 index d3d4f889b29e5366d8c01f2a081bd03e1b6c6a09..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000056.txt +++ /dev/null @@ -1 +0,0 @@ -0.3582288920879364 -0.5368444323539734 -0.7638519406318665 0.9166225790977478 1.490115550950577e-07 -0.8181496262550354 0.575005292892456 -0.6900063157081604 -0.93363356590271 -0.20598354935646057 -0.2930847704410553 0.3517022430896759 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000057.txt b/3DTopia/assets/sample_data/pose/000057.txt deleted file mode 100644 index ca2c0b4a3adb1181f77b0cdbf518ff7c8cad69a0..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000057.txt +++ /dev/null @@ -1 +0,0 @@ -0.1656038910150528 -0.5543226599693298 -0.8156602382659912 0.9787925481796265 7.4505797087454084e-09 -0.8270803093910217 0.5620836615562439 -0.6744999885559082 -0.9861923456192017 -0.0930832177400589 -0.136967733502388 0.1643616110086441 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000058.txt b/3DTopia/assets/sample_data/pose/000058.txt deleted file mode 100644 index 557f498858ea589f14c5ed04bdae4cbb81939903..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000058.txt +++ /dev/null @@ -1 +0,0 @@ --0.03362308070063591 -0.5487122535705566 -0.8353347778320312 1.0024018287658691 4.749744064724837e-08 -0.8358075618743896 0.5490226745605469 -0.6588274240493774 -0.9994345307350159 0.01845986768603325 0.028102422133088112 -0.03372287005186081 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000059.txt b/3DTopia/assets/sample_data/pose/000059.txt deleted file mode 100644 index e4ee736ef15c8763363013a8f4bd528fec551aec..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000059.txt +++ /dev/null @@ -1 +0,0 @@ --0.23150981962680817 -0.5212697386741638 -0.8213896751403809 0.9856675863265991 7.450580596923828e-09 -0.8443279266357422 0.5358267426490784 -0.6429921984672546 -0.9728325605392456 0.12404916435480118 0.1954701989889145 -0.23456427454948425 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000060.txt b/3DTopia/assets/sample_data/pose/000060.txt deleted file mode 100644 index 5a1a4f0de215b9b5d45d6c2a1b2dc47848914eae..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000060.txt +++ /dev/null @@ -1 +0,0 @@ --0.42016705870628357 -0.474139541387558 -0.7737252116203308 0.9284706711769104 1.4901151246249356e-07 -0.8526401519775391 0.5224984884262085 -0.6269983053207397 -0.9074463844299316 0.2195366770029068 0.35825133323669434 -0.4299015402793884 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000061.txt b/3DTopia/assets/sample_data/pose/000061.txt deleted file mode 100644 index 9d93876315c8f72cb7560190146125be50bd9318..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000061.txt +++ /dev/null @@ -1 +0,0 @@ --0.5920736193656921 -0.4102281630039215 -0.6936582326889038 0.8323898315429688 -2.980232594040899e-08 -0.8607421517372131 0.5090413093566895 -0.6108497381210327 -0.8058839440345764 0.3013899028301239 0.5096226930618286 -0.6115471720695496 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000062.txt b/3DTopia/assets/sample_data/pose/000062.txt deleted file mode 100644 index eff3056cc60ea6abf104750d715c890dafd3ebef..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000062.txt +++ /dev/null @@ -1 +0,0 @@ --0.7403759360313416 -0.3330437242984772 -0.5838878750801086 0.7006657123565674 1.043080928297968e-07 -0.8686315417289734 0.4954584836959839 -0.5945504903793335 -0.6721928119659424 0.36682555079460144 0.6431138515472412 -0.7717366218566895 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000063.txt b/3DTopia/assets/sample_data/pose/000063.txt deleted file mode 100644 index dd26b45880fdfe87414665a9f4e62e9c8c63763a..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000063.txt +++ /dev/null @@ -1 +0,0 @@ --0.8591620922088623 -0.2465151995420456 -0.44840940833091736 0.5380914807319641 4.4703490686970326e-08 -0.8763067126274109 0.4817536771297455 -0.5781044363975525 -0.5117037892341614 0.4139043986797333 0.7528894543647766 -0.9034671783447266 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000064.txt b/3DTopia/assets/sample_data/pose/000064.txt deleted file mode 100644 index 132633e40f4c478d77778bba5642750d3711fd92..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000064.txt +++ /dev/null @@ -1 +0,0 @@ --0.9436956644058228 -0.15479804575443268 -0.29236292839050293 0.35083532333374023 -1.043081283569336e-07 -0.8837655782699585 0.46792975068092346 -0.5615156292915344 -0.3308148980140686 0.4415833055973053 0.8340057730674744 -1.0008068084716797 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000065.txt b/3DTopia/assets/sample_data/pose/000065.txt deleted file mode 100644 index f09ada342d0fc5da8de63ee7fba3456573a95c2b..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000065.txt +++ /dev/null @@ -1 +0,0 @@ --0.9906071424484253 -0.06207740679383278 -0.12183358520269394 0.146200492978096 8.195635103902532e-08 -0.891006588935852 0.45399045944213867 -0.5447887182235718 -0.13673707842826843 0.44972628355026245 0.8826374411582947 -1.0591652393341064 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000066.txt b/3DTopia/assets/sample_data/pose/000066.txt deleted file mode 100644 index 64173ae9e839c86a2a67043f6f5280963d5ac9d7..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000066.txt +++ /dev/null @@ -1 +0,0 @@ --0.9980266094207764 0.027624979615211487 0.0563855841755867 -0.06766645610332489 -1.7657868056630832e-06 -0.8980275988578796 0.4399391710758209 -0.5279269218444824 0.06278911978006363 0.43907099962234497 0.8962554335594177 -1.0755064487457275 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000067.txt b/3DTopia/assets/sample_data/pose/000067.txt deleted file mode 100644 index b1cd5fefa04afc735826d918a8ab7b65a4e1b4c4..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000067.txt +++ /dev/null @@ -1 +0,0 @@ --0.9656579494476318 0.11062507331371307 0.23508931696414948 -0.28210771083831787 -4.023314090773056e-07 -0.9048269987106323 0.4257793426513672 -0.5109351277351379 0.2598170340061188 0.4111570417881012 0.8737534880638123 -1.0485038757324219 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000068.txt b/3DTopia/assets/sample_data/pose/000068.txt deleted file mode 100644 index f860f797e8891165b6cc501ef4a61a21e33144c6..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000068.txt +++ /dev/null @@ -1 +0,0 @@ --0.894791305065155 0.18373513221740723 0.40692755579948425 -0.48831334710121155 -2.682209014892578e-07 -0.9114032983779907 0.41151440143585205 -0.4938172996044159 0.4464847445487976 0.36821937561035156 0.8155156970024109 -0.9786188006401062 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000069.txt b/3DTopia/assets/sample_data/pose/000069.txt deleted file mode 100644 index ec94ae96b22c3a416e27d5794ab8046f8a6d8633..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000069.txt +++ /dev/null @@ -1 +0,0 @@ --0.7882521152496338 0.24438586831092834 0.5647425055503845 -0.6776911020278931 2.9802318834981634e-08 -0.9177546501159668 0.39714789390563965 -0.47657743096351624 0.6153523921966553 0.3130526840686798 0.7234220504760742 -0.8681064248085022 -0.0 -0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000070.txt b/3DTopia/assets/sample_data/pose/000070.txt deleted file mode 100644 index 10ca2355685da194750f3114d96886af2ae6e946..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000070.txt +++ /dev/null @@ -1 +0,0 @@ --0.6502879858016968 0.29071998596191406 0.7018599510192871 -0.8422322273254395 -2.9802318834981634e-08 -0.9238795638084412 0.38268351554870605 -0.45922014117240906 0.7596877217292786 0.24885447323322296 0.6007877588272095 -0.7209452986717224 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000071.txt b/3DTopia/assets/sample_data/pose/000071.txt deleted file mode 100644 index 1d086455038440042ad1f62d0178bee54bb029e1..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000071.txt +++ /dev/null @@ -1 +0,0 @@ --0.48639875650405884 0.3216439187526703 0.8123796582221985 -0.9748559594154358 -7.450575623124678e-08 -0.9297764897346497 0.36812451481819153 -0.4417493939399719 0.873736560344696 0.1790553480386734 0.4522421360015869 -0.5426904559135437 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000072.txt b/3DTopia/assets/sample_data/pose/000072.txt deleted file mode 100644 index 253bdb8edec9e4eb40174ab5526043a7a296708e..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000072.txt +++ /dev/null @@ -1 +0,0 @@ --0.30311834812164307 0.33684486150741577 0.8914337754249573 -1.069720983505249 -9.68574909165909e-08 -0.9354440569877625 0.35347482562065125 -0.4241698682308197 0.95295250415802 0.10714472085237503 0.2835502326488495 -0.3402603268623352 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000073.txt b/3DTopia/assets/sample_data/pose/000073.txt deleted file mode 100644 index 1065ec11a970cb433f82159667976f17b869b7ad..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000073.txt +++ /dev/null @@ -1 +0,0 @@ --0.10775362700223923 0.3367651700973511 0.9354028105735779 -1.122483253479004 1.1175870895385742e-08 -0.9408808946609497 0.33873745799064636 -0.40648552775382996 0.9941775798797607 0.03650019317865372 0.10138332843780518 -0.1216600239276886 -0.0 -0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000074.txt b/3DTopia/assets/sample_data/pose/000074.txt deleted file mode 100644 index 936daa35e0a7e2920faf188120d95254364af547..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000074.txt +++ /dev/null @@ -1 +0,0 @@ -0.09190679341554642 0.3225465416908264 0.9420811533927917 -1.1304973363876343 -7.450580596923828e-09 -0.9460853934288025 0.3239174783229828 -0.3887008726596832 0.9957676529884338 -0.02977021597325802 -0.08695167303085327 0.10434205830097198 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000075.txt b/3DTopia/assets/sample_data/pose/000075.txt deleted file mode 100644 index 6459bfbf10f90125316735b8fb2ed5930c17c0bb..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000075.txt +++ /dev/null @@ -1 +0,0 @@ -0.2879031300544739 0.2959333658218384 0.910788357257843 -1.0929460525512695 -0.0 -0.9510565400123596 0.3090173006057739 -0.37082037329673767 0.9576596021652222 -0.08896704763174057 -0.27381211519241333 0.3285748362541199 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000076.txt b/3DTopia/assets/sample_data/pose/000076.txt deleted file mode 100644 index e43d0f90f4fdaa1ca35987f4ce7752e58cd5946a..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000076.txt +++ /dev/null @@ -1 +0,0 @@ -0.4724216163158417 0.25915926694869995 0.8424096703529358 -1.0108915567398071 -5.960463056453591e-08 -0.9557929039001465 0.2940405011177063 -0.3528483808040619 0.8813725709915161 -0.13891111314296722 -0.45153722167015076 0.5418452024459839 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000077.txt b/3DTopia/assets/sample_data/pose/000077.txt deleted file mode 100644 index 662781cae983bf3ae319dbed50dede17db50e6db..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000077.txt +++ /dev/null @@ -1 +0,0 @@ -0.6381067037582397 0.2148085981607437 0.7393761277198792 -0.8872514367103577 -1.4901159417490817e-08 -0.9602935910224915 0.27899107336997986 -0.3347893953323364 0.7699478268623352 -0.17802608013153076 -0.6127697825431824 0.7353238463401794 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000078.txt b/3DTopia/assets/sample_data/pose/000078.txt deleted file mode 100644 index 8e2d7a807fdfeb4e3023d3a797d0b608bfcd0a9a..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000078.txt +++ /dev/null @@ -1 +0,0 @@ -0.7783521413803101 0.1656668782234192 0.6055761575698853 -0.726691484451294 7.450580596923828e-09 -0.964557409286499 0.26387304067611694 -0.31664761900901794 0.6278279423713684 -0.20538613200187683 -0.7507652640342712 0.9009183049201965 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000079.txt b/3DTopia/assets/sample_data/pose/000079.txt deleted file mode 100644 index 24ba57c4edabd091941cd2a2fb2fda2b1cf94bcb..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000079.txt +++ /dev/null @@ -1 +0,0 @@ -0.8875669240951538 0.1145661398768425 0.4462054967880249 -0.5354465842247009 7.4505797087454084e-09 -0.9685830473899841 0.2486899495124817 -0.29842785000801086 0.4606785774230957 -0.22072899341583252 -0.8596823811531067 1.0316189527511597 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000080.txt b/3DTopia/assets/sample_data/pose/000080.txt deleted file mode 100644 index b74aa513a77caee515d08792c10e1422e2b7c072..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000080.txt +++ /dev/null @@ -1 +0,0 @@ -0.9613975286483765 0.0642356276512146 0.26756060123443604 -0.3210725784301758 -0.0 -0.9723699688911438 0.233445405960083 -0.2801344394683838 0.27516335248947144 -0.22443383932113647 -0.9348340034484863 1.1218007802963257 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000081.txt b/3DTopia/assets/sample_data/pose/000081.txt deleted file mode 100644 index e23aaf83ca0b1a6f9823145f9d23729ecc6aa851..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000081.txt +++ /dev/null @@ -1 +0,0 @@ -0.9969000816345215 0.017163122072815895 0.07678337395191193 -0.09214004129171371 1.862645371275562e-09 -0.9759168028831482 0.2181432992219925 -0.26177191734313965 0.078678198158741 -0.2174670696258545 -0.9728915691375732 1.16746985912323 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000082.txt b/3DTopia/assets/sample_data/pose/000082.txt deleted file mode 100644 index 884d4a666c7ff8885c74f4ff22f123a25e86cdb5..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000082.txt +++ /dev/null @@ -1 +0,0 @@ -0.9926593899726868 -0.024525828659534454 -0.1184307411313057 0.14211684465408325 -0.0 -0.9792227745056152 0.20278730988502502 -0.2433447241783142 -0.12094360589981079 -0.20129872858524323 -0.972034752368927 1.1664414405822754 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000083.txt b/3DTopia/assets/sample_data/pose/000083.txt deleted file mode 100644 index 22b28a7dc788c0d18d7b8fb27841332257e4a5db..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000083.txt +++ /dev/null @@ -1 +0,0 @@ -0.9488444924354553 -0.05916447937488556 -0.310151070356369 0.372181236743927 3.725290742551124e-09 -0.9822872877120972 0.187381312251091 -0.22485758364200592 -0.3157437741756439 -0.17779573798179626 -0.932037889957428 1.1184452772140503 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000084.txt b/3DTopia/assets/sample_data/pose/000084.txt deleted file mode 100644 index 328296c9245ecf6dd9f22d0f4807869a6661795c..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000084.txt +++ /dev/null @@ -1 +0,0 @@ -0.8672021627426147 -0.08561316877603531 -0.4905413091182709 0.588649570941925 -0.0 -0.9851093292236328 0.17192910611629486 -0.20631492137908936 -0.49795621633529663 -0.1490972936153412 -0.8542889356613159 1.0251468420028687 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000085.txt b/3DTopia/assets/sample_data/pose/000085.txt deleted file mode 100644 index 1d753f8a18d6c2b1704e5c8f395d2318c470f194..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000085.txt +++ /dev/null @@ -1 +0,0 @@ -0.7509872913360596 -0.10329629480838776 -0.6521871089935303 0.7826245427131653 -0.0 -0.9876883625984192 0.15643447637557983 -0.1877213567495346 -0.6603167057037354 -0.11748029291629791 -0.7417413592338562 0.8900896906852722 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000086.txt b/3DTopia/assets/sample_data/pose/000086.txt deleted file mode 100644 index dcfa47155ee42f92e895cff4f456a09cb13b9a5c..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000086.txt +++ /dev/null @@ -1 +0,0 @@ -0.6048324704170227 -0.11220713704824448 -0.7884079813957214 0.946089506149292 4.470348002882929e-08 -0.9900237321853638 0.14090131223201752 -0.16908152401447296 -0.7963526844978333 -0.08522169291973114 -0.5987984538078308 0.718558669090271 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000087.txt b/3DTopia/assets/sample_data/pose/000087.txt deleted file mode 100644 index e3874f74764b3d722fc17ec2887449e02ed64866..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000087.txt +++ /dev/null @@ -1 +0,0 @@ -0.43456563353538513 -0.1128801479935646 -0.8935384154319763 1.0722460746765137 3.725290298461914e-09 -0.9921147227287292 0.12533323466777802 -0.15039989352226257 -0.9006401896476746 -0.05446551740169525 -0.43113893270492554 0.5173667073249817 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000088.txt b/3DTopia/assets/sample_data/pose/000088.txt deleted file mode 100644 index 7f91baf2142506bb58bb4adc9b969d367b20358e..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000088.txt +++ /dev/null @@ -1 +0,0 @@ -0.24697357416152954 -0.10633499920368195 -0.9631701111793518 1.15580415725708 1.8626447051417472e-09 -0.9939608573913574 0.10973432660102844 -0.1316811591386795 -0.9690220952033997 -0.02710147760808468 -0.24548210203647614 0.29457858204841614 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000089.txt b/3DTopia/assets/sample_data/pose/000089.txt deleted file mode 100644 index 01730422d0cebff267fe7caaa136318f455b21e4..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000089.txt +++ /dev/null @@ -1 +0,0 @@ -0.049535539001226425 -0.09399279206991196 -0.9943397641181946 1.1932077407836914 6.51925802230835e-09 -0.9955620169639587 0.09410832822322845 -0.11292997747659683 -0.9987723231315613 -0.0046617123298347 -0.04931569844484329 0.05917895957827568 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000090.txt b/3DTopia/assets/sample_data/pose/000090.txt deleted file mode 100644 index b60a7c97118e2848dcfe298ebfd1c23b7bcade64..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000090.txt +++ /dev/null @@ -1 +0,0 @@ --0.14987720549106598 -0.07757285982370377 -0.98565673828125 1.1827882528305054 -0.0 -0.9969173669815063 0.07845908403396606 -0.09415092319250107 -0.9887046217918396 0.011759229004383087 0.14941516518592834 -0.1792982518672943 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000091.txt b/3DTopia/assets/sample_data/pose/000091.txt deleted file mode 100644 index a14b8cf84c53f5acc76d1b80f245aadf6c5dad75..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000091.txt +++ /dev/null @@ -1 +0,0 @@ --0.34331491589546204 -0.058974120765924454 -0.937366783618927 1.1248406171798706 3.7252885221050747e-09 -0.9980267882347107 0.06279051303863525 -0.0753486305475235 -0.939220130443573 0.021556934341788292 0.34263747930526733 -0.4111650288105011 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000092.txt b/3DTopia/assets/sample_data/pose/000092.txt deleted file mode 100644 index 2a1e764a5cd4a1ce03586527814eeeafc2d91e99..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000092.txt +++ /dev/null @@ -1 +0,0 @@ --0.5230658054351807 -0.04014846310019493 -0.8513460755348206 1.0216155052185059 3.7252898543727042e-09 -0.9988899230957031 0.04710644856095314 -0.05652773752808571 -0.8522922396659851 0.02463977038860321 0.5224851369857788 -0.6269820332527161 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000093.txt b/3DTopia/assets/sample_data/pose/000093.txt deleted file mode 100644 index 953d8bb0c4d870bdba217954835590a2acfb9e2f..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000093.txt +++ /dev/null @@ -1 +0,0 @@ --0.6819634437561035 -0.022973379120230675 -0.7310251593589783 0.8772302269935608 -9.313223969797946e-09 -0.9995065331459045 0.03141074627637863 -0.03769290819764137 -0.7313860654830933 0.02142098918557167 0.6816269159317017 -0.8179523944854736 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000094.txt b/3DTopia/assets/sample_data/pose/000094.txt deleted file mode 100644 index 077a7907fa1c1cc7701873b81a59f27a86591ddd..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000094.txt +++ /dev/null @@ -1 +0,0 @@ --0.8136734962463379 -0.009131004102528095 -0.5812501311302185 0.6975001096725464 -4.190950253502024e-09 -0.9998766779899597 0.015707319602370262 -0.018848778679966927 -0.5813218355178833 0.012780634686350822 0.8135731816291809 -0.9762880206108093 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000095.txt b/3DTopia/assets/sample_data/pose/000095.txt deleted file mode 100644 index 481ab52b37e4e23f1c5de5c779c81f73e477e395..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000095.txt +++ /dev/null @@ -1 +0,0 @@ --0.9129449129104614 -1.2935611884759817e-15 -0.4080818295478821 0.4896984398365021 4.2351617070456256e-22 -1.0 3.169856057190978e-15 -3.8038288779917735e-15 -0.4080818295478821 2.8939047931950254e-15 0.9129449129104614 -1.0955342054367065 0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000096.txt b/3DTopia/assets/sample_data/pose/000096.txt deleted file mode 100644 index 7774578fccfa2776f29df14063d1b9806ee9a20c..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000096.txt +++ /dev/null @@ -1 +0,0 @@ --0.9758200645446777 0.003433206817135215 -0.21854621171951294 0.2622557282447815 -8.381896066111949e-09 -0.9998766183853149 -0.015707315877079964 0.018848782405257225 -0.2185731828212738 -0.015327518805861473 0.9756997227668762 -1.1708403825759888 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000097.txt b/3DTopia/assets/sample_data/pose/000097.txt deleted file mode 100644 index 3e6fdbaa06f2f98f1f12b4a4cae0e24ad2a52202..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000097.txt +++ /dev/null @@ -1 +0,0 @@ --0.9997926354408264 0.0006389844347722828 -0.020337846130132675 0.024408958852291107 1.5809190756499447e-07 -0.9995064735412598 -0.03141075372695923 0.037692904472351074 -0.02034788206219673 -0.03140425682067871 0.9992992877960205 -1.1991593837738037 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000098.txt b/3DTopia/assets/sample_data/pose/000098.txt deleted file mode 100644 index c760319b66cb65b2e30cd921736ef9cc5749cf4c..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000098.txt +++ /dev/null @@ -1 +0,0 @@ --0.9839062690734863 -0.00841712299734354 0.17848443984985352 -0.2141815721988678 1.3038505386475663e-08 -0.9988898634910583 -0.04710642620921135 0.05652773752808571 0.1786828190088272 -0.04634832963347435 0.9828140139579773 -1.1793771982192993 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000099.txt b/3DTopia/assets/sample_data/pose/000099.txt deleted file mode 100644 index 2d49a8f5085e4de83c1a31dacd59e0f782855080..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000099.txt +++ /dev/null @@ -1 +0,0 @@ --0.9287950992584229 -0.023269735276699066 0.36986207962036133 -0.4438343644142151 -1.4901159417490817e-08 -0.9980266094207764 -0.06279050558805466 0.0753486156463623 0.3705933690071106 -0.05831952393054962 0.9269623160362244 -1.1123547554016113 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000100.txt b/3DTopia/assets/sample_data/pose/000100.txt deleted file mode 100644 index f9904c7007ec8ce29c9d0ef9d4b20141ed8e3a74..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000100.txt +++ /dev/null @@ -1 +0,0 @@ --0.8366557955741882 -0.04297434538602829 0.5460407733917236 -0.6552488803863525 -3.725291186640334e-09 -0.9969173669815063 -0.07845912128686905 0.09415092319250107 0.5477291941642761 -0.06564325839281082 0.8340766429901123 -1.000891923904419 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000101.txt b/3DTopia/assets/sample_data/pose/000101.txt deleted file mode 100644 index 7e85d82ccedb21034bc93d929d56b5b0f9cc4698..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000101.txt +++ /dev/null @@ -1 +0,0 @@ --0.7111608982086182 -0.06616085022687912 0.6999088525772095 -0.839890718460083 -1.4901154088420299e-08 -0.9955620169639587 -0.09410828351974487 0.11292998492717743 0.7030289173126221 -0.06692616641521454 0.7080047130584717 -0.8496062159538269 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000102.txt b/3DTopia/assets/sample_data/pose/000102.txt deleted file mode 100644 index f52b5d44b44d916edc72ac097a931fb20b69aab8..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000102.txt +++ /dev/null @@ -1 +0,0 @@ --0.557314932346344 -0.09111247956752777 0.8252866864204407 -0.9903444051742554 7.450577044210149e-09 -0.993960976600647 -0.10973427444696426 0.1316811740398407 0.8303009271621704 -0.06115657836198807 0.5539493560791016 -0.6647393703460693 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000103.txt b/3DTopia/assets/sample_data/pose/000103.txt deleted file mode 100644 index 628a79aa312adfdc54645db2f3186e6876244f3c..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000103.txt +++ /dev/null @@ -1 +0,0 @@ --0.3812505602836609 -0.115867018699646 0.9171820282936096 -1.1006184816360474 -3.725290298461914e-09 -0.9921146631240845 -0.12533321976661682 0.15039989352226257 0.9244717359542847 -0.04778335988521576 0.3782442808151245 -0.4538930654525757 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000104.txt b/3DTopia/assets/sample_data/pose/000104.txt deleted file mode 100644 index 511f249cc3bb9f7cd2c1952ddffc165697aae457..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000104.txt +++ /dev/null @@ -1 +0,0 @@ --0.1899867206811905 -0.13833492994308472 0.971992015838623 -1.1663905382156372 7.450580596923828e-09 -0.990023672580719 -0.14090122282505035 0.16908153891563416 0.9817867279052734 -0.026769354939460754 0.18809135258197784 -0.22570960223674774 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000105.txt b/3DTopia/assets/sample_data/pose/000105.txt deleted file mode 100644 index 7bf130e319aebed4e688318b892f049659653bb3..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000105.txt +++ /dev/null @@ -1 +0,0 @@ -0.008851335383951664 -0.15642881393432617 0.9876496195793152 -1.185179591178894 1.7462300494486271e-09 -0.9876883029937744 -0.15643493831157684 0.1877213567495346 0.9999608993530273 0.0013846629299223423 -0.008742359466850758 0.01049080304801464 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000106.txt b/3DTopia/assets/sample_data/pose/000106.txt deleted file mode 100644 index dd2446d7e26c97486770c44c0c16aac0b33be82f..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000106.txt +++ /dev/null @@ -1 +0,0 @@ -0.20733638107776642 -0.16819317638874054 0.9637025594711304 -1.1564432382583618 -7.450580596923828e-09 -0.9851093292236328 -0.171929270029068 0.20631493628025055 0.9782696962356567 0.035647179931402206 -0.20424900949001312 0.24509884417057037 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000107.txt b/3DTopia/assets/sample_data/pose/000107.txt deleted file mode 100644 index c63eef9320d8658f8550ed8aba13409f58845b0c..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000107.txt +++ /dev/null @@ -1 +0,0 @@ -0.39755570888519287 -0.1719369888305664 0.9013251662254333 -1.081590175628662 -2.2351741790771484e-08 -0.9822872877120972 -0.1873813271522522 0.22485756874084473 0.9175780415534973 0.07449448853731155 -0.39051389694213867 0.4686166048049927 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000108.txt b/3DTopia/assets/sample_data/pose/000108.txt deleted file mode 100644 index d18b02f5b68c2656ccca9e3fb434e603868fe18e..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000108.txt +++ /dev/null @@ -1 +0,0 @@ -0.5719255805015564 -0.16634754836559296 0.8032617568969727 -0.9639140367507935 2.9802318834981634e-08 -0.9792227745056152 -0.20278732478618622 0.2433447390794754 0.8203054070472717 0.11597928404808044 -0.5600425601005554 0.672051191329956 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000109.txt b/3DTopia/assets/sample_data/pose/000109.txt deleted file mode 100644 index 166a0b7be54186c836c494541344aa9fa9fd3c31..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000109.txt +++ /dev/null @@ -1 +0,0 @@ -0.7234946489334106 -0.1505908966064453 0.6737046241760254 -0.8084455132484436 -7.450580596923828e-09 -0.9759168028831482 -0.21814334392547607 0.26177188754081726 0.6903300285339355 0.1578255444765091 -0.7060705423355103 0.8472847938537598 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000110.txt b/3DTopia/assets/sample_data/pose/000110.txt deleted file mode 100644 index 70e94906e0987d8359ab076191051939d4a136df..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000110.txt +++ /dev/null @@ -1 +0,0 @@ -0.8462203741073608 -0.12438744306564331 0.5181108713150024 -0.6217329502105713 -0.0 -0.972369909286499 -0.2334454357624054 0.2801344394683838 0.5328330993652344 0.19754627346992493 -0.8228392004966736 0.9874071478843689 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000111.txt b/3DTopia/assets/sample_data/pose/000111.txt deleted file mode 100644 index 09e241678a4175b8286de5dbde5176e05649dbdf..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000111.txt +++ /dev/null @@ -1 +0,0 @@ -0.9352098703384399 -0.08805953711271286 0.34296926856040955 -0.41156312823295593 -0.0 -0.9685831069946289 -0.24868986010551453 0.2984278202056885 0.3540937900543213 0.23257721960544586 -0.9058284759521484 1.0869944095611572 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000112.txt b/3DTopia/assets/sample_data/pose/000112.txt deleted file mode 100644 index 890cbd2954f25f2baa3d4592b868bbbb20b918b4..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000112.txt +++ /dev/null @@ -1 +0,0 @@ -0.9869155883789062 -0.04254636913537979 0.15552331507205963 -0.18662789463996887 -7.450581485102248e-09 -0.9645574688911438 -0.26387304067611694 0.31664755940437317 0.16123799979686737 0.26042044162750244 -0.9519367218017578 1.1423239707946777 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000113.txt b/3DTopia/assets/sample_data/pose/000113.txt deleted file mode 100644 index 033ec4314be76c46782822ce4e48fdca921af492..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000113.txt +++ /dev/null @@ -1 +0,0 @@ -0.9992760419845581 0.010614471510052681 -0.036535248160362244 0.04384230822324753 9.313225746154785e-10 -0.960293710231781 -0.27899110317230225 0.3347893953323364 -0.038045912981033325 0.27878910303115845 -0.9595984220504761 1.1515181064605713 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000114.txt b/3DTopia/assets/sample_data/pose/000114.txt deleted file mode 100644 index 2f45dbf2b8a907c1cab96db926977bed501de707..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000114.txt +++ /dev/null @@ -1 +0,0 @@ -0.9717984795570374 0.06933855265378952 -0.2253885120153427 0.2704661190509796 -1.4901162970204496e-08 -0.9557930827140808 -0.29404035210609436 0.3528483510017395 -0.23581309616565704 0.2857479453086853 -0.9288381934165955 1.1146059036254883 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000115.txt b/3DTopia/assets/sample_data/pose/000115.txt deleted file mode 100644 index 9ec438c94b2f7224f4b43e7e7fc095543c906619..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000115.txt +++ /dev/null @@ -1 +0,0 @@ -0.9055783748626709 0.1310785412788391 -0.40341824293136597 0.4841018319129944 1.4901162970204496e-08 -0.9510565996170044 -0.30901703238487244 0.37082037329673767 -0.4241790473461151 0.2798391580581665 -0.8612562417984009 1.0335074663162231 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000116.txt b/3DTopia/assets/sample_data/pose/000116.txt deleted file mode 100644 index 635a38de7120930fa33c9ce5644faae62e131de3..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000116.txt +++ /dev/null @@ -1 +0,0 @@ -0.8032556176185608 0.19293642044067383 -0.5635209679603577 0.6762250065803528 -0.0 -0.9460852742195129 -0.3239175081253052 0.3887009024620056 -0.595634400844574 0.2601885497570038 -0.7599483132362366 0.9119382500648499 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000117.txt b/3DTopia/assets/sample_data/pose/000117.txt deleted file mode 100644 index 6b97f76a4e73f094109721b801d6143752ec7a3c..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000117.txt +++ /dev/null @@ -1 +0,0 @@ -0.6689097285270691 0.2517986595630646 -0.6993976831436157 0.8392772674560547 -2.9802322387695312e-08 -0.9408807754516602 -0.3387379050254822 0.40648549795150757 -0.7433436512947083 0.22658511996269226 -0.6293643712997437 0.7552372217178345 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000118.txt b/3DTopia/assets/sample_data/pose/000118.txt deleted file mode 100644 index a0059c94ccb540c18eaff754b8aa9993f6aa77dd..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000118.txt +++ /dev/null @@ -1 +0,0 @@ -0.5078965425491333 0.30448970198631287 -0.805808424949646 0.966969907283783 -2.9802322387695312e-08 -0.9354440569877625 -0.3534749150276184 0.4241698086261749 -0.8614181280136108 0.17952869832515717 -0.4751087725162506 0.5701305866241455 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000119.txt b/3DTopia/assets/sample_data/pose/000119.txt deleted file mode 100644 index 8155cd49cc7d2f1b840ec963913fdecf443e2476..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000119.txt +++ /dev/null @@ -1 +0,0 @@ -0.32663485407829285 0.34793341159820557 -0.8787785172462463 1.0545341968536377 -4.4703469370688254e-08 -0.9297763109207153 -0.3681248426437378 0.4417494237422943 -0.9451503753662109 0.12024238705635071 -0.3036973476409912 0.3644372224807739 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000120.txt b/3DTopia/assets/sample_data/pose/000120.txt deleted file mode 100644 index 453e91e44313cd67b3db21655d9c28889113920c..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000120.txt +++ /dev/null @@ -1 +0,0 @@ -0.1323518306016922 0.3793167471885681 -0.9157520532608032 1.0989023447036743 1.4901161193847656e-08 -0.9238796234130859 -0.38268330693244934 0.4592200517654419 -0.9912027716636658 0.05064881592988968 -0.1222771555185318 0.14673250913619995 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000121.txt b/3DTopia/assets/sample_data/pose/000121.txt deleted file mode 100644 index b8c0d781bee51b0bedecad3a4d3a7f1bb3696f5c..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000121.txt +++ /dev/null @@ -1 +0,0 @@ --0.06720828264951706 0.3962496519088745 -0.9156795144081116 1.0988155603408813 -3.166496043149891e-08 -0.9177546501159668 -0.39714762568473816 0.476577490568161 -0.9977388381958008 -0.0266916174441576 0.06168072298169136 -0.07401663064956665 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000122.txt b/3DTopia/assets/sample_data/pose/000122.txt deleted file mode 100644 index c4264455ebecff57680a44302b389b3e0f933d0a..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000122.txt +++ /dev/null @@ -1 +0,0 @@ --0.2640887498855591 0.39690470695495605 -0.8790467977523804 1.0548564195632935 -1.0430807861894209e-07 -0.9114033579826355 -0.4115141034126282 0.4938172996044159 -0.9644981622695923 -0.1086762398481369 0.2406913787126541 -0.28882941603660583 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000123.txt b/3DTopia/assets/sample_data/pose/000123.txt deleted file mode 100644 index 933e6ad09b0591b1e6064a4090051f2654729453..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000123.txt +++ /dev/null @@ -1 +0,0 @@ --0.45044049620628357 0.3801383674144745 -0.807835042476654 0.9694024920463562 -1.0430805730266002e-07 -0.9048270583152771 -0.42577916383743286 0.5109351277351379 -0.8928060531616211 -0.19178827106952667 0.4075707793235779 -0.489084929227829 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000124.txt b/3DTopia/assets/sample_data/pose/000124.txt deleted file mode 100644 index 4f48bf53bcde81245411808371cb73a0261919e6..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000124.txt +++ /dev/null @@ -1 +0,0 @@ --0.6188351511955261 0.3455813229084015 -0.7054193019866943 0.8465033173561096 -4.470347292340193e-08 -0.8980275392532349 -0.439939022064209 0.5279269218444824 -0.7855206727981567 -0.2722497582435608 0.5557310581207275 -0.6668769717216492 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000125.txt b/3DTopia/assets/sample_data/pose/000125.txt deleted file mode 100644 index 7b1a8475036401e325178ba2ad9184218377e036..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000125.txt +++ /dev/null @@ -1 +0,0 @@ --0.7625583410263062 0.2936951220035553 -0.576409101486206 0.6916911005973816 -4.4703462265260896e-08 -0.8910065293312073 -0.4539904296398163 0.5447885990142822 -0.6469191312789917 -0.3461942672729492 0.6794444918632507 -0.8153334856033325 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000126.txt b/3DTopia/assets/sample_data/pose/000126.txt deleted file mode 100644 index 338c3452f049a63246b7b3913ba4225f26a96e33..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000126.txt +++ /dev/null @@ -1 +0,0 @@ --0.8758810758590698 0.22578869760036469 -0.42644059658050537 0.5117289423942566 -4.470348002882929e-08 -0.8837655782699585 -0.4679297208786011 0.5615156888961792 -0.48252683877944946 -0.4098508059978485 0.774073600769043 -0.9288883209228516 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000127.txt b/3DTopia/assets/sample_data/pose/000127.txt deleted file mode 100644 index de9dc4ed1416526cc4fabeb0d5defe351813f2a9..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000127.txt +++ /dev/null @@ -1 +0,0 @@ --0.9542849063873291 0.14399497210979462 -0.2619266211986542 0.3143114745616913 3.650783639841393e-07 -0.8763066530227661 -0.4817536175251007 0.5781043767929077 -0.2988981604576111 -0.459730327129364 0.8362461924552917 -1.003495693206787 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000128.txt b/3DTopia/assets/sample_data/pose/000128.txt deleted file mode 100644 index 4afe2894717f298b381ac546ad1dd410ff91e788..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000128.txt +++ /dev/null @@ -1 +0,0 @@ --0.9946445822715759 0.05120658501982689 -0.08977368474006653 0.1077304556965828 -5.103644298287691e-07 -0.8686315417289734 -0.4954585134983063 0.5945504903793335 -0.10335099697113037 -0.49280521273612976 0.8639796376228333 -1.0367757081985474 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000129.txt b/3DTopia/assets/sample_data/pose/000129.txt deleted file mode 100644 index 92e56dd71cc479b36a5d57724ffcd5f1186b52a8..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000129.txt +++ /dev/null @@ -1 +0,0 @@ --0.9953508973121643 -0.04902723804116249 0.08289926499128342 -0.09948068112134933 6.332989528345934e-07 -0.8607419729232788 -0.5090413689613342 0.6108497381210327 0.0963117778301239 -0.5066748857498169 0.8567403554916382 -1.0280886888504028 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000130.txt b/3DTopia/assets/sample_data/pose/000130.txt deleted file mode 100644 index ecd4e0ee7c552170eae6ae7b1b9ad3efdb114cfb..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000130.txt +++ /dev/null @@ -1 +0,0 @@ --0.9563760161399841 -0.1526419222354889 0.24908897280693054 -0.2989071309566498 7.450580596923828e-09 -0.8526401519775391 -0.5224985480308533 0.6269983053207397 0.2921384572982788 -0.49970507621765137 0.8154445886611938 -0.9785334467887878 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000131.txt b/3DTopia/assets/sample_data/pose/000131.txt deleted file mode 100644 index 37207cc643e3c0f610c452f13e7e4cb727e350a1..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000131.txt +++ /dev/null @@ -1 +0,0 @@ --0.8792728781700134 -0.2552239000797272 0.4021683931350708 -0.48260238766670227 7.450576333667414e-08 -0.844327986240387 -0.5358267426490784 0.6429921984672546 0.476317822933197 -0.47113797068595886 0.7423946261405945 -0.8908737301826477 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000132.txt b/3DTopia/assets/sample_data/pose/000132.txt deleted file mode 100644 index 8c91ab4790a62fe18fb51c98bcd3267cee3b96f2..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000132.txt +++ /dev/null @@ -1 +0,0 @@ --0.767116367816925 -0.35220232605934143 0.536176860332489 -0.6434125900268555 -0.0 -0.8358073830604553 -0.5490227341651917 0.6588274240493774 0.6415076851844788 -0.4211643934249878 0.6411615014076233 -0.7693938612937927 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000133.txt b/3DTopia/assets/sample_data/pose/000133.txt deleted file mode 100644 index 663c86d135a5adaf022d0d4181a456face2bf48d..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000133.txt +++ /dev/null @@ -1 +0,0 @@ --0.6243770122528076 -0.4390561878681183 0.6460515856742859 -0.7752619981765747 5.960462345910855e-08 -0.8270806670188904 -0.5620833039283752 0.674500048160553 0.7811228632926941 -0.3509519398212433 0.5164101123809814 -0.6196922063827515 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000134.txt b/3DTopia/assets/sample_data/pose/000134.txt deleted file mode 100644 index ce2f7e85679bd8570b11952368e620fac314fdad..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000134.txt +++ /dev/null @@ -1 +0,0 @@ --0.45674604177474976 -0.5115229487419128 0.7278236150741577 -0.8733885884284973 4.470348002882929e-08 -0.8181498050689697 -0.5750052332878113 0.6900063753128052 0.8895970582962036 -0.26263129711151123 0.37368670105934143 -0.4484238922595978 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000135.txt b/3DTopia/assets/sample_data/pose/000135.txt deleted file mode 100644 index d9ee972511034a81abeb0ce52a353c6bfa118964..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000135.txt +++ /dev/null @@ -1 +0,0 @@ --0.27090585231781006 -0.5658054351806641 0.7787646651268005 -0.9345173835754395 1.4901162970204496e-08 -0.8090171217918396 -0.5877851843833923 0.7053421139717102 0.962605893611908 -0.159234419465065 0.21916747093200684 -0.26300084590911865 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000136.txt b/3DTopia/assets/sample_data/pose/000136.txt deleted file mode 100644 index 54f5dc33b1954e1c00dd58012f9a07f7837d1219..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000136.txt +++ /dev/null @@ -1 +0,0 @@ --0.0742654800415039 -0.5987615585327148 0.7974767088890076 -0.9569714665412903 -7.4505797087454084e-09 -0.7996850609779358 -0.6004195213317871 0.7205042839050293 0.9972383975982666 -0.04459046944975853 0.059388987720012665 -0.07126673310995102 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000137.txt b/3DTopia/assets/sample_data/pose/000137.txt deleted file mode 100644 index 539b9094884bbc1dfd05b284ed81410379f30ca4..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000137.txt +++ /dev/null @@ -1 +0,0 @@ -0.12533560395240784 -0.6080741286277771 0.7839240431785583 -0.9407090544700623 3.725290298461914e-09 -0.7901548743247986 -0.6129072308540344 0.7354885339736938 0.9921144247055054 0.07681908458471298 -0.09903453290462494 0.1188414990901947 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000138.txt b/3DTopia/assets/sample_data/pose/000138.txt deleted file mode 100644 index edd169da92400cf23729351c5e4b5cda4904e343..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000138.txt +++ /dev/null @@ -1 +0,0 @@ -0.3199399411678314 -0.5923787355422974 0.7394092082977295 -0.8872910737991333 -0.0 -0.7804303765296936 -0.6252428889274597 0.7502911686897278 0.9474378824234009 0.20004017651081085 -0.24969083070755005 0.2996290326118469 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000139.txt b/3DTopia/assets/sample_data/pose/000139.txt deleted file mode 100644 index ceb637943c6e219c3e9dd2250a0635aa63851ef6..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000139.txt +++ /dev/null @@ -1 +0,0 @@ -0.5017891526222229 -0.5513653755187988 0.6664860248565674 -0.7997834086418152 1.192092469182171e-07 -0.770513117313385 -0.6374239921569824 0.7649087309837341 0.8649898171424866 0.3198525011539459 -0.38663509488105774 0.4639623761177063 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000140.txt b/3DTopia/assets/sample_data/pose/000140.txt deleted file mode 100644 index 61e450b42271cc785ec348dc49a5a61705a33b8c..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000140.txt +++ /dev/null @@ -1 +0,0 @@ -0.6636338233947754 -0.4858245551586151 0.5688273906707764 -0.6825927495956421 8.940696716308594e-08 -0.7604058980941772 -0.6494481563568115 0.7793376445770264 0.7480576038360596 0.43099576234817505 -0.5046311020851135 0.6055574417114258 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000141.txt b/3DTopia/assets/sample_data/pose/000141.txt deleted file mode 100644 index 127403537b562462ed6dc6f8b739ecae8b1d2e5a..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000141.txt +++ /dev/null @@ -1 +0,0 @@ -0.7990213632583618 -0.3976486325263977 0.4510436952114105 -0.5412524342536926 2.9802318834981634e-08 -0.7501109838485718 -0.66131192445755 0.793574333190918 0.6013026237487793 0.5284023284912109 -0.5993546843528748 0.7192258834838867 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000142.txt b/3DTopia/assets/sample_data/pose/000142.txt deleted file mode 100644 index 8e60c3f744ad13545f419459d0d546dac43680db..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000142.txt +++ /dev/null @@ -1 +0,0 @@ -0.9025545120239258 -0.2897827625274658 0.31846699118614197 -0.38216039538383484 -2.9802322387695312e-08 -0.7396310567855835 -0.6730126142501831 0.8076150417327881 0.43057551980018616 0.607430636882782 -0.6675573587417603 0.8010690212249756 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000143.txt b/3DTopia/assets/sample_data/pose/000143.txt deleted file mode 100644 index 287c8aa1d607520837208c984c89f47387edd729..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000143.txt +++ /dev/null @@ -1 +0,0 @@ -0.970105767250061 -0.16612771153450012 0.17690807580947876 -0.21228961646556854 7.450580596923828e-09 -0.728968620300293 -0.6845470666885376 0.8214565515518188 0.24268268048763275 0.6640830039978027 -0.707176685333252 0.8486118316650391 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000144.txt b/3DTopia/assets/sample_data/pose/000144.txt deleted file mode 100644 index be8c242941a09da32614d3bb1b80f8723a7f8c48..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000144.txt +++ /dev/null @@ -1 +0,0 @@ -0.9989818334579468 -0.03139603137969971 0.03239819407463074 -0.038877833634614944 1.862645371275562e-09 -0.7181263566017151 -0.6959128975868225 0.8350954055786133 0.04511489346623421 0.6952042579650879 -0.7173951864242554 0.8608742952346802 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000145.txt b/3DTopia/assets/sample_data/pose/000145.txt deleted file mode 100644 index 03d849a0a2e74ff583ac675767c2467801cd8f02..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000145.txt +++ /dev/null @@ -1 +0,0 @@ -0.9880316853523254 0.1090722382068634 -0.1090722382068634 0.13088670372962952 -0.0 -0.7071068286895752 -0.7071068286895752 0.848528265953064 -0.15425144135951996 0.6986439228057861 -0.6986439228057861 0.8383726477622986 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000146.txt b/3DTopia/assets/sample_data/pose/000146.txt deleted file mode 100644 index 76962ce71616e1212648a9cc68c9df8d1af1bbb0..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000146.txt +++ /dev/null @@ -1 +0,0 @@ -0.9376917481422424 0.2495262175798416 -0.24180757999420166 0.2901691794395447 2.980232594040899e-08 -0.6959127187728882 -0.7181264758110046 0.8617516160011292 -0.3474683463573456 0.6733812093734741 -0.6525515913963318 0.7830621004104614 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000147.txt b/3DTopia/assets/sample_data/pose/000147.txt deleted file mode 100644 index d94caf48ba11227454895acbe160a5c35fe08b24..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000147.txt +++ /dev/null @@ -1 +0,0 @@ -0.8499690294265747 0.38404446840286255 -0.3606417775154114 0.4327700436115265 -1.4901161193847656e-08 -0.6845471262931824 -0.728968620300293 0.8747624158859253 -0.5268326997756958 0.619600772857666 -0.5818438529968262 0.6982126832008362 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000148.txt b/3DTopia/assets/sample_data/pose/000148.txt deleted file mode 100644 index 0521e665ca29959ad23ce635da508f1e673821ce..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000148.txt +++ /dev/null @@ -1 +0,0 @@ -0.7283607721328735 0.5067906975746155 -0.46114397048950195 0.553372859954834 2.9802322387695312e-08 -0.6730124950408936 -0.7396311163902283 0.8875573873519897 -0.6851938366889954 0.5387182831764221 -0.4901959300041199 0.588235080242157 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000149.txt b/3DTopia/assets/sample_data/pose/000149.txt deleted file mode 100644 index 247211ba513d96f8a8bbfd06470b338387f490b6..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000149.txt +++ /dev/null @@ -1 +0,0 @@ -0.5777150988578796 0.6122695207595825 -0.5397883057594299 0.6477459669113159 5.960465188081798e-08 -0.6613119840621948 -0.7501110434532166 0.9001331925392151 -0.8162385821342468 0.4333503842353821 -0.38204991817474365 0.4584598243236542 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000150.txt b/3DTopia/assets/sample_data/pose/000150.txt deleted file mode 100644 index 6e4259f98d11229016597f447fda80f832b2ebd5..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000150.txt +++ /dev/null @@ -1 +0,0 @@ -0.4040374457836151 0.6955756545066833 -0.5940772891044617 0.7128933072090149 -2.2351731843173184e-07 -0.6494478583335876 -0.760405957698822 0.912487268447876 -0.9147422909736633 0.30723246932029724 -0.26240116357803345 0.3148817718029022 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000151.txt b/3DTopia/assets/sample_data/pose/000151.txt deleted file mode 100644 index e51fabb814d266646dedf7cca87b970ef7a0c5a1..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000151.txt +++ /dev/null @@ -1 +0,0 @@ -0.21425242722034454 0.7526208758354187 -0.622621476650238 0.7471462488174438 -5.215405352032576e-08 -0.6374234557151794 -0.7705134749412537 0.924615740776062 -0.9767781496047974 0.1650843769311905 -0.1365695297718048 0.16388361155986786 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000152.txt b/3DTopia/assets/sample_data/pose/000152.txt deleted file mode 100644 index 02f0d719f3488d06de0c57f81847788a949e7740..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000152.txt +++ /dev/null @@ -1 +0,0 @@ -0.01592571847140789 0.7803348898887634 -0.6251589059829712 0.7501961588859558 -6.938351759799843e-08 -0.6252382397651672 -0.7804338932037354 0.936516523361206 -0.9998730421066284 0.01242893747985363 -0.009957351721823215 0.01194903813302517 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000153.txt b/3DTopia/assets/sample_data/pose/000153.txt deleted file mode 100644 index b5446b2e71626b4e006e7f84b339e1a5252fb931..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000153.txt +++ /dev/null @@ -1 +0,0 @@ --0.18303552269935608 0.7768062353134155 -0.6025526523590088 0.7230633497238159 -1.043080928297968e-07 -0.6129070520401001 -0.7901548743247986 0.9481860995292664 -0.9831060767173767 -0.14462649822235107 0.11218380182981491 -0.13462068140506744 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000154.txt b/3DTopia/assets/sample_data/pose/000154.txt deleted file mode 100644 index 03f3501e10aae7752f61e4b2bf11395797ab6693..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000154.txt +++ /dev/null @@ -1 +0,0 @@ --0.3747004270553589 0.7414241433143616 -0.5566772818565369 0.6680126190185547 -4.470347292340193e-08 -0.6004204750061035 -0.799684464931488 0.9596216082572937 -0.9271458387374878 -0.2996421754360199 0.2249777913093567 -0.26997312903404236 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000155.txt b/3DTopia/assets/sample_data/pose/000155.txt deleted file mode 100644 index 9adba264cdd3fa5131f7e00537dbbb41cd4b2341..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000155.txt +++ /dev/null @@ -1 +0,0 @@ --0.5514266490936279 0.6749008893966675 -0.49034419655799866 0.5884130001068115 1.4901161193847656e-08 -0.5877853035926819 -0.80901700258255 0.970820426940918 -0.8342233896255493 -0.44611358642578125 0.32412049174308777 -0.38894450664520264 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000156.txt b/3DTopia/assets/sample_data/pose/000156.txt deleted file mode 100644 index 083b436903364a1b52b5ef97e083c72d298f50ae..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000156.txt +++ /dev/null @@ -1 +0,0 @@ --0.7061696648597717 0.5792850852012634 -0.40712860226631165 0.48855406045913696 1.4901168299275014e-08 -0.5750053524971008 -0.818149745464325 0.9817796945571899 -0.7080430388450623 -0.5777523517608643 0.4060514271259308 -0.48726147413253784 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000157.txt b/3DTopia/assets/sample_data/pose/000157.txt deleted file mode 100644 index 0a6b93de25e0422c2661ad190d8bbd0cfadaf003..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000157.txt +++ /dev/null @@ -1 +0,0 @@ --0.8327592015266418 0.4579005837440491 -0.3111884593963623 0.37342676520347595 -3.7252868878567824e-07 -0.5620833039283752 -0.827080488204956 0.9924965500831604 -0.553634524345398 -0.6887590885162354 0.4680800437927246 -0.5616962909698486 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000158.txt b/3DTopia/assets/sample_data/pose/000158.txt deleted file mode 100644 index f32d22f520ff6c3fa804bc923787587db83ff477..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000158.txt +++ /dev/null @@ -1 +0,0 @@ --0.9261496067047119 0.3152289092540741 -0.2070665806531906 0.24848027527332306 -7.45057349149647e-08 -0.5490228533744812 -0.835807204246521 1.0029689073562622 -0.3771549463272095 -0.7740828990936279 0.5084771513938904 -0.6101730465888977 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000159.txt b/3DTopia/assets/sample_data/pose/000159.txt deleted file mode 100644 index d059c9453bb4b6d6036e6357d94b15aae3cc8035..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000159.txt +++ /dev/null @@ -1 +0,0 @@ --0.9826175570487976 0.15674014389514923 -0.09946972131729126 0.11936488747596741 -4.917378646496218e-07 -0.5358267426490784 -0.8443277478218079 1.0131934881210327 -0.18563862144947052 -0.8296516537666321 0.5265126824378967 -0.6318156123161316 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000160.txt b/3DTopia/assets/sample_data/pose/000160.txt deleted file mode 100644 index 47ea199c68e79262de73bd5b2f7a84c18a7c2b2a..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000160.txt +++ /dev/null @@ -1 +0,0 @@ --0.9999117851257324 -0.011320343241095543 0.006937115918844938 -0.008324497379362583 -0.0 -0.522498607635498 -0.8526401519775391 1.0231682062149048 0.013276812620460987 -0.8525649905204773 0.5224524140357971 -0.626943051815033 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000161.txt b/3DTopia/assets/sample_data/pose/000161.txt deleted file mode 100644 index 30010e886c7d3b90c795b97930ecd7b672f6843f..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000161.txt +++ /dev/null @@ -1 +0,0 @@ --0.9773425459861755 -0.18218766152858734 0.10774486511945724 -0.12929487228393555 5.662440685227921e-07 -0.5090415477752686 -0.8607418537139893 1.0328903198242188 0.2116631716489792 -0.8412397503852844 0.49750807881355286 -0.5970093607902527 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000162.txt b/3DTopia/assets/sample_data/pose/000162.txt deleted file mode 100644 index 18de1b495916f082a77529102796b17272bfb15b..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000162.txt +++ /dev/null @@ -1 +0,0 @@ --0.9158093929290771 -0.3488530218601227 0.1989825814962387 -0.2387789785861969 -2.6822073095900123e-07 -0.49545881152153015 -0.8686313033103943 1.0423578023910522 0.40161237120628357 -0.7955010533332825 0.45374563336372375 -0.5444949865341187 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000163.txt b/3DTopia/assets/sample_data/pose/000163.txt deleted file mode 100644 index 0ffb1eb0f1f1b14928f8608d55d7caf394f7dfd6..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000163.txt +++ /dev/null @@ -1 +0,0 @@ --0.8177659511566162 -0.5043586492538452 0.2772735059261322 -0.3327282667160034 1.4901154088420299e-08 -0.48175370693206787 -0.8763065338134766 1.051567792892456 0.575550377368927 -0.7166138887405396 0.39396175742149353 -0.47275421023368835 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000164.txt b/3DTopia/assets/sample_data/pose/000164.txt deleted file mode 100644 index d6dbce3289f8ad6e960998dd2bf14f9b2d1d3aa7..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000164.txt +++ /dev/null @@ -1 +0,0 @@ --0.6871210336685181 -0.6420933604240417 0.33997073769569397 -0.4079653024673462 3.1292415769712534e-07 -0.4679299294948578 -0.8837653398513794 1.0605188608169556 0.7265424728393555 -0.6072539687156677 0.3215245306491852 -0.385829359292984 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000165.txt b/3DTopia/assets/sample_data/pose/000165.txt deleted file mode 100644 index 9fcf6f650fa615f11a899719603cd1ce69db335e..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000165.txt +++ /dev/null @@ -1 +0,0 @@ --0.5290825366973877 -0.7560816407203674 0.3852425813674927 -0.4622913897037506 1.3411039390121005e-07 -0.4539903998374939 -0.8910064697265625 1.069207787513733 0.8485701680183411 -0.47141605615615845 0.24019837379455566 -0.28823819756507874 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000166.txt b/3DTopia/assets/sample_data/pose/000166.txt deleted file mode 100644 index 87b4b3e158ffe731093160489ff82a88974dddf2..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000166.txt +++ /dev/null @@ -1 +0,0 @@ --0.3499513566493988 -0.8412432074546814 0.4121206998825073 -0.49454501271247864 2.0861612881617475e-07 -0.4399392604827881 -0.8980274200439453 1.0776331424713135 0.936767578125 -0.3142661154270172 0.15395735204219818 -0.18474876880645752 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000167.txt b/3DTopia/assets/sample_data/pose/000167.txt deleted file mode 100644 index 1570aaacef31dad805db29f459e59a1d671fedfb..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000167.txt +++ /dev/null @@ -1 +0,0 @@ --0.15686866641044617 -0.8936248421669006 0.42050766944885254 -0.5046095252037048 8.940696005765858e-08 -0.4257791042327881 -0.9048271179199219 1.0857925415039062 0.9876194596290588 -0.14193904399871826 0.06679143011569977 -0.08014968037605286 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000168.txt b/3DTopia/assets/sample_data/pose/000168.txt deleted file mode 100644 index 28e1bdfd3ed2fa47360b21a91ddf4dc100c462df..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000168.txt +++ /dev/null @@ -1 +0,0 @@ -0.04246791824698448 -0.910581648349762 0.4111417531967163 -0.4933716952800751 2.60770320892334e-08 -0.41151300072669983 -0.9114038348197937 1.0936838388442993 0.9990978240966797 0.03870541974902153 -0.017476091161370277 0.020971447229385376 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000169.txt b/3DTopia/assets/sample_data/pose/000169.txt deleted file mode 100644 index b9de0ca4e16008afcb9074467e065abac6a06e1f..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000169.txt +++ /dev/null @@ -1 +0,0 @@ -0.2401116043329239 -0.890906035900116 0.3855292797088623 -0.462635338306427 -1.4901161193847656e-08 -0.3971477150917053 -0.9177546501159668 1.1013054847717285 0.970745325088501 0.2203635573387146 -0.09535978734493256 0.11443176120519638 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000170.txt b/3DTopia/assets/sample_data/pose/000170.txt deleted file mode 100644 index ca76a0491d972790bc92a6ff2e60ddd24604f2c2..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000170.txt +++ /dev/null @@ -1 +0,0 @@ -0.42818257212638855 -0.834902822971344 0.34582775831222534 -0.41499361395835876 -2.9802318834981634e-08 -0.3826831877231598 -0.9238796234130859 1.1086554527282715 0.9036921262741089 0.39558911323547363 -0.1638583242893219 0.1966300755739212 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000171.txt b/3DTopia/assets/sample_data/pose/000171.txt deleted file mode 100644 index d018746d105d9ca7bc289bd82187832022b2a396..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000171.txt +++ /dev/null @@ -1 +0,0 @@ -0.5991833806037903 -0.744390070438385 0.29472458362579346 -0.35366982221603394 1.4901157641133977e-08 -0.3681242763996124 -0.9297765493392944 1.1157318353652954 0.8006117343902588 0.557106614112854 -0.22057394683361053 0.26468899846076965 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000172.txt b/3DTopia/assets/sample_data/pose/000172.txt deleted file mode 100644 index 02c9cdd36ee85a463ca7c1fd981ecd6b5a8c12f9..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000172.txt +++ /dev/null @@ -1 +0,0 @@ -0.7462967038154602 -0.6226441264152527 0.23527754843235016 -0.282333105802536 2.9802318834981634e-08 -0.35347476601600647 -0.9354439973831177 1.1225329637527466 0.6656134724617004 0.6981187462806702 -0.26379701495170593 0.31655651330947876 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000173.txt b/3DTopia/assets/sample_data/pose/000173.txt deleted file mode 100644 index 0174b2409348ae3a8a2ca1c7cf957d847ee5a17f..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000173.txt +++ /dev/null @@ -1 +0,0 @@ -0.8636573553085327 -0.47427839040756226 0.1707507073879242 -0.20490090548992157 -0.0 -0.3387379050254822 -0.9408807158470154 1.1290568113327026 0.5040791630744934 0.8125985264778137 -0.29255348443984985 0.3510642647743225 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000174.txt b/3DTopia/assets/sample_data/pose/000174.txt deleted file mode 100644 index 591a8dee55f6948e83a456fa86296bf3550aa528..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000174.txt +++ /dev/null @@ -1 +0,0 @@ -0.9465868473052979 -0.30506426095962524 0.10444684326648712 -0.12533621490001678 1.4901162970204496e-08 -0.32391735911369324 -0.9460853934288025 1.1353024244308472 0.3224489986896515 0.8955519795417786 -0.306615948677063 0.3679392337799072 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000175.txt b/3DTopia/assets/sample_data/pose/000175.txt deleted file mode 100644 index e03ff318cf1447e40b5c296bba185eb54fe3663a..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000175.txt +++ /dev/null @@ -1 +0,0 @@ -0.9917788505554199 -0.1217007040977478 0.03954293206334114 -0.04745154082775116 -3.725290298461914e-09 -0.3090168833732605 -0.9510565400123596 1.141268014907837 0.12796369194984436 0.9432377815246582 -0.3064764142036438 0.36777186393737793 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000176.txt b/3DTopia/assets/sample_data/pose/000176.txt deleted file mode 100644 index a03b53267607cc86cfb041843ebf308eb288e916..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000176.txt +++ /dev/null @@ -1 +0,0 @@ -0.997431755065918 0.06845686584711075 -0.021060077473521233 0.025272099301218987 -0.0 -0.2940402626991272 -0.955793023109436 1.146951675415039 -0.07162310928106308 0.9533383250236511 -0.2932851016521454 0.35194218158721924 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000177.txt b/3DTopia/assets/sample_data/pose/000177.txt deleted file mode 100644 index f577381efeecf95d9bb59657c115ba47f8ceb97a..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000177.txt +++ /dev/null @@ -1 +0,0 @@ -0.9633201360702515 0.257699191570282 -0.07486848533153534 0.08984224498271942 -6.705520405603238e-08 -0.27899086475372314 -0.9602935314178467 1.1523525714874268 -0.26835453510284424 0.9250701665878296 -0.26875752210617065 0.3225092887878418 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000178.txt b/3DTopia/assets/sample_data/pose/000178.txt deleted file mode 100644 index 8baf4f70fb1b4b8c16f7f13212a36eff7ffd40e7..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000178.txt +++ /dev/null @@ -1 +0,0 @@ -0.8908040523529053 0.4382828176021576 -0.1199006661772728 0.143880695104599 -0.0 -0.2638731598854065 -0.9645572900772095 1.1574686765670776 -0.45438748598098755 0.8592315912246704 -0.23505929112434387 0.2820710241794586 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000179.txt b/3DTopia/assets/sample_data/pose/000179.txt deleted file mode 100644 index 79dd4508d344313742c389fbc5eb1794defab2a7..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000179.txt +++ /dev/null @@ -1 +0,0 @@ -0.7827745079994202 0.6027545928955078 -0.15476103127002716 0.1857132613658905 -1.4901161193847656e-08 -0.24868980050086975 -0.9685832262039185 1.1622997522354126 -0.6223054528236389 0.7581822276115417 -0.1946680247783661 0.23360170423984528 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000180.txt b/3DTopia/assets/sample_data/pose/000180.txt deleted file mode 100644 index 14c85ed729cb52a1e206fb6e5c39309874fe9426..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000180.txt +++ /dev/null @@ -1 +0,0 @@ -0.6435381174087524 0.7442656755447388 -0.17868220806121826 0.21441881358623505 -5.960463766996327e-08 -0.23344513773918152 -0.972369909286499 1.1668438911437988 -0.7654140591621399 0.625757098197937 -0.15023081004619598 0.18027718365192413 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000181.txt b/3DTopia/assets/sample_data/pose/000181.txt deleted file mode 100644 index a668f50004a5a71ff3758a9f2890a8dd86d4458f..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000181.txt +++ /dev/null @@ -1 +0,0 @@ -0.4786456823348999 0.8568629026412964 -0.1915312558412552 0.2298377901315689 -1.4901159417490817e-08 -0.21814295649528503 -0.9759168028831482 1.1711000204086304 -0.8780080676078796 0.46711835265159607 -0.10441319644451141 0.12529604136943817 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000182.txt b/3DTopia/assets/sample_data/pose/000182.txt deleted file mode 100644 index 314070f0cd1522f64866ede307832dab2294bdcc..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000182.txt +++ /dev/null @@ -1 +0,0 @@ -0.2946713864803314 0.9357439875602722 -0.19378307461738586 0.23253990709781647 2.607702853651972e-08 -0.2027871459722519 -0.9792227745056152 1.17506742477417 -0.9555985927581787 0.28854894638061523 -0.05975561589002609 0.07170679420232773 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000183.txt b/3DTopia/assets/sample_data/pose/000183.txt deleted file mode 100644 index 366bcc215c52775da6e8e4544bc05fedaa1d21be..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000183.txt +++ /dev/null @@ -1 +0,0 @@ -0.09894955158233643 0.9774670600891113 -0.186459481716156 0.22375409305095673 4.6566128730773926e-08 -0.18737904727458954 -0.9822876453399658 1.1787446737289429 -0.9950924515724182 0.09719691425561905 -0.01854112185537815 0.022249583154916763 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000184.txt b/3DTopia/assets/sample_data/pose/000184.txt deleted file mode 100644 index a12478cd73cfad215240a993b54e9e0cd6fe16ff..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000184.txt +++ /dev/null @@ -1 +0,0 @@ --0.10071694850921631 0.9801000952720642 -0.17105454206466675 0.2052658498287201 -6.89178563106907e-08 -0.17192883789539337 -0.985109269618988 1.1821311712265015 -0.9949150085449219 -0.0992172583937645 0.01731616072356701 -0.0207794401794672 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000185.txt b/3DTopia/assets/sample_data/pose/000185.txt deleted file mode 100644 index 6622c985b9bf721d1e955e2e63acf744a0c6770d..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000185.txt +++ /dev/null @@ -1 +0,0 @@ --0.29636847972869873 0.9433149099349976 -0.14940685033798218 0.17928773164749146 -1.527368311826649e-07 -0.15643510222434998 -0.9876880645751953 1.1852260828018188 -0.9550734162330627 -0.2927198112010956 0.046362414956092834 -0.05563471466302872 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000186.txt b/3DTopia/assets/sample_data/pose/000186.txt deleted file mode 100644 index d8204fa64ab060476fc74f601d18278867097d68..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000186.txt +++ /dev/null @@ -1 +0,0 @@ --0.4802047610282898 0.8684056997299194 -0.12359234690666199 0.14831088483333588 -1.527369306586479e-07 -0.14090117812156677 -0.9900237321853638 1.188028335571289 -0.8771565556526184 -0.4754140377044678 0.06766162067651749 -0.0811937153339386 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000187.txt b/3DTopia/assets/sample_data/pose/000187.txt deleted file mode 100644 index c5a6e6b7b897650d9f808da3b0f6bc606746ee74..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000187.txt +++ /dev/null @@ -1 +0,0 @@ --0.6448968648910522 0.7582430243492126 -0.0957883819937706 0.11494607478380203 -1.4156101713069802e-07 -0.12533338367938995 -0.9921146631240845 1.190537691116333 -0.7642695903778076 -0.6398116946220398 0.08082716166973114 -0.0969923734664917 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000188.txt b/3DTopia/assets/sample_data/pose/000188.txt deleted file mode 100644 index da3d3f26f0049ad7d135f80d80876ffc78f99cca..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000188.txt +++ /dev/null @@ -1 +0,0 @@ --0.783878743648529 0.6171642541885376 -0.06813523918390274 0.08176270127296448 -3.2782554626464844e-07 -0.10973420739173889 -0.9939610362052917 1.1927533149719238 -0.6209139823913574 -0.7791448831558228 0.08601849526166916 -0.1032220870256424 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000189.txt b/3DTopia/assets/sample_data/pose/000189.txt deleted file mode 100644 index aa24f22623a4f6c44d69320e7361fbe5d1dcff29..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000189.txt +++ /dev/null @@ -1 +0,0 @@ --0.8916096687316895 0.45079466700553894 -0.04261254519224167 0.05113517865538597 -8.19563368281706e-08 -0.09410841017961502 -0.9955618381500244 1.1946742534637451 -0.45280423760414124 -0.8876528143882751 0.08390773087739944 -0.10068946331739426 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000190.txt b/3DTopia/assets/sample_data/pose/000190.txt deleted file mode 100644 index 1c7b725f4f8bf00720fef46d91da5ea9c1df6038..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000190.txt +++ /dev/null @@ -1 +0,0 @@ --0.9637949466705322 0.2658207416534424 -0.020919324830174446 0.02510467730462551 -1.2833611435780767e-06 -0.07845940440893173 -0.9969170093536377 1.196300745010376 -0.26664260029792786 -0.9608241319656372 0.07561864703893661 -0.09074220806360245 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000191.txt b/3DTopia/assets/sample_data/pose/000191.txt deleted file mode 100644 index 016bad1f7081ba063ced918647343f73f0ba3bca..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000191.txt +++ /dev/null @@ -1 +0,0 @@ --0.9975574016571045 0.06970969587564468 -0.004386159125715494 0.005263194907456636 3.86498697935167e-07 -0.06279079616069794 -0.9980266094207764 1.1976321935653687 -0.06984754651784897 -0.9955891370773315 0.06263715028762817 -0.07516458630561829 -0.0 0.0 0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000192.txt b/3DTopia/assets/sample_data/pose/000192.txt deleted file mode 100644 index a1350253ca0a3fab00909d501c9b03c75a81a618..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000192.txt +++ /dev/null @@ -1 +0,0 @@ --0.9915500283241272 -0.1295798271894455 0.0061101061291992664 -0.007333071436733007 7.31088050542894e-07 -0.0471065416932106 -0.9988898634910583 1.1986677646636963 0.12972381711006165 -0.9904493689537048 0.04670844227075577 -0.05605006963014603 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000193.txt b/3DTopia/assets/sample_data/pose/000193.txt deleted file mode 100644 index c48c861782fa785615b975d66ac418dbad46d76a..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000193.txt +++ /dev/null @@ -1 +0,0 @@ --0.9460127353668213 -0.32396966218948364 0.0101803382858634 -0.012217401526868343 8.381903739973495e-07 -0.03141067922115326 -0.9995065927505493 1.199407935142517 0.324129581451416 -0.9455459117889404 0.02971518225967884 -0.03565797209739685 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/assets/sample_data/pose/000194.txt b/3DTopia/assets/sample_data/pose/000194.txt deleted file mode 100644 index addc79d52f19d732eb2b17c1eb4bcca99088534b..0000000000000000000000000000000000000000 --- a/3DTopia/assets/sample_data/pose/000194.txt +++ /dev/null @@ -1 +0,0 @@ --0.8627605438232422 -0.5055502653121948 0.007941310293972492 -0.009530180133879185 6.407498744920304e-07 -0.01570744998753071 -0.9998766183853149 1.1998521089553833 0.5056126117706299 -0.8626541495323181 0.013552011922001839 -0.016261987388134003 -0.0 0.0 -0.0 1.0 diff --git a/3DTopia/configs/default.yaml b/3DTopia/configs/default.yaml deleted file mode 100644 index 9fc30020f42cdc132b73509b0c48f8a9f58910e0..0000000000000000000000000000000000000000 --- a/3DTopia/configs/default.yaml +++ /dev/null @@ -1,72 +0,0 @@ -model: - target: ldm.models.diffusion.ddpm.LatentDiffusion - params: - linear_start: 0.00085 - linear_end: 0.0120 - shift_scale: 2 - num_timesteps_cond: 1 - log_every_t: 200 - timesteps: 1000 - first_stage_key: "triplane" - cond_stage_key: "caption" - image_size: 32 - channels: 8 - cond_stage_trainable: false - conditioning_key: crossattn - monitor: val/loss_simple_ema - scale_factor: 0.5147210212065061 - use_ema: False - learning_rate: 5e-5 - - unet_config: - target: ldm.modules.diffusionmodules.openaimodel.UNetModel - params: - image_size: 32 - in_channels: 8 - out_channels: 8 - model_channels: 320 - attention_resolutions: [4, 2, 1] - num_res_blocks: 2 - channel_mult: [ 1, 2, 4, 4 ] - num_heads: 8 - use_spatial_transformer: True - context_dim: 768 - transformer_depth: 1 - use_checkpoint: True - legacy: False - - first_stage_config: - target: model.triplane_vae.AutoencoderKLRollOut - params: - embed_dim: 8 - learning_rate: 1e-5 - norm: False - renderer_type: eg3d - ddconfig: - double_z: true - z_channels: 8 - resolution: 256 - in_channels: 32 - out_ch: 32 - ch: 128 - ch_mult: - - 2 - - 4 - - 4 - - 8 - num_res_blocks: 2 - attn_resolutions: [32] - dropout: 0.0 - lossconfig: - kl_weight: 1e-5 - rec_weight: 1 - latent_tv_weight: 2e-3 - renderer_config: - rgbnet_dim: -1 - rgbnet_width: 128 - sigma_dim: 12 - c_dim: 20 - - cond_stage_config: - target: ldm.modules.encoders.modules.FrozenCLIPTextEmbedder - diff --git a/3DTopia/environment.yml b/3DTopia/environment.yml deleted file mode 100644 index 2415cf057c34303455a4843b7db3b96a71955666..0000000000000000000000000000000000000000 --- a/3DTopia/environment.yml +++ /dev/null @@ -1,150 +0,0 @@ -name: 3dtopia -channels: - - pytorch - - anaconda - - conda-forge - - defaults -dependencies: - - _libgcc_mutex=0.1=main - - _openmp_mutex=5.1=1_gnu - - blas=1.0=mkl - - brotli=1.0.9=h166bdaf_7 - - brotli-bin=1.0.9=h166bdaf_7 - - bzip2=1.0.8=h7f98852_4 - - ca-certificates=2023.5.7=hbcca054_0 - - certifi=2023.5.7=pyhd8ed1ab_0 - - charset-normalizer=3.1.0=pyhd8ed1ab_0 - - colorama=0.4.6=pyhd8ed1ab_0 - - cudatoolkit=11.3.1=h9edb442_10 - - ffmpeg=4.3.2=hca11adc_0 - - freetype=2.10.4=h0708190_1 - - fsspec=2023.5.0=pyh1a96a4e_0 - - gmp=6.2.1=h58526e2_0 - - gnutls=3.6.13=h85f3911_1 - - idna=3.4=pyhd8ed1ab_0 - - intel-openmp=2021.4.0=h06a4308_3561 - - jpeg=9e=h166bdaf_1 - - lame=3.100=h7f98852_1001 - - lcms2=2.12=hddcbb42_0 - - ld_impl_linux-64=2.38=h1181459_1 - - libbrotlicommon=1.0.9=h166bdaf_7 - - libbrotlidec=1.0.9=h166bdaf_7 - - libbrotlienc=1.0.9=h166bdaf_7 - - libffi=3.4.4=h6a678d5_0 - - libgcc-ng=11.2.0=h1234567_1 - - libgomp=11.2.0=h1234567_1 - - libpng=1.6.37=h21135ba_2 - - libstdcxx-ng=11.2.0=h1234567_1 - - libtiff=4.2.0=hecacb30_2 - - libwebp-base=1.2.2=h7f98852_1 - - lightning-utilities=0.8.0=pyhd8ed1ab_0 - - lz4-c=1.9.3=h9c3ff4c_1 - - mkl=2021.4.0=h06a4308_640 - - mkl-service=2.4.0=py38h95df7f1_0 - - mkl_fft=1.3.1=py38h8666266_1 - - mkl_random=1.2.2=py38h1abd341_0 - - ncurses=6.4=h6a678d5_0 - - nettle=3.6=he412f7d_0 - - numpy=1.24.3=py38h14f4228_0 - - numpy-base=1.24.3=py38h31eccc5_0 - - olefile=0.46=pyh9f0ad1d_1 - - openh264=2.1.1=h780b84a_0 - - openjpeg=2.4.0=hb52868f_1 - - openssl=1.1.1u=h7f8727e_0 - - packaging=23.1=pyhd8ed1ab_0 - - pip=23.0.1=py38h06a4308_0 - - pixman-cos6-x86_64=0.32.8=4 - - pysocks=1.7.1=pyha2e5f31_6 - - python=3.8.16=h7a1cb2a_3 - - python_abi=3.8=2_cp38 - - pytorch=1.12.0=py3.8_cuda11.3_cudnn8.3.2_0 - - pytorch-lightning=2.0.2=pyhd8ed1ab_0 - - pytorch-mutex=1.0=cuda - - pyyaml=6.0=py38h0a891b7_4 - - readline=8.2=h5eee18b_0 - - requests=2.31.0=pyhd8ed1ab_0 - - setuptools=67.8.0=py38h06a4308_0 - - six=1.16.0=pyh6c4a22f_0 - - sqlite=3.41.2=h5eee18b_0 - - tk=8.6.12=h1ccaba5_0 - - torchaudio=0.12.0=py38_cu113 - - torchmetrics=0.11.4=pyhd8ed1ab_0 - - torchvision=0.13.0=py38_cu113 - - tqdm=4.65.0=pyhd8ed1ab_1 - - typing_extensions=4.6.3=pyha770c72_0 - - urllib3=2.0.2=pyhd8ed1ab_0 - - wheel=0.38.4=py38h06a4308_0 - - x264=1!161.3030=h7f98852_1 - - xorg-x11-server-common-cos6-x86_64=1.17.4=4 - - xorg-x11-server-xvfb-cos6-x86_64=1.17.4=4 - - xz=5.4.2=h5eee18b_0 - - yaml=0.2.5=h7f98852_2 - - zlib=1.2.13=h5eee18b_0 - - zstd=1.5.2=ha4553b6_0 - - pip: - - antlr4-python3-runtime==4.9.3 - - appdirs==1.4.4 - - asttokens==2.4.0 - - av==10.0.0 - - backcall==0.2.0 - - click==8.1.3 - - git+https://github.com/openai/CLIP.git - - contourpy==1.1.1 - - cycler==0.12.1 - - decorator==5.1.1 - - docker-pycreds==0.4.0 - - einops==0.6.1 - - executing==1.2.0 - - filelock==3.12.2 - - fonttools==4.43.1 - - ftfy==6.1.1 - - gitdb==4.0.10 - - gitpython==3.1.31 - - huggingface-hub==0.16.4 - - imageio==2.31.0 - - imageio-ffmpeg==0.4.8 - - importlib-resources==6.1.0 - - ipdb==0.13.13 - - ipython==8.12.2 - - jedi==0.19.0 - - kiwisolver==1.4.5 - - kornia==0.6.0 - - lpips==0.1.4 - - matplotlib==3.7.3 - - matplotlib-inline==0.1.6 - - omegaconf==2.3.0 - - open-clip-torch==2.20.0 - - opencv-python==4.7.0.72 - - parso==0.8.3 - - pathtools==0.1.2 - - pexpect==4.8.0 - - pickleshare==0.7.5 - - pillow==9.5.0 - - prompt-toolkit==3.0.39 - - protobuf==3.20.3 - - psutil==5.9.5 - - ptyprocess==0.7.0 - - pure-eval==0.2.2 - - pygments==2.16.1 - - pymcubes==0.1.4 - - pyparsing==3.1.1 - - pytorch-fid==0.3.0 - - pytorch-msssim==1.0.0 - - regex==2023.6.3 - - safetensors==0.3.3 - - scipy==1.10.1 - - sentencepiece==0.1.99 - - sentry-sdk==1.25.0 - - setproctitle==1.3.2 - - smmap==5.0.0 - - stack-data==0.6.2 - - timm==0.9.7 - - tokenizers==0.12.1 - - tomli==2.0.1 - - traitlets==5.9.0 - - transformers - - trimesh==4.0.2 - - vit-pytorch==1.2.2 - - wandb==0.15.3 - - wcwidth==0.2.6 - - zipp==3.17.0 diff --git a/3DTopia/gradio_demo.py b/3DTopia/gradio_demo.py deleted file mode 100644 index f02e3354ae21a91699428ffa7e7ed454d1c5832b..0000000000000000000000000000000000000000 --- a/3DTopia/gradio_demo.py +++ /dev/null @@ -1,334 +0,0 @@ -import os -import cv2 -import time -import json -import torch -import mcubes -import trimesh -import datetime -import argparse -import subprocess -import numpy as np -import gradio as gr -from tqdm import tqdm -import imageio.v2 as imageio -import pytorch_lightning as pl -from omegaconf import OmegaConf - -from ldm.models.diffusion.ddim import DDIMSampler -from ldm.models.diffusion.plms import PLMSSampler -from ldm.models.diffusion.dpm_solver import DPMSolverSampler - -from utility.initialize import instantiate_from_config, get_obj_from_str -from utility.triplane_renderer.eg3d_renderer import sample_from_planes, generate_planes -from utility.triplane_renderer.renderer import get_rays, to8b -from safetensors.torch import load_file -from huggingface_hub import hf_hub_download - -import warnings -warnings.filterwarnings("ignore", category=UserWarning) -warnings.filterwarnings("ignore", category=DeprecationWarning) - -def add_text(rgb, caption): - font = cv2.FONT_HERSHEY_SIMPLEX - # org - gap = 10 - org = (gap, gap) - # fontScale - fontScale = 0.3 - # Blue color in BGR - color = (255, 0, 0) - # Line thickness of 2 px - thickness = 1 - break_caption = [] - for i in range(len(caption) // 30 + 1): - break_caption_i = caption[i*30:(i+1)*30] - break_caption.append(break_caption_i) - for i, bci in enumerate(break_caption): - cv2.putText(rgb, bci, (gap, gap*(i+1)), font, fontScale, color, thickness, cv2.LINE_AA) - return rgb - -config = "configs/default.yaml" -# ckpt = "checkpoints/3dtopia_diffusion_state_dict.ckpt" -ckpt = hf_hub_download(repo_id="hongfz16/3DTopia", filename="model.safetensors") -configs = OmegaConf.load(config) -os.makedirs("tmp", exist_ok=True) - -if ckpt.endswith(".ckpt"): - model = get_obj_from_str(configs.model["target"]).load_from_checkpoint(ckpt, map_location='cpu', strict=False, **configs.model.params) -elif ckpt.endswith(".safetensors"): - model = get_obj_from_str(configs.model["target"])(**configs.model.params) - model_ckpt = load_file(ckpt) - model.load_state_dict(model_ckpt) -else: - raise NotImplementedError -device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") -model = model.to(device) -sampler = DDIMSampler(model) - -img_size = configs.model.params.unet_config.params.image_size -channels = configs.model.params.unet_config.params.in_channels -shape = [channels, img_size, img_size * 3] - -pose_folder = 'assets/sample_data/pose' -poses_fname = sorted([os.path.join(pose_folder, f) for f in os.listdir(pose_folder)]) -batch_rays_list = [] -H = 128 -ratio = 512 // H -for p in poses_fname: - c2w = np.loadtxt(p).reshape(4, 4) - c2w[:3, 3] *= 2.2 - c2w = np.array([ - [1, 0, 0, 0], - [0, 0, -1, 0], - [0, 1, 0, 0], - [0, 0, 0, 1] - ]) @ c2w - - k = np.array([ - [560 / ratio, 0, H * 0.5], - [0, 560 / ratio, H * 0.5], - [0, 0, 1] - ]) - - rays_o, rays_d = get_rays(H, H, torch.Tensor(k), torch.Tensor(c2w[:3, :4])) - coords = torch.stack(torch.meshgrid(torch.linspace(0, H-1, H), torch.linspace(0, H-1, H), indexing='ij'), -1) - coords = torch.reshape(coords, [-1,2]).long() - rays_o = rays_o[coords[:, 0], coords[:, 1]] - rays_d = rays_d[coords[:, 0], coords[:, 1]] - batch_rays = torch.stack([rays_o, rays_d], 0) - batch_rays_list.append(batch_rays) -batch_rays_list = torch.stack(batch_rays_list, 0) - -def marching_cube(b, text, global_info): - # prepare volumn for marching cube - res = 128 - assert 'decode_res' in global_info - decode_res = global_info['decode_res'] - c_list = torch.linspace(-1.2, 1.2, steps=res) - grid_x, grid_y, grid_z = torch.meshgrid( - c_list, c_list, c_list, indexing='ij' - ) - coords = torch.stack([grid_x, grid_y, grid_z], -1).to(device) - plane_axes = generate_planes() - feats = sample_from_planes( - plane_axes, decode_res[b:b+1].reshape(1, 3, -1, 256, 256), coords.reshape(1, -1, 3), padding_mode='zeros', box_warp=2.4 - ) - fake_dirs = torch.zeros_like(coords) - fake_dirs[..., 0] = 1 - out = model.first_stage_model.triplane_decoder.decoder(feats, fake_dirs) - u = out['sigma'].reshape(res, res, res).detach().cpu().numpy() - del out - - # marching cube - vertices, triangles = mcubes.marching_cubes(u, 10) - min_bound = np.array([-1.2, -1.2, -1.2]) - max_bound = np.array([1.2, 1.2, 1.2]) - vertices = vertices / (res - 1) * (max_bound - min_bound)[None, :] + min_bound[None, :] - pt_vertices = torch.from_numpy(vertices).to(device) - - # extract vertices color - res_triplane = 256 - render_kwargs = { - 'depth_resolution': 128, - 'disparity_space_sampling': False, - 'box_warp': 2.4, - 'depth_resolution_importance': 128, - 'clamp_mode': 'softplus', - 'white_back': True, - 'det': True - } - rays_o_list = [ - np.array([0, 0, 2]), - np.array([0, 0, -2]), - np.array([0, 2, 0]), - np.array([0, -2, 0]), - np.array([2, 0, 0]), - np.array([-2, 0, 0]), - ] - rgb_final = None - diff_final = None - for rays_o in tqdm(rays_o_list): - rays_o = torch.from_numpy(rays_o.reshape(1, 3)).repeat(vertices.shape[0], 1).float().to(device) - rays_d = pt_vertices.reshape(-1, 3) - rays_o - rays_d = rays_d / torch.norm(rays_d, dim=-1).reshape(-1, 1) - dist = torch.norm(pt_vertices.reshape(-1, 3) - rays_o, dim=-1).cpu().numpy().reshape(-1) - - render_out = model.first_stage_model.triplane_decoder( - decode_res[b:b+1].reshape(1, 3, -1, res_triplane, res_triplane), - rays_o.unsqueeze(0), rays_d.unsqueeze(0), render_kwargs, - whole_img=False, tvloss=False - ) - rgb = render_out['rgb_marched'].reshape(-1, 3).detach().cpu().numpy() - depth = render_out['depth_final'].reshape(-1).detach().cpu().numpy() - depth_diff = np.abs(dist - depth) - - if rgb_final is None: - rgb_final = rgb.copy() - diff_final = depth_diff.copy() - - else: - ind = diff_final > depth_diff - rgb_final[ind] = rgb[ind] - diff_final[ind] = depth_diff[ind] - - # bgr to rgb - rgb_final = np.stack([ - rgb_final[:, 2], rgb_final[:, 1], rgb_final[:, 0] - ], -1) - - # export to ply - mesh = trimesh.Trimesh(vertices, triangles, vertex_colors=(rgb_final * 255).astype(np.uint8)) - path = os.path.join('tmp', f"{text.replace(' ', '_')}_{str(datetime.datetime.now()).replace(' ', '_')}.ply") - trimesh.exchange.export.export_mesh(mesh, path, file_type='ply') - - del vertices, triangles, rgb_final - torch.cuda.empty_cache() - - return path - -def infer(prompt, samples, steps, scale, seed, global_info): - prompt = prompt.replace('/', '') - pl.seed_everything(seed) - batch_size = samples - with torch.no_grad(): - noise = None - c = model.get_learned_conditioning([prompt]) - unconditional_c = torch.zeros_like(c) - sample, _ = sampler.sample( - S=steps, - batch_size=batch_size, - shape=shape, - verbose=False, - x_T = noise, - conditioning = c.repeat(batch_size, 1, 1), - unconditional_guidance_scale=scale, - unconditional_conditioning=unconditional_c.repeat(batch_size, 1, 1) - ) - decode_res = model.decode_first_stage(sample) - - big_video_list = [] - - global_info['decode_res'] = decode_res - - for b in range(batch_size): - def render_img(v): - rgb_sample, _ = model.first_stage_model.render_triplane_eg3d_decoder( - decode_res[b:b+1], batch_rays_list[v:v+1].to(device), torch.zeros(1, H, H, 3).to(device), - ) - rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0] - rgb_sample = np.stack( - [rgb_sample[..., 2], rgb_sample[..., 1], rgb_sample[..., 0]], -1 - ) - rgb_sample = add_text(rgb_sample, str(b)) - return rgb_sample - - view_num = len(batch_rays_list) - video_list = [] - for v in tqdm(range(view_num//8*3, view_num//8*5, 2)): - rgb_sample = render_img(v) - video_list.append(rgb_sample) - big_video_list.append(video_list) - # if batch_size == 2: - # cat_video_list = [ - # np.concatenate([big_video_list[j][i] for j in range(len(big_video_list))], 1) \ - # for i in range(len(big_video_list[0])) - # ] - # elif batch_size > 2: - # if batch_size == 3: - # big_video_list.append( - # [np.zeros_like(f) for f in big_video_list[0]] - # ) - # cat_video_list = [ - # np.concatenate([ - # np.concatenate([big_video_list[0][i], big_video_list[1][i]], 1), - # np.concatenate([big_video_list[2][i], big_video_list[3][i]], 1), - # ], 0) \ - # for i in range(len(big_video_list[0])) - # ] - # else: - # cat_video_list = big_video_list[0] - - for _ in range(4 - batch_size): - big_video_list.append( - [np.zeros_like(f) + 255 for f in big_video_list[0]] - ) - cat_video_list = [ - np.concatenate([ - np.concatenate([big_video_list[0][i], big_video_list[1][i]], 1), - np.concatenate([big_video_list[2][i], big_video_list[3][i]], 1), - ], 0) \ - for i in range(len(big_video_list[0])) - ] - - path = f"tmp/{prompt.replace(' ', '_')}_{str(datetime.datetime.now()).replace(' ', '_')}.mp4" - imageio.mimwrite(path, np.stack(cat_video_list, 0)) - - return global_info, path - -def infer_stage2(prompt, selection, seed, global_info): - prompt = prompt.replace('/', '') - mesh_path = marching_cube(int(selection), prompt, global_info) - mesh_name = mesh_path.split('/')[-1][:-4] - - if2_cmd = f"threefiner if2 --mesh {mesh_path} --prompt \"{prompt}\" --outdir tmp --save {mesh_name}_if2.glb --text_dir --front_dir=-y" - print(if2_cmd) - # os.system(if2_cmd) - subprocess.Popen(if2_cmd, shell=True).wait() - torch.cuda.empty_cache() - - video_path = f"tmp/{prompt.replace(' ', '_')}_{str(datetime.datetime.now()).replace(' ', '_')}.mp4" - render_cmd = f"kire {os.path.join('tmp', mesh_name + '_if2.glb')} --save_video {video_path} --wogui --force_cuda_rast --H 256 --W 256" - print(render_cmd) - # os.system(render_cmd) - subprocess.Popen(render_cmd, shell=True).wait() - torch.cuda.empty_cache() - - return video_path, os.path.join('tmp', mesh_name + '_if2.glb') - -block = gr.Blocks() - -with block: - global_info = gr.State(dict()) - with gr.Row(): - with gr.Column(): - with gr.Row(): - text = gr.Textbox( - label = "Enter your prompt", - max_lines = 1, - placeholder = "Enter your prompt", - container = False, - ) - btn = gr.Button("Generate 3D") - gallery = gr.Video(height=512) - advanced_button = gr.Button("Advanced options", elem_id="advanced-btn") - with gr.Row(elem_id="advanced-options"): - samples = gr.Slider(label="Number of Samples", minimum=1, maximum=4, value=4, step=1) - steps = gr.Slider(label="Steps", minimum=1, maximum=500, value=50, step=1) - scale = gr.Slider( - label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1 - ) - seed = gr.Slider( - label="Seed", - minimum=0, - maximum=2147483647, - step=1, - randomize=True, - ) - gr.on([text.submit, btn.click], infer, inputs=[text, samples, steps, scale, seed, global_info], outputs=[global_info, gallery]) - advanced_button.click( - None, - [], - text, - ) - with gr.Column(): - with gr.Row(): - dropdown = gr.Dropdown( - ['0', '1', '2', '3'], label="Choose a Candidate For Stage2", value='0' - ) - btn_stage2 = gr.Button("Start Refinement") - gallery = gr.Video(height=512) - download = gr.File(label="Download Mesh", file_count="single", height=100) - gr.on([btn_stage2.click], infer_stage2, inputs=[text, dropdown, seed, global_info], outputs=[gallery, download]) - -block.launch(share=True) diff --git a/3DTopia/ldm/data/__init__.py b/3DTopia/ldm/data/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/3DTopia/ldm/data/base.py b/3DTopia/ldm/data/base.py deleted file mode 100644 index b196c2f7aa583a3e8bc4aad9f943df0c4dae0da7..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/data/base.py +++ /dev/null @@ -1,23 +0,0 @@ -from abc import abstractmethod -from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset - - -class Txt2ImgIterableBaseDataset(IterableDataset): - ''' - Define an interface to make the IterableDatasets for text2img data chainable - ''' - def __init__(self, num_records=0, valid_ids=None, size=256): - super().__init__() - self.num_records = num_records - self.valid_ids = valid_ids - self.sample_ids = valid_ids - self.size = size - - print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.') - - def __len__(self): - return self.num_records - - @abstractmethod - def __iter__(self): - pass \ No newline at end of file diff --git a/3DTopia/ldm/data/imagenet.py b/3DTopia/ldm/data/imagenet.py deleted file mode 100644 index 1c473f9c6965b22315dbb289eff8247c71bdc790..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/data/imagenet.py +++ /dev/null @@ -1,394 +0,0 @@ -import os, yaml, pickle, shutil, tarfile, glob -import cv2 -import albumentations -import PIL -import numpy as np -import torchvision.transforms.functional as TF -from omegaconf import OmegaConf -from functools import partial -from PIL import Image -from tqdm import tqdm -from torch.utils.data import Dataset, Subset - -import taming.data.utils as tdu -from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve -from taming.data.imagenet import ImagePaths - -from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light - - -def synset2idx(path_to_yaml="data/index_synset.yaml"): - with open(path_to_yaml) as f: - di2s = yaml.load(f) - return dict((v,k) for k,v in di2s.items()) - - -class ImageNetBase(Dataset): - def __init__(self, config=None): - self.config = config or OmegaConf.create() - if not type(self.config)==dict: - self.config = OmegaConf.to_container(self.config) - self.keep_orig_class_label = self.config.get("keep_orig_class_label", False) - self.process_images = True # if False we skip loading & processing images and self.data contains filepaths - self._prepare() - self._prepare_synset_to_human() - self._prepare_idx_to_synset() - self._prepare_human_to_integer_label() - self._load() - - def __len__(self): - return len(self.data) - - def __getitem__(self, i): - return self.data[i] - - def _prepare(self): - raise NotImplementedError() - - def _filter_relpaths(self, relpaths): - ignore = set([ - "n06596364_9591.JPEG", - ]) - relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore] - if "sub_indices" in self.config: - indices = str_to_indices(self.config["sub_indices"]) - synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings - self.synset2idx = synset2idx(path_to_yaml=self.idx2syn) - files = [] - for rpath in relpaths: - syn = rpath.split("/")[0] - if syn in synsets: - files.append(rpath) - return files - else: - return relpaths - - def _prepare_synset_to_human(self): - SIZE = 2655750 - URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1" - self.human_dict = os.path.join(self.root, "synset_human.txt") - if (not os.path.exists(self.human_dict) or - not os.path.getsize(self.human_dict)==SIZE): - download(URL, self.human_dict) - - def _prepare_idx_to_synset(self): - URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1" - self.idx2syn = os.path.join(self.root, "index_synset.yaml") - if (not os.path.exists(self.idx2syn)): - download(URL, self.idx2syn) - - def _prepare_human_to_integer_label(self): - URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1" - self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt") - if (not os.path.exists(self.human2integer)): - download(URL, self.human2integer) - with open(self.human2integer, "r") as f: - lines = f.read().splitlines() - assert len(lines) == 1000 - self.human2integer_dict = dict() - for line in lines: - value, key = line.split(":") - self.human2integer_dict[key] = int(value) - - def _load(self): - with open(self.txt_filelist, "r") as f: - self.relpaths = f.read().splitlines() - l1 = len(self.relpaths) - self.relpaths = self._filter_relpaths(self.relpaths) - print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths))) - - self.synsets = [p.split("/")[0] for p in self.relpaths] - self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths] - - unique_synsets = np.unique(self.synsets) - class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets)) - if not self.keep_orig_class_label: - self.class_labels = [class_dict[s] for s in self.synsets] - else: - self.class_labels = [self.synset2idx[s] for s in self.synsets] - - with open(self.human_dict, "r") as f: - human_dict = f.read().splitlines() - human_dict = dict(line.split(maxsplit=1) for line in human_dict) - - self.human_labels = [human_dict[s] for s in self.synsets] - - labels = { - "relpath": np.array(self.relpaths), - "synsets": np.array(self.synsets), - "class_label": np.array(self.class_labels), - "human_label": np.array(self.human_labels), - } - - if self.process_images: - self.size = retrieve(self.config, "size", default=256) - self.data = ImagePaths(self.abspaths, - labels=labels, - size=self.size, - random_crop=self.random_crop, - ) - else: - self.data = self.abspaths - - -class ImageNetTrain(ImageNetBase): - NAME = "ILSVRC2012_train" - URL = "http://www.image-net.org/challenges/LSVRC/2012/" - AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2" - FILES = [ - "ILSVRC2012_img_train.tar", - ] - SIZES = [ - 147897477120, - ] - - def __init__(self, process_images=True, data_root=None, **kwargs): - self.process_images = process_images - self.data_root = data_root - super().__init__(**kwargs) - - def _prepare(self): - if self.data_root: - self.root = os.path.join(self.data_root, self.NAME) - else: - cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache")) - self.root = os.path.join(cachedir, "autoencoders/data", self.NAME) - - self.datadir = os.path.join(self.root, "data") - self.txt_filelist = os.path.join(self.root, "filelist.txt") - self.expected_length = 1281167 - self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop", - default=True) - if not tdu.is_prepared(self.root): - # prep - print("Preparing dataset {} in {}".format(self.NAME, self.root)) - - datadir = self.datadir - if not os.path.exists(datadir): - path = os.path.join(self.root, self.FILES[0]) - if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]: - import academictorrents as at - atpath = at.get(self.AT_HASH, datastore=self.root) - assert atpath == path - - print("Extracting {} to {}".format(path, datadir)) - os.makedirs(datadir, exist_ok=True) - with tarfile.open(path, "r:") as tar: - tar.extractall(path=datadir) - - print("Extracting sub-tars.") - subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar"))) - for subpath in tqdm(subpaths): - subdir = subpath[:-len(".tar")] - os.makedirs(subdir, exist_ok=True) - with tarfile.open(subpath, "r:") as tar: - tar.extractall(path=subdir) - - filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG")) - filelist = [os.path.relpath(p, start=datadir) for p in filelist] - filelist = sorted(filelist) - filelist = "\n".join(filelist)+"\n" - with open(self.txt_filelist, "w") as f: - f.write(filelist) - - tdu.mark_prepared(self.root) - - -class ImageNetValidation(ImageNetBase): - NAME = "ILSVRC2012_validation" - URL = "http://www.image-net.org/challenges/LSVRC/2012/" - AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5" - VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1" - FILES = [ - "ILSVRC2012_img_val.tar", - "validation_synset.txt", - ] - SIZES = [ - 6744924160, - 1950000, - ] - - def __init__(self, process_images=True, data_root=None, **kwargs): - self.data_root = data_root - self.process_images = process_images - super().__init__(**kwargs) - - def _prepare(self): - if self.data_root: - self.root = os.path.join(self.data_root, self.NAME) - else: - cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache")) - self.root = os.path.join(cachedir, "autoencoders/data", self.NAME) - self.datadir = os.path.join(self.root, "data") - self.txt_filelist = os.path.join(self.root, "filelist.txt") - self.expected_length = 50000 - self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop", - default=False) - if not tdu.is_prepared(self.root): - # prep - print("Preparing dataset {} in {}".format(self.NAME, self.root)) - - datadir = self.datadir - if not os.path.exists(datadir): - path = os.path.join(self.root, self.FILES[0]) - if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]: - import academictorrents as at - atpath = at.get(self.AT_HASH, datastore=self.root) - assert atpath == path - - print("Extracting {} to {}".format(path, datadir)) - os.makedirs(datadir, exist_ok=True) - with tarfile.open(path, "r:") as tar: - tar.extractall(path=datadir) - - vspath = os.path.join(self.root, self.FILES[1]) - if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]: - download(self.VS_URL, vspath) - - with open(vspath, "r") as f: - synset_dict = f.read().splitlines() - synset_dict = dict(line.split() for line in synset_dict) - - print("Reorganizing into synset folders") - synsets = np.unique(list(synset_dict.values())) - for s in synsets: - os.makedirs(os.path.join(datadir, s), exist_ok=True) - for k, v in synset_dict.items(): - src = os.path.join(datadir, k) - dst = os.path.join(datadir, v) - shutil.move(src, dst) - - filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG")) - filelist = [os.path.relpath(p, start=datadir) for p in filelist] - filelist = sorted(filelist) - filelist = "\n".join(filelist)+"\n" - with open(self.txt_filelist, "w") as f: - f.write(filelist) - - tdu.mark_prepared(self.root) - - - -class ImageNetSR(Dataset): - def __init__(self, size=None, - degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1., - random_crop=True): - """ - Imagenet Superresolution Dataloader - Performs following ops in order: - 1. crops a crop of size s from image either as random or center crop - 2. resizes crop to size with cv2.area_interpolation - 3. degrades resized crop with degradation_fn - - :param size: resizing to size after cropping - :param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light - :param downscale_f: Low Resolution Downsample factor - :param min_crop_f: determines crop size s, - where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f) - :param max_crop_f: "" - :param data_root: - :param random_crop: - """ - self.base = self.get_base() - assert size - assert (size / downscale_f).is_integer() - self.size = size - self.LR_size = int(size / downscale_f) - self.min_crop_f = min_crop_f - self.max_crop_f = max_crop_f - assert(max_crop_f <= 1.) - self.center_crop = not random_crop - - self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA) - - self.pil_interpolation = False # gets reset later if incase interp_op is from pillow - - if degradation == "bsrgan": - self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f) - - elif degradation == "bsrgan_light": - self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f) - - else: - interpolation_fn = { - "cv_nearest": cv2.INTER_NEAREST, - "cv_bilinear": cv2.INTER_LINEAR, - "cv_bicubic": cv2.INTER_CUBIC, - "cv_area": cv2.INTER_AREA, - "cv_lanczos": cv2.INTER_LANCZOS4, - "pil_nearest": PIL.Image.NEAREST, - "pil_bilinear": PIL.Image.BILINEAR, - "pil_bicubic": PIL.Image.BICUBIC, - "pil_box": PIL.Image.BOX, - "pil_hamming": PIL.Image.HAMMING, - "pil_lanczos": PIL.Image.LANCZOS, - }[degradation] - - self.pil_interpolation = degradation.startswith("pil_") - - if self.pil_interpolation: - self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn) - - else: - self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size, - interpolation=interpolation_fn) - - def __len__(self): - return len(self.base) - - def __getitem__(self, i): - example = self.base[i] - image = Image.open(example["file_path_"]) - - if not image.mode == "RGB": - image = image.convert("RGB") - - image = np.array(image).astype(np.uint8) - - min_side_len = min(image.shape[:2]) - crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None) - crop_side_len = int(crop_side_len) - - if self.center_crop: - self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len) - - else: - self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len) - - image = self.cropper(image=image)["image"] - image = self.image_rescaler(image=image)["image"] - - if self.pil_interpolation: - image_pil = PIL.Image.fromarray(image) - LR_image = self.degradation_process(image_pil) - LR_image = np.array(LR_image).astype(np.uint8) - - else: - LR_image = self.degradation_process(image=image)["image"] - - example["image"] = (image/127.5 - 1.0).astype(np.float32) - example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32) - - return example - - -class ImageNetSRTrain(ImageNetSR): - def __init__(self, **kwargs): - super().__init__(**kwargs) - - def get_base(self): - with open("data/imagenet_train_hr_indices.p", "rb") as f: - indices = pickle.load(f) - dset = ImageNetTrain(process_images=False,) - return Subset(dset, indices) - - -class ImageNetSRValidation(ImageNetSR): - def __init__(self, **kwargs): - super().__init__(**kwargs) - - def get_base(self): - with open("data/imagenet_val_hr_indices.p", "rb") as f: - indices = pickle.load(f) - dset = ImageNetValidation(process_images=False,) - return Subset(dset, indices) diff --git a/3DTopia/ldm/data/lsun.py b/3DTopia/ldm/data/lsun.py deleted file mode 100644 index 6256e45715ff0b57c53f985594d27cbbbff0e68e..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/data/lsun.py +++ /dev/null @@ -1,92 +0,0 @@ -import os -import numpy as np -import PIL -from PIL import Image -from torch.utils.data import Dataset -from torchvision import transforms - - -class LSUNBase(Dataset): - def __init__(self, - txt_file, - data_root, - size=None, - interpolation="bicubic", - flip_p=0.5 - ): - self.data_paths = txt_file - self.data_root = data_root - with open(self.data_paths, "r") as f: - self.image_paths = f.read().splitlines() - self._length = len(self.image_paths) - self.labels = { - "relative_file_path_": [l for l in self.image_paths], - "file_path_": [os.path.join(self.data_root, l) - for l in self.image_paths], - } - - self.size = size - self.interpolation = {"linear": PIL.Image.LINEAR, - "bilinear": PIL.Image.BILINEAR, - "bicubic": PIL.Image.BICUBIC, - "lanczos": PIL.Image.LANCZOS, - }[interpolation] - self.flip = transforms.RandomHorizontalFlip(p=flip_p) - - def __len__(self): - return self._length - - def __getitem__(self, i): - example = dict((k, self.labels[k][i]) for k in self.labels) - image = Image.open(example["file_path_"]) - if not image.mode == "RGB": - image = image.convert("RGB") - - # default to score-sde preprocessing - img = np.array(image).astype(np.uint8) - crop = min(img.shape[0], img.shape[1]) - h, w, = img.shape[0], img.shape[1] - img = img[(h - crop) // 2:(h + crop) // 2, - (w - crop) // 2:(w + crop) // 2] - - image = Image.fromarray(img) - if self.size is not None: - image = image.resize((self.size, self.size), resample=self.interpolation) - - image = self.flip(image) - image = np.array(image).astype(np.uint8) - example["image"] = (image / 127.5 - 1.0).astype(np.float32) - return example - - -class LSUNChurchesTrain(LSUNBase): - def __init__(self, **kwargs): - super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs) - - -class LSUNChurchesValidation(LSUNBase): - def __init__(self, flip_p=0., **kwargs): - super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches", - flip_p=flip_p, **kwargs) - - -class LSUNBedroomsTrain(LSUNBase): - def __init__(self, **kwargs): - super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs) - - -class LSUNBedroomsValidation(LSUNBase): - def __init__(self, flip_p=0.0, **kwargs): - super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms", - flip_p=flip_p, **kwargs) - - -class LSUNCatsTrain(LSUNBase): - def __init__(self, **kwargs): - super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs) - - -class LSUNCatsValidation(LSUNBase): - def __init__(self, flip_p=0., **kwargs): - super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats", - flip_p=flip_p, **kwargs) diff --git a/3DTopia/ldm/lr_scheduler.py b/3DTopia/ldm/lr_scheduler.py deleted file mode 100644 index be39da9ca6dacc22bf3df9c7389bbb403a4a3ade..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/lr_scheduler.py +++ /dev/null @@ -1,98 +0,0 @@ -import numpy as np - - -class LambdaWarmUpCosineScheduler: - """ - note: use with a base_lr of 1.0 - """ - def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0): - self.lr_warm_up_steps = warm_up_steps - self.lr_start = lr_start - self.lr_min = lr_min - self.lr_max = lr_max - self.lr_max_decay_steps = max_decay_steps - self.last_lr = 0. - self.verbosity_interval = verbosity_interval - - def schedule(self, n, **kwargs): - if self.verbosity_interval > 0: - if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}") - if n < self.lr_warm_up_steps: - lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start - self.last_lr = lr - return lr - else: - t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps) - t = min(t, 1.0) - lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * ( - 1 + np.cos(t * np.pi)) - self.last_lr = lr - return lr - - def __call__(self, n, **kwargs): - return self.schedule(n,**kwargs) - - -class LambdaWarmUpCosineScheduler2: - """ - supports repeated iterations, configurable via lists - note: use with a base_lr of 1.0. - """ - def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0): - assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths) - self.lr_warm_up_steps = warm_up_steps - self.f_start = f_start - self.f_min = f_min - self.f_max = f_max - self.cycle_lengths = cycle_lengths - self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths)) - self.last_f = 0. - self.verbosity_interval = verbosity_interval - - def find_in_interval(self, n): - interval = 0 - for cl in self.cum_cycles[1:]: - if n <= cl: - return interval - interval += 1 - - def schedule(self, n, **kwargs): - cycle = self.find_in_interval(n) - n = n - self.cum_cycles[cycle] - if self.verbosity_interval > 0: - if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, " - f"current cycle {cycle}") - if n < self.lr_warm_up_steps[cycle]: - f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle] - self.last_f = f - return f - else: - t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle]) - t = min(t, 1.0) - f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * ( - 1 + np.cos(t * np.pi)) - self.last_f = f - return f - - def __call__(self, n, **kwargs): - return self.schedule(n, **kwargs) - - -class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2): - - def schedule(self, n, **kwargs): - cycle = self.find_in_interval(n) - n = n - self.cum_cycles[cycle] - if self.verbosity_interval > 0: - if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, " - f"current cycle {cycle}") - - if n < self.lr_warm_up_steps[cycle]: - f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle] - self.last_f = f - return f - else: - f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle]) - self.last_f = f - return f - diff --git a/3DTopia/ldm/models/autoencoder.py b/3DTopia/ldm/models/autoencoder.py deleted file mode 100644 index 6a9c4f45498561953b8085981609b2a3298a5473..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/models/autoencoder.py +++ /dev/null @@ -1,443 +0,0 @@ -import torch -import pytorch_lightning as pl -import torch.nn.functional as F -from contextlib import contextmanager - -from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer - -from ldm.modules.diffusionmodules.model import Encoder, Decoder -from ldm.modules.distributions.distributions import DiagonalGaussianDistribution - -from ldm.util import instantiate_from_config - - -class VQModel(pl.LightningModule): - def __init__(self, - ddconfig, - lossconfig, - n_embed, - embed_dim, - ckpt_path=None, - ignore_keys=[], - image_key="image", - colorize_nlabels=None, - monitor=None, - batch_resize_range=None, - scheduler_config=None, - lr_g_factor=1.0, - remap=None, - sane_index_shape=False, # tell vector quantizer to return indices as bhw - use_ema=False - ): - super().__init__() - self.embed_dim = embed_dim - self.n_embed = n_embed - self.image_key = image_key - self.encoder = Encoder(**ddconfig) - self.decoder = Decoder(**ddconfig) - self.loss = instantiate_from_config(lossconfig) - self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, - remap=remap, - sane_index_shape=sane_index_shape) - self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) - self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) - if colorize_nlabels is not None: - assert type(colorize_nlabels)==int - self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) - if monitor is not None: - self.monitor = monitor - self.batch_resize_range = batch_resize_range - if self.batch_resize_range is not None: - print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.") - - self.use_ema = use_ema - if self.use_ema: - self.model_ema = LitEma(self) - print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") - - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) - self.scheduler_config = scheduler_config - self.lr_g_factor = lr_g_factor - - @contextmanager - def ema_scope(self, context=None): - if self.use_ema: - self.model_ema.store(self.parameters()) - self.model_ema.copy_to(self) - if context is not None: - print(f"{context}: Switched to EMA weights") - try: - yield None - finally: - if self.use_ema: - self.model_ema.restore(self.parameters()) - if context is not None: - print(f"{context}: Restored training weights") - - def init_from_ckpt(self, path, ignore_keys=list()): - sd = torch.load(path, map_location="cpu")["state_dict"] - keys = list(sd.keys()) - for k in keys: - for ik in ignore_keys: - if k.startswith(ik): - print("Deleting key {} from state_dict.".format(k)) - del sd[k] - missing, unexpected = self.load_state_dict(sd, strict=False) - print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") - if len(missing) > 0: - print(f"Missing Keys: {missing}") - print(f"Unexpected Keys: {unexpected}") - - def on_train_batch_end(self, *args, **kwargs): - if self.use_ema: - self.model_ema(self) - - def encode(self, x): - h = self.encoder(x) - h = self.quant_conv(h) - quant, emb_loss, info = self.quantize(h) - return quant, emb_loss, info - - def encode_to_prequant(self, x): - h = self.encoder(x) - h = self.quant_conv(h) - return h - - def decode(self, quant): - quant = self.post_quant_conv(quant) - dec = self.decoder(quant) - return dec - - def decode_code(self, code_b): - quant_b = self.quantize.embed_code(code_b) - dec = self.decode(quant_b) - return dec - - def forward(self, input, return_pred_indices=False): - quant, diff, (_,_,ind) = self.encode(input) - dec = self.decode(quant) - if return_pred_indices: - return dec, diff, ind - return dec, diff - - def get_input(self, batch, k): - x = batch[k] - if len(x.shape) == 3: - x = x[..., None] - x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() - if self.batch_resize_range is not None: - lower_size = self.batch_resize_range[0] - upper_size = self.batch_resize_range[1] - if self.global_step <= 4: - # do the first few batches with max size to avoid later oom - new_resize = upper_size - else: - new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16)) - if new_resize != x.shape[2]: - x = F.interpolate(x, size=new_resize, mode="bicubic") - x = x.detach() - return x - - def training_step(self, batch, batch_idx, optimizer_idx): - # https://github.com/pytorch/pytorch/issues/37142 - # try not to fool the heuristics - x = self.get_input(batch, self.image_key) - xrec, qloss, ind = self(x, return_pred_indices=True) - - if optimizer_idx == 0: - # autoencode - aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, - last_layer=self.get_last_layer(), split="train", - predicted_indices=ind) - - self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) - return aeloss - - if optimizer_idx == 1: - # discriminator - discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, - last_layer=self.get_last_layer(), split="train") - self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True) - return discloss - - def validation_step(self, batch, batch_idx): - log_dict = self._validation_step(batch, batch_idx) - with self.ema_scope(): - log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema") - return log_dict - - def _validation_step(self, batch, batch_idx, suffix=""): - x = self.get_input(batch, self.image_key) - xrec, qloss, ind = self(x, return_pred_indices=True) - aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0, - self.global_step, - last_layer=self.get_last_layer(), - split="val"+suffix, - predicted_indices=ind - ) - - discloss, log_dict_disc = self.loss(qloss, x, xrec, 1, - self.global_step, - last_layer=self.get_last_layer(), - split="val"+suffix, - predicted_indices=ind - ) - rec_loss = log_dict_ae[f"val{suffix}/rec_loss"] - self.log(f"val{suffix}/rec_loss", rec_loss, - prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True) - self.log(f"val{suffix}/aeloss", aeloss, - prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True) - if version.parse(pl.__version__) >= version.parse('1.4.0'): - del log_dict_ae[f"val{suffix}/rec_loss"] - self.log_dict(log_dict_ae) - self.log_dict(log_dict_disc) - return self.log_dict - - def configure_optimizers(self): - lr_d = self.learning_rate - lr_g = self.lr_g_factor*self.learning_rate - print("lr_d", lr_d) - print("lr_g", lr_g) - opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ - list(self.decoder.parameters())+ - list(self.quantize.parameters())+ - list(self.quant_conv.parameters())+ - list(self.post_quant_conv.parameters()), - lr=lr_g, betas=(0.5, 0.9)) - opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), - lr=lr_d, betas=(0.5, 0.9)) - - if self.scheduler_config is not None: - scheduler = instantiate_from_config(self.scheduler_config) - - print("Setting up LambdaLR scheduler...") - scheduler = [ - { - 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule), - 'interval': 'step', - 'frequency': 1 - }, - { - 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule), - 'interval': 'step', - 'frequency': 1 - }, - ] - return [opt_ae, opt_disc], scheduler - return [opt_ae, opt_disc], [] - - def get_last_layer(self): - return self.decoder.conv_out.weight - - def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs): - log = dict() - x = self.get_input(batch, self.image_key) - x = x.to(self.device) - if only_inputs: - log["inputs"] = x - return log - xrec, _ = self(x) - if x.shape[1] > 3: - # colorize with random projection - assert xrec.shape[1] > 3 - x = self.to_rgb(x) - xrec = self.to_rgb(xrec) - log["inputs"] = x - log["reconstructions"] = xrec - if plot_ema: - with self.ema_scope(): - xrec_ema, _ = self(x) - if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema) - log["reconstructions_ema"] = xrec_ema - return log - - def to_rgb(self, x): - assert self.image_key == "segmentation" - if not hasattr(self, "colorize"): - self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) - x = F.conv2d(x, weight=self.colorize) - x = 2.*(x-x.min())/(x.max()-x.min()) - 1. - return x - - -class VQModelInterface(VQModel): - def __init__(self, embed_dim, *args, **kwargs): - super().__init__(embed_dim=embed_dim, *args, **kwargs) - self.embed_dim = embed_dim - - def encode(self, x): - h = self.encoder(x) - h = self.quant_conv(h) - return h - - def decode(self, h, force_not_quantize=False): - # also go through quantization layer - if not force_not_quantize: - quant, emb_loss, info = self.quantize(h) - else: - quant = h - quant = self.post_quant_conv(quant) - dec = self.decoder(quant) - return dec - - -class AutoencoderKL(pl.LightningModule): - def __init__(self, - ddconfig, - lossconfig, - embed_dim, - ckpt_path=None, - ignore_keys=[], - image_key="image", - colorize_nlabels=None, - monitor=None, - ): - super().__init__() - self.image_key = image_key - self.encoder = Encoder(**ddconfig) - self.decoder = Decoder(**ddconfig) - self.loss = instantiate_from_config(lossconfig) - assert ddconfig["double_z"] - self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) - self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) - self.embed_dim = embed_dim - if colorize_nlabels is not None: - assert type(colorize_nlabels)==int - self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) - if monitor is not None: - self.monitor = monitor - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) - - def init_from_ckpt(self, path, ignore_keys=list()): - sd = torch.load(path, map_location="cpu")["state_dict"] - keys = list(sd.keys()) - for k in keys: - for ik in ignore_keys: - if k.startswith(ik): - print("Deleting key {} from state_dict.".format(k)) - del sd[k] - self.load_state_dict(sd, strict=False) - print(f"Restored from {path}") - - def encode(self, x): - h = self.encoder(x) - moments = self.quant_conv(h) - posterior = DiagonalGaussianDistribution(moments) - return posterior - - def decode(self, z): - z = self.post_quant_conv(z) - dec = self.decoder(z) - return dec - - def forward(self, input, sample_posterior=True): - posterior = self.encode(input) - if sample_posterior: - z = posterior.sample() - else: - z = posterior.mode() - dec = self.decode(z) - return dec, posterior - - def get_input(self, batch, k): - x = batch[k] - if len(x.shape) == 3: - x = x[..., None] - x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() - return x - - def training_step(self, batch, batch_idx, optimizer_idx): - inputs = self.get_input(batch, self.image_key) - reconstructions, posterior = self(inputs) - - if optimizer_idx == 0: - # train encoder+decoder+logvar - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, - last_layer=self.get_last_layer(), split="train") - self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) - self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) - return aeloss - - if optimizer_idx == 1: - # train the discriminator - discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, - last_layer=self.get_last_layer(), split="train") - - self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) - self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False) - return discloss - - def validation_step(self, batch, batch_idx): - inputs = self.get_input(batch, self.image_key) - reconstructions, posterior = self(inputs) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step, - last_layer=self.get_last_layer(), split="val") - - discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step, - last_layer=self.get_last_layer(), split="val") - - self.log("val/rec_loss", log_dict_ae["val/rec_loss"]) - self.log_dict(log_dict_ae) - self.log_dict(log_dict_disc) - return self.log_dict - - def configure_optimizers(self): - lr = self.learning_rate - opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ - list(self.decoder.parameters())+ - list(self.quant_conv.parameters())+ - list(self.post_quant_conv.parameters()), - lr=lr, betas=(0.5, 0.9)) - opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), - lr=lr, betas=(0.5, 0.9)) - return [opt_ae, opt_disc], [] - - def get_last_layer(self): - return self.decoder.conv_out.weight - - @torch.no_grad() - def log_images(self, batch, only_inputs=False, **kwargs): - log = dict() - x = self.get_input(batch, self.image_key) - x = x.to(self.device) - if not only_inputs: - xrec, posterior = self(x) - if x.shape[1] > 3: - # colorize with random projection - assert xrec.shape[1] > 3 - x = self.to_rgb(x) - xrec = self.to_rgb(xrec) - log["samples"] = self.decode(torch.randn_like(posterior.sample())) - log["reconstructions"] = xrec - log["inputs"] = x - return log - - def to_rgb(self, x): - assert self.image_key == "segmentation" - if not hasattr(self, "colorize"): - self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) - x = F.conv2d(x, weight=self.colorize) - x = 2.*(x-x.min())/(x.max()-x.min()) - 1. - return x - - -class IdentityFirstStage(torch.nn.Module): - def __init__(self, *args, vq_interface=False, **kwargs): - self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff - super().__init__() - - def encode(self, x, *args, **kwargs): - return x - - def decode(self, x, *args, **kwargs): - return x - - def quantize(self, x, *args, **kwargs): - if self.vq_interface: - return x, None, [None, None, None] - return x - - def forward(self, x, *args, **kwargs): - return x diff --git a/3DTopia/ldm/models/diffusion/__init__.py b/3DTopia/ldm/models/diffusion/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/3DTopia/ldm/models/diffusion/classifier.py b/3DTopia/ldm/models/diffusion/classifier.py deleted file mode 100644 index 67e98b9d8ffb96a150b517497ace0a242d7163ef..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/models/diffusion/classifier.py +++ /dev/null @@ -1,267 +0,0 @@ -import os -import torch -import pytorch_lightning as pl -from omegaconf import OmegaConf -from torch.nn import functional as F -from torch.optim import AdamW -from torch.optim.lr_scheduler import LambdaLR -from copy import deepcopy -from einops import rearrange -from glob import glob -from natsort import natsorted - -from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel -from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config - -__models__ = { - 'class_label': EncoderUNetModel, - 'segmentation': UNetModel -} - - -def disabled_train(self, mode=True): - """Overwrite model.train with this function to make sure train/eval mode - does not change anymore.""" - return self - - -class NoisyLatentImageClassifier(pl.LightningModule): - - def __init__(self, - diffusion_path, - num_classes, - ckpt_path=None, - pool='attention', - label_key=None, - diffusion_ckpt_path=None, - scheduler_config=None, - weight_decay=1.e-2, - log_steps=10, - monitor='val/loss', - *args, - **kwargs): - super().__init__(*args, **kwargs) - self.num_classes = num_classes - # get latest config of diffusion model - diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1] - self.diffusion_config = OmegaConf.load(diffusion_config).model - self.diffusion_config.params.ckpt_path = diffusion_ckpt_path - self.load_diffusion() - - self.monitor = monitor - self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1 - self.log_time_interval = self.diffusion_model.num_timesteps // log_steps - self.log_steps = log_steps - - self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \ - else self.diffusion_model.cond_stage_key - - assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params' - - if self.label_key not in __models__: - raise NotImplementedError() - - self.load_classifier(ckpt_path, pool) - - self.scheduler_config = scheduler_config - self.use_scheduler = self.scheduler_config is not None - self.weight_decay = weight_decay - - def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): - sd = torch.load(path, map_location="cpu") - if "state_dict" in list(sd.keys()): - sd = sd["state_dict"] - keys = list(sd.keys()) - for k in keys: - for ik in ignore_keys: - if k.startswith(ik): - print("Deleting key {} from state_dict.".format(k)) - del sd[k] - missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( - sd, strict=False) - print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") - if len(missing) > 0: - print(f"Missing Keys: {missing}") - if len(unexpected) > 0: - print(f"Unexpected Keys: {unexpected}") - - def load_diffusion(self): - model = instantiate_from_config(self.diffusion_config) - self.diffusion_model = model.eval() - self.diffusion_model.train = disabled_train - for param in self.diffusion_model.parameters(): - param.requires_grad = False - - def load_classifier(self, ckpt_path, pool): - model_config = deepcopy(self.diffusion_config.params.unet_config.params) - model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels - model_config.out_channels = self.num_classes - if self.label_key == 'class_label': - model_config.pool = pool - - self.model = __models__[self.label_key](**model_config) - if ckpt_path is not None: - print('#####################################################################') - print(f'load from ckpt "{ckpt_path}"') - print('#####################################################################') - self.init_from_ckpt(ckpt_path) - - @torch.no_grad() - def get_x_noisy(self, x, t, noise=None): - noise = default(noise, lambda: torch.randn_like(x)) - continuous_sqrt_alpha_cumprod = None - if self.diffusion_model.use_continuous_noise: - continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1) - # todo: make sure t+1 is correct here - - return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise, - continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod) - - def forward(self, x_noisy, t, *args, **kwargs): - return self.model(x_noisy, t) - - @torch.no_grad() - def get_input(self, batch, k): - x = batch[k] - if len(x.shape) == 3: - x = x[..., None] - x = rearrange(x, 'b h w c -> b c h w') - x = x.to(memory_format=torch.contiguous_format).float() - return x - - @torch.no_grad() - def get_conditioning(self, batch, k=None): - if k is None: - k = self.label_key - assert k is not None, 'Needs to provide label key' - - targets = batch[k].to(self.device) - - if self.label_key == 'segmentation': - targets = rearrange(targets, 'b h w c -> b c h w') - for down in range(self.numd): - h, w = targets.shape[-2:] - targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest') - - # targets = rearrange(targets,'b c h w -> b h w c') - - return targets - - def compute_top_k(self, logits, labels, k, reduction="mean"): - _, top_ks = torch.topk(logits, k, dim=1) - if reduction == "mean": - return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item() - elif reduction == "none": - return (top_ks == labels[:, None]).float().sum(dim=-1) - - def on_train_epoch_start(self): - # save some memory - self.diffusion_model.model.to('cpu') - - @torch.no_grad() - def write_logs(self, loss, logits, targets): - log_prefix = 'train' if self.training else 'val' - log = {} - log[f"{log_prefix}/loss"] = loss.mean() - log[f"{log_prefix}/acc@1"] = self.compute_top_k( - logits, targets, k=1, reduction="mean" - ) - log[f"{log_prefix}/acc@5"] = self.compute_top_k( - logits, targets, k=5, reduction="mean" - ) - - self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True) - self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False) - self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True) - lr = self.optimizers().param_groups[0]['lr'] - self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True) - - def shared_step(self, batch, t=None): - x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key) - targets = self.get_conditioning(batch) - if targets.dim() == 4: - targets = targets.argmax(dim=1) - if t is None: - t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long() - else: - t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long() - x_noisy = self.get_x_noisy(x, t) - logits = self(x_noisy, t) - - loss = F.cross_entropy(logits, targets, reduction='none') - - self.write_logs(loss.detach(), logits.detach(), targets.detach()) - - loss = loss.mean() - return loss, logits, x_noisy, targets - - def training_step(self, batch, batch_idx): - loss, *_ = self.shared_step(batch) - return loss - - def reset_noise_accs(self): - self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in - range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)} - - def on_validation_start(self): - self.reset_noise_accs() - - @torch.no_grad() - def validation_step(self, batch, batch_idx): - loss, *_ = self.shared_step(batch) - - for t in self.noisy_acc: - _, logits, _, targets = self.shared_step(batch, t) - self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean')) - self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean')) - - return loss - - def configure_optimizers(self): - optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay) - - if self.use_scheduler: - scheduler = instantiate_from_config(self.scheduler_config) - - print("Setting up LambdaLR scheduler...") - scheduler = [ - { - 'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule), - 'interval': 'step', - 'frequency': 1 - }] - return [optimizer], scheduler - - return optimizer - - @torch.no_grad() - def log_images(self, batch, N=8, *args, **kwargs): - log = dict() - x = self.get_input(batch, self.diffusion_model.first_stage_key) - log['inputs'] = x - - y = self.get_conditioning(batch) - - if self.label_key == 'class_label': - y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) - log['labels'] = y - - if ismap(y): - log['labels'] = self.diffusion_model.to_rgb(y) - - for step in range(self.log_steps): - current_time = step * self.log_time_interval - - _, logits, x_noisy, _ = self.shared_step(batch, t=current_time) - - log[f'inputs@t{current_time}'] = x_noisy - - pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes) - pred = rearrange(pred, 'b h w c -> b c h w') - - log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred) - - for key in log: - log[key] = log[key][:N] - - return log diff --git a/3DTopia/ldm/models/diffusion/ddim.py b/3DTopia/ldm/models/diffusion/ddim.py deleted file mode 100644 index fb31215db5c3f3f703f15987d7eee6a179c9f7ec..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/models/diffusion/ddim.py +++ /dev/null @@ -1,241 +0,0 @@ -"""SAMPLING ONLY.""" - -import torch -import numpy as np -from tqdm import tqdm -from functools import partial - -from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, \ - extract_into_tensor - - -class DDIMSampler(object): - def __init__(self, model, schedule="linear", **kwargs): - super().__init__() - self.model = model - self.ddpm_num_timesteps = model.num_timesteps - self.schedule = schedule - - def register_buffer(self, name, attr): - if type(attr) == torch.Tensor: - if attr.device != torch.device("cuda"): - attr = attr.to(torch.device("cuda")) - setattr(self, name, attr) - - def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): - self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, - num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) - alphas_cumprod = self.model.alphas_cumprod - assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' - to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) - - self.register_buffer('betas', to_torch(self.model.betas)) - self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) - self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) - - # calculations for diffusion q(x_t | x_{t-1}) and others - self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) - self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) - self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) - self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) - self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) - - # ddim sampling parameters - ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), - ddim_timesteps=self.ddim_timesteps, - eta=ddim_eta,verbose=verbose) - self.register_buffer('ddim_sigmas', ddim_sigmas) - self.register_buffer('ddim_alphas', ddim_alphas) - self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) - self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) - sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( - (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( - 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) - self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) - - @torch.no_grad() - def sample(self, - S, - batch_size, - shape, - conditioning=None, - callback=None, - normals_sequence=None, - img_callback=None, - quantize_x0=False, - eta=0., - mask=None, - x0=None, - temperature=1., - noise_dropout=0., - score_corrector=None, - corrector_kwargs=None, - verbose=True, - x_T=None, - log_every_t=100, - unconditional_guidance_scale=1., - unconditional_conditioning=None, - # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... - **kwargs - ): - if conditioning is not None: - if isinstance(conditioning, dict): - cbs = conditioning[list(conditioning.keys())[0]].shape[0] - if cbs != batch_size: - print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") - else: - if conditioning.shape[0] != batch_size: - print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") - - self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) - # sampling - C, H, W = shape - size = (batch_size, C, H, W) - print(f'Data shape for DDIM sampling is {size}, eta {eta}') - - samples, intermediates = self.ddim_sampling(conditioning, size, - callback=callback, - img_callback=img_callback, - quantize_denoised=quantize_x0, - mask=mask, x0=x0, - ddim_use_original_steps=False, - noise_dropout=noise_dropout, - temperature=temperature, - score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - x_T=x_T, - log_every_t=log_every_t, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning, - ) - return samples, intermediates - - @torch.no_grad() - def ddim_sampling(self, cond, shape, - x_T=None, ddim_use_original_steps=False, - callback=None, timesteps=None, quantize_denoised=False, - mask=None, x0=None, img_callback=None, log_every_t=100, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, - unconditional_guidance_scale=1., unconditional_conditioning=None,): - device = self.model.betas.device - b = shape[0] - if x_T is None: - img = torch.randn(shape, device=device) - else: - img = x_T - - if timesteps is None: - timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps - elif timesteps is not None and not ddim_use_original_steps: - subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 - timesteps = self.ddim_timesteps[:subset_end] - - intermediates = {'x_inter': [img], 'pred_x0': [img]} - time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps) - total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] - print(f"Running DDIM Sampling with {total_steps} timesteps") - - iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) - - for i, step in enumerate(iterator): - index = total_steps - i - 1 - ts = torch.full((b,), step, device=device, dtype=torch.long) - - if mask is not None: - assert x0 is not None - img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? - img = img_orig * mask + (1. - mask) * img - - outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, - quantize_denoised=quantize_denoised, temperature=temperature, - noise_dropout=noise_dropout, score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning) - img, pred_x0 = outs - if callback: callback(i) - if img_callback: img_callback(pred_x0, i) - - if index % log_every_t == 0 or index == total_steps - 1: - intermediates['x_inter'].append(img) - intermediates['pred_x0'].append(pred_x0) - - return img, intermediates - - @torch.no_grad() - def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, - unconditional_guidance_scale=1., unconditional_conditioning=None): - b, *_, device = *x.shape, x.device - - if unconditional_conditioning is None or unconditional_guidance_scale == 1.: - e_t = self.model.apply_model(x, t, c) - else: - x_in = torch.cat([x] * 2) - t_in = torch.cat([t] * 2) - c_in = torch.cat([unconditional_conditioning, c]) - e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) - e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) - - if score_corrector is not None: - assert self.model.parameterization == "eps" - e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) - - alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas - alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev - sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas - sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas - # select parameters corresponding to the currently considered timestep - a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) - a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) - sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) - sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) - - # current prediction for x_0 - pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() - if quantize_denoised: - pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) - # direction pointing to x_t - dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t - noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature - if noise_dropout > 0.: - noise = torch.nn.functional.dropout(noise, p=noise_dropout) - x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise - return x_prev, pred_x0 - - @torch.no_grad() - def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): - # fast, but does not allow for exact reconstruction - # t serves as an index to gather the correct alphas - if use_original_steps: - sqrt_alphas_cumprod = self.sqrt_alphas_cumprod - sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod - else: - sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) - sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas - - if noise is None: - noise = torch.randn_like(x0) - return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + - extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise) - - @torch.no_grad() - def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None, - use_original_steps=False): - - timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps - timesteps = timesteps[:t_start] - - time_range = np.flip(timesteps) - total_steps = timesteps.shape[0] - print(f"Running DDIM Sampling with {total_steps} timesteps") - - iterator = tqdm(time_range, desc='Decoding image', total=total_steps) - x_dec = x_latent - for i, step in enumerate(iterator): - index = total_steps - i - 1 - ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long) - x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning) - return x_dec \ No newline at end of file diff --git a/3DTopia/ldm/models/diffusion/ddpm.py b/3DTopia/ldm/models/diffusion/ddpm.py deleted file mode 100644 index 79a84e0632a2303d6a863e27a72e55a34fa629bb..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/models/diffusion/ddpm.py +++ /dev/null @@ -1,1746 +0,0 @@ -""" -wild mixture of -https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py -https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py -https://github.com/CompVis/taming-transformers --- merci -""" - -import os -import wandb -import torch -import imageio -import torch.nn as nn -import numpy as np -import pytorch_lightning as pl -from torch.optim.lr_scheduler import LambdaLR -from einops import rearrange, repeat -from contextlib import contextmanager -from functools import partial -from tqdm import tqdm -from torchvision.utils import make_grid -from pytorch_lightning.utilities.rank_zero import rank_zero_only - -from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config -from ldm.modules.ema import LitEma -from module.model_2d import DiagonalGaussianDistribution -from ldm.modules.distributions.distributions import normal_kl -from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL -from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like -from ldm.models.diffusion.ddim import DDIMSampler -from utility.triplane_renderer.renderer import to8b - - -__conditioning_keys__ = {'concat': 'c_concat', - 'crossattn': 'c_crossattn', - 'adm': 'y'} - - -def disabled_train(self, mode=True): - """Overwrite model.train with this function to make sure train/eval mode - does not change anymore.""" - return self - - -def uniform_on_device(r1, r2, shape, device): - return (r1 - r2) * torch.rand(*shape, device=device) + r2 - - -class DDPM(pl.LightningModule): - # classic DDPM with Gaussian diffusion, in image space - def __init__(self, - unet_config, - timesteps=1000, - beta_schedule="linear", - loss_type="l2", - ckpt_path=None, - ignore_keys=[], - load_only_unet=False, - monitor="val/loss", - use_ema=True, - first_stage_key="image", - image_size=256, - channels=3, - log_every_t=100, - clip_denoised=True, - linear_start=1e-4, - linear_end=2e-2, - cosine_s=8e-3, - given_betas=None, - original_elbo_weight=0., - v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta - l_simple_weight=1., - conditioning_key=None, - parameterization="eps", # all assuming fixed variance schedules - scheduler_config=None, - use_positional_encodings=False, - learn_logvar=False, - logvar_init=0., - learning_rate=1e-4, - shift_scale=None, - ): - super().__init__() - assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"' - self.parameterization = parameterization - print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode") - self.cond_stage_model = None - self.clip_denoised = clip_denoised - self.log_every_t = log_every_t - self.first_stage_key = first_stage_key - self.image_size = image_size # try conv? - self.channels = channels - self.use_positional_encodings = use_positional_encodings - self.beta_schedule = beta_schedule - self.model = DiffusionWrapper(unet_config, conditioning_key) - count_params(self.model, verbose=True) - self.use_ema = use_ema - if self.use_ema: - self.model_ema = LitEma(self.model) - print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") - - self.use_scheduler = scheduler_config is not None - if self.use_scheduler: - self.scheduler_config = scheduler_config - - self.v_posterior = v_posterior - self.original_elbo_weight = original_elbo_weight - self.l_simple_weight = l_simple_weight - - if monitor is not None: - self.monitor = monitor - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) - - self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, - linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s, shift_scale=shift_scale) - - self.loss_type = loss_type - - self.learn_logvar = learn_logvar - self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) - if self.learn_logvar: - self.logvar = nn.Parameter(self.logvar, requires_grad=True) - - self.learning_rate = learning_rate - - - def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, - linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3, shift_scale=None): - if exists(given_betas): - betas = given_betas - else: - betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, - cosine_s=cosine_s, shift_scale=shift_scale) - alphas = 1. - betas - alphas_cumprod = np.cumprod(alphas, axis=0) - alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) - - timesteps, = betas.shape - self.num_timesteps = int(timesteps) - print("Using timesteps of {}".format(self.num_timesteps)) - self.linear_start = linear_start - self.linear_end = linear_end - assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' - - to_torch = partial(torch.tensor, dtype=torch.float32) - - self.register_buffer('betas', to_torch(betas)) - self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) - self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) - - # calculations for diffusion q(x_t | x_{t-1}) and others - self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) - # print("sqrt_alphas_cumprod", np.sqrt(alphas_cumprod)) - self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) - self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) - self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) - self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) - - # calculations for posterior q(x_{t-1} | x_t, x_0) - posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( - 1. - alphas_cumprod) + self.v_posterior * betas - # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) - self.register_buffer('posterior_variance', to_torch(posterior_variance)) - # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain - self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) - self.register_buffer('posterior_mean_coef1', to_torch( - betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) - self.register_buffer('posterior_mean_coef2', to_torch( - (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) - - if self.parameterization == "eps": - lvlb_weights = self.betas ** 2 / ( - 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) - elif self.parameterization == "x0": - lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) - elif self.parameterization == "v": - lvlb_weights = torch.ones_like(self.betas ** 2 / ( - 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))) - else: - raise NotImplementedError("mu not supported") - # TODO how to choose this term - lvlb_weights[0] = lvlb_weights[1] - self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) - assert not torch.isnan(self.lvlb_weights).all() - - @contextmanager - def ema_scope(self, context=None): - if self.use_ema: - self.model_ema.store(self.model.parameters()) - self.model_ema.copy_to(self.model) - if context is not None: - print(f"{context}: Switched to EMA weights") - try: - yield None - finally: - if self.use_ema: - self.model_ema.restore(self.model.parameters()) - if context is not None: - print(f"{context}: Restored training weights") - - def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): - sd = torch.load(path, map_location="cpu") - if "state_dict" in list(sd.keys()): - sd = sd["state_dict"] - keys = list(sd.keys()) - for k in keys: - for ik in ignore_keys: - if k.startswith(ik): - print("Deleting key {} from state_dict.".format(k)) - del sd[k] - missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( - sd, strict=False) - print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") - if len(missing) > 0: - print(f"Missing Keys: {missing}") - if len(unexpected) > 0: - print(f"Unexpected Keys: {unexpected}") - - def q_mean_variance(self, x_start, t): - """ - Get the distribution q(x_t | x_0). - :param x_start: the [N x C x ...] tensor of noiseless inputs. - :param t: the number of diffusion steps (minus 1). Here, 0 means one step. - :return: A tuple (mean, variance, log_variance), all of x_start's shape. - """ - mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) - variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) - log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) - return mean, variance, log_variance - - def predict_start_from_noise(self, x_t, t, noise): - return ( - extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise - ) - - def predict_start_from_z_and_v(self, x_t, t, v): - # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) - # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) - return ( - extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t - - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v - ) - - def predict_eps_from_z_and_v(self, x_t, t, v): - return ( - extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v + - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t - ) - - def q_posterior(self, x_start, x_t, t): - posterior_mean = ( - extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + - extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t - ) - posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) - posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) - return posterior_mean, posterior_variance, posterior_log_variance_clipped - - def p_mean_variance(self, x, t, clip_denoised: bool): - model_out = self.model(x, t) - if self.parameterization == "eps": - x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) - elif self.parameterization == "x0": - x_recon = model_out - elif self.parameterization == "v": - x_recon = self.predict_start_from_z_and_v(x, t, model_out) - if clip_denoised: - x_recon.clamp_(-1., 1.) - - model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) - return model_mean, posterior_variance, posterior_log_variance - - @torch.no_grad() - def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): - b, *_, device = *x.shape, x.device - model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) - noise = noise_like(x.shape, device, repeat_noise) - # no noise when t == 0 - nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise - - @torch.no_grad() - def p_sample_loop(self, shape, return_intermediates=False): - device = self.betas.device - b = shape[0] - img = torch.randn(shape, device=device) - intermediates = [img] - for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): - img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), - clip_denoised=self.clip_denoised) - if i % self.log_every_t == 0 or i == self.num_timesteps - 1: - intermediates.append(img) - if return_intermediates: - return img, intermediates - return img - - @torch.no_grad() - def sample(self, batch_size=16, return_intermediates=False): - image_size = self.image_size - channels = self.channels - return self.p_sample_loop((batch_size, channels, image_size, image_size), - return_intermediates=return_intermediates) - - def q_sample(self, x_start, t, noise=None): - noise = default(noise, lambda: torch.randn_like(x_start)) - return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) - - def get_v(self, x, noise, t): - return ( - extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise - - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x - ) - - def get_loss(self, pred, target, mean=True): - if self.loss_type == 'l1': - loss = (target - pred).abs() - if mean: - loss = loss.mean() - elif self.loss_type == 'l2': - if mean: - loss = torch.nn.functional.mse_loss(target, pred) - else: - loss = torch.nn.functional.mse_loss(target, pred, reduction='none') - else: - raise NotImplementedError("unknown loss type '{loss_type}'") - - return loss - - def p_losses(self, x_start, t, noise=None): - noise = default(noise, lambda: torch.randn_like(x_start)) - x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) - model_out = self.model(x_noisy, t) - - loss_dict = {} - if self.parameterization == "eps": - target = noise - elif self.parameterization == "x0": - target = x_start - elif self.parameterization == "v": - target = self.get_v(x_start, noise, t) - else: - raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported") - - loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) - - log_prefix = 'train' if self.training else 'val' - - loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()}) - loss_simple = loss.mean() * self.l_simple_weight - - loss_vlb = (self.lvlb_weights[t] * loss).mean() - loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb}) - - loss = loss_simple + self.original_elbo_weight * loss_vlb - - loss_dict.update({f'{log_prefix}/loss': loss}) - - return loss, loss_dict - - def forward(self, x, *args, **kwargs): - # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size - # assert h == img_size and w == img_size, f'height and width of image must be {img_size}' - t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() - return self.p_losses(x, t, *args, **kwargs) - - def get_input(self, batch, k): - x = batch[k] - if isinstance(x, list): - return x - if len(x.shape) == 3: - x = x[..., None] - # x = rearrange(x, 'b h w c -> b c h w') - x = x.to(memory_format=torch.contiguous_format).float() - return x - - def shared_step(self, batch): - x = self.get_input(batch, self.first_stage_key) - loss, loss_dict = self(x) - return loss, loss_dict - - def training_step(self, batch, batch_idx): - loss, loss_dict = self.shared_step(batch) - - self.log_dict(loss_dict, prog_bar=False, - logger=True, on_step=True, on_epoch=True) - - self.log("global_step", self.global_step, - prog_bar=False, logger=True, on_step=True, on_epoch=False) - - if self.use_scheduler: - lr = self.optimizers().param_groups[0]['lr'] - self.log('lr_abs', lr, prog_bar=False, logger=True, on_step=True, on_epoch=False) - - return loss - - @torch.no_grad() - def validation_step(self, batch, batch_idx): - _, loss_dict_no_ema = self.shared_step(batch) - with self.ema_scope(): - _, loss_dict_ema = self.shared_step(batch) - loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema} - self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) - self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) - - def on_train_batch_end(self, *args, **kwargs): - if self.use_ema: - self.model_ema(self.model) - - def _get_rows_from_list(self, samples): - n_imgs_per_row = len(samples) - denoise_grid = rearrange(samples, 'n b c h w -> b n c h w') - denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') - denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) - return denoise_grid - - @torch.no_grad() - def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): - log = dict() - x = self.get_input(batch, self.first_stage_key) - N = min(x.shape[0], N) - n_row = min(x.shape[0], n_row) - x = x.to(self.device)[:N] - log["inputs"] = x - - # get diffusion row - diffusion_row = list() - x_start = x[:n_row] - - for t in range(self.num_timesteps): - if t % self.log_every_t == 0 or t == self.num_timesteps - 1: - t = repeat(torch.tensor([t]), '1 -> b', b=n_row) - t = t.to(self.device).long() - noise = torch.randn_like(x_start) - x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) - diffusion_row.append(x_noisy) - - log["diffusion_row"] = self._get_rows_from_list(diffusion_row) - - if sample: - # get denoise row - with self.ema_scope("Plotting"): - samples, denoise_row = self.sample(batch_size=N, return_intermediates=True) - - log["samples"] = samples - log["denoise_row"] = self._get_rows_from_list(denoise_row) - - if return_keys: - if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: - return log - else: - return {key: log[key] for key in return_keys} - return log - - def configure_optimizers(self): - lr = self.learning_rate - params = list(self.model.parameters()) - if self.learn_logvar: - params = params + [self.logvar] - opt = torch.optim.AdamW(params, lr=lr) - return opt - - -class LatentDiffusion(DDPM): - """main class""" - def __init__(self, - first_stage_config, - cond_stage_config, - num_timesteps_cond=None, - cond_stage_key="image", - cond_stage_trainable=False, - concat_mode=True, - cond_stage_forward=None, - conditioning_key=None, - scale_factor=1.0, - scale_shift=0.0, - scale_by_std=False, - use_3daware=False, - *args, **kwargs): - self.num_timesteps_cond = default(num_timesteps_cond, 1) - self.scale_by_std = scale_by_std - assert self.num_timesteps_cond <= kwargs['timesteps'] - # for backwards compatibility after implementation of DiffusionWrapper - if conditioning_key is None: - conditioning_key = 'concat' if concat_mode else 'crossattn' - if cond_stage_config == '__is_unconditional__': - conditioning_key = None - ckpt_path = kwargs.pop("ckpt_path", None) - ignore_keys = kwargs.pop("ignore_keys", []) - super().__init__(conditioning_key=conditioning_key, *args, **kwargs) - self.concat_mode = concat_mode - self.cond_stage_trainable = cond_stage_trainable - self.cond_stage_key = cond_stage_key - try: - self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 - except: - self.num_downs = 0 - if not scale_by_std: - self.scale_factor = scale_factor - self.scale_shift = scale_shift - else: - self.register_buffer('scale_factor', torch.tensor(scale_factor)) - self.instantiate_first_stage(first_stage_config) - self.instantiate_cond_stage(cond_stage_config) - self.cond_stage_forward = cond_stage_forward - self.clip_denoised = False - self.bbox_tokenizer = None - - self.restarted_from_ckpt = False - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys) - self.restarted_from_ckpt = True - - self.use_3daware = use_3daware - - self.is_test = False - - self.test_mode = None - self.test_tag = "" - - def make_cond_schedule(self, ): - self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) - ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() - self.cond_ids[:self.num_timesteps_cond] = ids - - @rank_zero_only - @torch.no_grad() - def on_train_batch_start(self, batch, batch_idx): - # only for very first batch - if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: - assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' - # set rescale weight to 1./std of encodings - print("### USING STD-RESCALING ###") - x = super().get_input(batch, self.first_stage_key) - x = x.to(self.device) - encoder_posterior = self.encode_first_stage(x) - z = self.get_first_stage_encoding(encoder_posterior).detach() - del self.scale_factor - self.register_buffer('scale_factor', 1. / z.flatten().std()) - print(f"setting self.scale_factor to {self.scale_factor}") - print("### USING STD-RESCALING ###") - - def register_schedule(self, - given_betas=None, beta_schedule="linear", timesteps=1000, - linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3, shift_scale=None): - super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s, shift_scale) - - self.shorten_cond_schedule = self.num_timesteps_cond > 1 - if self.shorten_cond_schedule: - self.make_cond_schedule() - - def instantiate_first_stage(self, config): - model = instantiate_from_config(config) - self.first_stage_model = model.eval() - self.first_stage_model.train = disabled_train - for param in self.first_stage_model.parameters(): - param.requires_grad = False - - def instantiate_cond_stage(self, config): - if not self.cond_stage_trainable: - if config == "__is_first_stage__": - print("Using first stage also as cond stage.") - self.cond_stage_model = self.first_stage_model - elif config == "__is_unconditional__": - print(f"Training {self.__class__.__name__} as an unconditional model.") - self.cond_stage_model = None - # self.be_unconditional = True - else: - model = instantiate_from_config(config) - self.cond_stage_model = model.eval() - self.cond_stage_model.train = disabled_train - for param in self.cond_stage_model.parameters(): - param.requires_grad = False - else: - assert config != '__is_first_stage__' - assert config != '__is_unconditional__' - model = instantiate_from_config(config) - self.cond_stage_model = model - - def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False): - denoise_row = [] - for zd in tqdm(samples, desc=desc): - denoise_row.append(self.decode_first_stage(zd.to(self.device), - force_not_quantize=force_no_decoder_quantization)) - n_imgs_per_row = len(denoise_row) - denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W - denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') - denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') - denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) - return denoise_grid - - def get_first_stage_encoding(self, encoder_posterior): - if isinstance(encoder_posterior, DiagonalGaussianDistribution): - z = encoder_posterior.mode() - # z = encoder_posterior.sample() - elif isinstance(encoder_posterior, torch.Tensor): - z = encoder_posterior - else: - raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") - return self.scale_factor * (z + self.scale_shift) - - def get_learned_conditioning(self, c): - if self.cond_stage_forward is None: - if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): - c = self.cond_stage_model.encode(c) - if isinstance(c, DiagonalGaussianDistribution): - c = c.mode() - else: - c = self.cond_stage_model(c).float() - else: - assert hasattr(self.cond_stage_model, self.cond_stage_forward) - c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) - return c - - def meshgrid(self, h, w): - y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) - x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) - - arr = torch.cat([y, x], dim=-1) - return arr - - def delta_border(self, h, w): - """ - :param h: height - :param w: width - :return: normalized distance to image border, - wtith min distance = 0 at border and max dist = 0.5 at image center - """ - lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) - arr = self.meshgrid(h, w) / lower_right_corner - dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] - dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] - edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0] - return edge_dist - - def get_weighting(self, h, w, Ly, Lx, device): - weighting = self.delta_border(h, w) - weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"], - self.split_input_params["clip_max_weight"], ) - weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) - - if self.split_input_params["tie_braker"]: - L_weighting = self.delta_border(Ly, Lx) - L_weighting = torch.clip(L_weighting, - self.split_input_params["clip_min_tie_weight"], - self.split_input_params["clip_max_tie_weight"]) - - L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) - weighting = weighting * L_weighting - return weighting - - def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code - """ - :param x: img of size (bs, c, h, w) - :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) - """ - bs, nc, h, w = x.shape - - # number of crops in image - Ly = (h - kernel_size[0]) // stride[0] + 1 - Lx = (w - kernel_size[1]) // stride[1] + 1 - - if uf == 1 and df == 1: - fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) - unfold = torch.nn.Unfold(**fold_params) - - fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) - - weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype) - normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap - weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) - - elif uf > 1 and df == 1: - fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) - unfold = torch.nn.Unfold(**fold_params) - - fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), - dilation=1, padding=0, - stride=(stride[0] * uf, stride[1] * uf)) - fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2) - - weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype) - normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap - weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)) - - elif df > 1 and uf == 1: - fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) - unfold = torch.nn.Unfold(**fold_params) - - fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df), - dilation=1, padding=0, - stride=(stride[0] // df, stride[1] // df)) - fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2) - - weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype) - normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap - weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)) - - else: - raise NotImplementedError - - return fold, unfold, normalization, weighting - - @torch.no_grad() - def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False, - cond_key=None, return_original_cond=False, bs=None): - x = super().get_input(batch, k) - if bs is not None: - x = x[:bs] - x = x.to(self.device) - encoder_posterior = self.encode_first_stage(x) - z = self.get_first_stage_encoding(encoder_posterior).detach() - - if self.model.conditioning_key is not None: - if cond_key is None: - cond_key = self.cond_stage_key - if cond_key != self.first_stage_key: - if cond_key in ['caption', 'coordinates_bbox']: - xc = batch[cond_key] - elif cond_key == 'class_label': - xc = batch - else: - xc = super().get_input(batch, cond_key).to(self.device) - else: - xc = x - if not self.cond_stage_trainable or force_c_encode: - if isinstance(xc, dict) or isinstance(xc, list): - # import pudb; pudb.set_trace() - c = self.get_learned_conditioning(xc) - else: - c = self.get_learned_conditioning(xc.to(self.device)) - else: - c = xc - if bs is not None: - c = c[:bs] - - if self.use_positional_encodings: - pos_x, pos_y = self.compute_latent_shifts(batch) - ckey = __conditioning_keys__[self.model.conditioning_key] - c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y} - - else: - c = None - xc = None - if self.use_positional_encodings: - pos_x, pos_y = self.compute_latent_shifts(batch) - c = {'pos_x': pos_x, 'pos_y': pos_y} - out = [z, c] - if return_first_stage_outputs: - xrec = self.decode_first_stage(z) - out.extend([x, xrec]) - if return_original_cond: - out.append(xc) - - return out - - @torch.no_grad() - def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): - # assert not predict_cids - # if predict_cids: - # if z.dim() == 4: - # z = torch.argmax(z.exp(), dim=1).long() - # z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) - # z = rearrange(z, 'b h w c -> b c h w').contiguous() - - # import os - # import random - # import string - # z_np = z.detach().cpu().numpy() - # fname = ''.join(random.choices(string.ascii_uppercase + string.digits, k=8)) + '.npy' - # with open(os.path.join('/mnt/lustre/hongfangzhou.p/AE3D/tmp', fname), 'wb') as f: - # np.save(f, z_np) - - z = 1. / self.scale_factor * z - self.scale_shift - - # if hasattr(self, "split_input_params"): - # if self.split_input_params["patch_distributed_vq"]: - # ks = self.split_input_params["ks"] # eg. (128, 128) - # stride = self.split_input_params["stride"] # eg. (64, 64) - # uf = self.split_input_params["vqf"] - # bs, nc, h, w = z.shape - # if ks[0] > h or ks[1] > w: - # ks = (min(ks[0], h), min(ks[1], w)) - # print("reducing Kernel") - - # if stride[0] > h or stride[1] > w: - # stride = (min(stride[0], h), min(stride[1], w)) - # print("reducing stride") - - # fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) - - # z = unfold(z) # (bn, nc * prod(**ks), L) - # # 1. Reshape to img shape - # z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - # # 2. apply model loop over last dim - # if isinstance(self.first_stage_model, VQModelInterface): - # output_list = [self.first_stage_model.decode(z[:, :, :, :, i], - # force_not_quantize=predict_cids or force_not_quantize) - # for i in range(z.shape[-1])] - # else: - - # output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) - # for i in range(z.shape[-1])] - - # o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) - # o = o * weighting - # # Reverse 1. reshape to img shape - # o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # # stitch crops together - # decoded = fold(o) - # decoded = decoded / normalization # norm is shape (1, 1, h, w) - # return decoded - # else: - # if isinstance(self.first_stage_model, VQModelInterface): - # return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) - # else: - # return self.first_stage_model.decode(z) - - # else: - # if isinstance(self.first_stage_model, VQModelInterface): - # return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) - # else: - return self.first_stage_model.decode(z, unrollout=True) - - # same as above but without decorator - def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): - if predict_cids: - if z.dim() == 4: - z = torch.argmax(z.exp(), dim=1).long() - z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) - z = rearrange(z, 'b h w c -> b c h w').contiguous() - - z = 1. / self.scale_factor * z - self.scale_shift - - if hasattr(self, "split_input_params"): - if self.split_input_params["patch_distributed_vq"]: - ks = self.split_input_params["ks"] # eg. (128, 128) - stride = self.split_input_params["stride"] # eg. (64, 64) - uf = self.split_input_params["vqf"] - bs, nc, h, w = z.shape - if ks[0] > h or ks[1] > w: - ks = (min(ks[0], h), min(ks[1], w)) - print("reducing Kernel") - - if stride[0] > h or stride[1] > w: - stride = (min(stride[0], h), min(stride[1], w)) - print("reducing stride") - - fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) - - z = unfold(z) # (bn, nc * prod(**ks), L) - # 1. Reshape to img shape - z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - # 2. apply model loop over last dim - if isinstance(self.first_stage_model, VQModelInterface): - output_list = [self.first_stage_model.decode(z[:, :, :, :, i], - force_not_quantize=predict_cids or force_not_quantize) - for i in range(z.shape[-1])] - else: - - output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) - for i in range(z.shape[-1])] - - o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) - o = o * weighting - # Reverse 1. reshape to img shape - o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # stitch crops together - decoded = fold(o) - decoded = decoded / normalization # norm is shape (1, 1, h, w) - return decoded - else: - if isinstance(self.first_stage_model, VQModelInterface): - return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) - else: - return self.first_stage_model.decode(z) - - else: - if isinstance(self.first_stage_model, VQModelInterface): - return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) - else: - return self.first_stage_model.decode(z) - - @torch.no_grad() - def encode_first_stage(self, x): - # if hasattr(self, "split_input_params"): - # if self.split_input_params["patch_distributed_vq"]: - # ks = self.split_input_params["ks"] # eg. (128, 128) - # stride = self.split_input_params["stride"] # eg. (64, 64) - # df = self.split_input_params["vqf"] - # self.split_input_params['original_image_size'] = x.shape[-2:] - # bs, nc, h, w = x.shape - # if ks[0] > h or ks[1] > w: - # ks = (min(ks[0], h), min(ks[1], w)) - # print("reducing Kernel") - - # if stride[0] > h or stride[1] > w: - # stride = (min(stride[0], h), min(stride[1], w)) - # print("reducing stride") - - # fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df) - # z = unfold(x) # (bn, nc * prod(**ks), L) - # # Reshape to img shape - # z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - # output_list = [self.first_stage_model.encode(z[:, :, :, :, i]) - # for i in range(z.shape[-1])] - - # o = torch.stack(output_list, axis=-1) - # o = o * weighting - - # # Reverse reshape to img shape - # o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # # stitch crops together - # decoded = fold(o) - # decoded = decoded / normalization - # return decoded - - # else: - # return self.first_stage_model.encode(x) - # else: - return self.first_stage_model.encode(x, rollout=True) - - def get_norm(self, x): - norm = torch.linalg.norm(x, dim=-1, keepdim=True) - norm[norm == 0] = 1 - - assert norm.shape[-1] == 1 - assert norm.shape[0] == x.shape[0] - assert norm.shape[1] == x.shape[1] - assert x.shape[1] == 1 - - return norm - - def random_text_feature_noise(self, c): - noise = torch.randn_like(c) - # alpha = 0.999 - alpha = 1 - nc = alpha * c / self.get_norm(c) + (1 - alpha) * noise / self.get_norm(noise) - nc = nc / self.get_norm(nc) - - import random - if random.randint(0, 10) == 0: - nc[:] = 0 - nc = c - - return nc - - def shared_step(self, batch, **kwargs): - x, c = self.get_input(batch, self.first_stage_key) - # print("Random augment text feature...") - c = self.random_text_feature_noise(c) - loss = self(x, c) - return loss - - def forward(self, x, c=None, return_inter=False, *args, **kwargs): - t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() - if self.model.conditioning_key is not None: - assert c is not None - if self.cond_stage_trainable: - c = self.get_learned_conditioning(c) - if self.shorten_cond_schedule: # TODO: drop this option - tc = self.cond_ids[t].to(self.device) - c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) - return self.p_losses(x, c, t, return_inter=return_inter, *args, **kwargs) - - def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset - def rescale_bbox(bbox): - x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) - y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) - w = min(bbox[2] / crop_coordinates[2], 1 - x0) - h = min(bbox[3] / crop_coordinates[3], 1 - y0) - return x0, y0, w, h - - return [rescale_bbox(b) for b in bboxes] - - def to3daware(self, triplane): - res = triplane.shape[-2] - plane1 = triplane[..., :res] - plane2 = triplane[..., res:2*res] - plane3 = triplane[..., 2*res:3*res] - - x_mp = torch.nn.AvgPool2d((res, 1)) - y_mp = torch.nn.AvgPool2d((1, res)) - x_mp_rep = lambda i: x_mp(i).repeat(1, 1, res, 1).permute(0, 1, 3, 2) - y_mp_rep = lambda i: y_mp(i).repeat(1, 1, 1, res).permute(0, 1, 3, 2) - # for plane1 - plane21 = x_mp_rep(plane2) - plane31 = torch.flip(y_mp_rep(plane3), (3,)) - new_plane1 = torch.cat([plane1, plane21, plane31], 1) - # for plane2 - plane12 = y_mp_rep(plane1) - plane32 = x_mp_rep(plane3) - new_plane2 = torch.cat([plane2, plane12, plane32], 1) - # for plane3 - plane13 = torch.flip(x_mp_rep(plane1), (2,)) - plane23 = y_mp_rep(plane2) - new_plane3 = torch.cat([plane3, plane13, plane23], 1) - - new_plane = torch.cat([new_plane1, new_plane2, new_plane3], -1).contiguous() - return new_plane - - # B, C, H, W = h.shape - # h_xy = th.cat([h[..., 0:(W//3)], h[..., (W//3):(2*W//3)].mean(-1).unsqueeze(-1).repeat(1, 1, 1, W//3), h[..., (2*W//3):W].mean(-2).unsqueeze(-2).repeat(1, 1, H, 1)], 1) - # h_xz = th.cat([h[..., (W//3):(2*W//3)], h[..., 0:(W//3)].mean(-1).unsqueeze(-1).repeat(1, 1, 1, W//3), h[..., (2*W//3):W].mean(-1).unsqueeze(-1).repeat(1, 1, 1, W//3)], 1) - # h_zy = th.cat([h[..., (2*W//3):W], h[..., 0:(W//3)].mean(-2).unsqueeze(-2).repeat(1, 1, H, 1), h[..., (W//3):(2*W//3)].mean(-2).unsqueeze(-2).repeat(1, 1, H, 1)], 1) - # h = th.cat([h_xy, h_xz, h_zy], -1) - - def apply_model(self, x_noisy, t, cond, return_ids=False): - - if isinstance(cond, dict): - # hybrid case, cond is exptected to be a dict - pass - else: - if not isinstance(cond, list): - cond = [cond] - key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' - cond = {key: cond} - - if hasattr(self, "split_input_params"): - assert len(cond) == 1 # todo can only deal with one conditioning atm - assert not return_ids - ks = self.split_input_params["ks"] # eg. (128, 128) - stride = self.split_input_params["stride"] # eg. (64, 64) - - h, w = x_noisy.shape[-2:] - - fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride) - - z = unfold(x_noisy) # (bn, nc * prod(**ks), L) - # Reshape to img shape - z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])] - - if self.cond_stage_key in ["image", "LR_image", "segmentation", - 'bbox_img'] and self.model.conditioning_key: # todo check for completeness - c_key = next(iter(cond.keys())) # get key - c = next(iter(cond.values())) # get value - assert (len(c) == 1) # todo extend to list with more than one elem - c = c[0] # get element - - c = unfold(c) - c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])] - - elif self.cond_stage_key == 'coordinates_bbox': - assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size' - - # assuming padding of unfold is always 0 and its dilation is always 1 - n_patches_per_row = int((w - ks[0]) / stride[0] + 1) - full_img_h, full_img_w = self.split_input_params['original_image_size'] - # as we are operating on latents, we need the factor from the original image size to the - # spatial latent size to properly rescale the crops for regenerating the bbox annotations - num_downs = self.first_stage_model.encoder.num_resolutions - 1 - rescale_latent = 2 ** (num_downs) - - # get top left postions of patches as conforming for the bbbox tokenizer, therefore we - # need to rescale the tl patch coordinates to be in between (0,1) - tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w, - rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h) - for patch_nr in range(z.shape[-1])] - - # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w) - patch_limits = [(x_tl, y_tl, - rescale_latent * ks[0] / full_img_w, - rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates] - # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates] - - # tokenize crop coordinates for the bounding boxes of the respective patches - patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device) - for bbox in patch_limits] # list of length l with tensors of shape (1, 2) - print(patch_limits_tknzd[0].shape) - # cut tknzd crop position from conditioning - assert isinstance(cond, dict), 'cond must be dict to be fed into model' - cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device) - print(cut_cond.shape) - - adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd]) - adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n') - print(adapted_cond.shape) - adapted_cond = self.get_learned_conditioning(adapted_cond) - print(adapted_cond.shape) - adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1]) - print(adapted_cond.shape) - - cond_list = [{'c_crossattn': [e]} for e in adapted_cond] - - else: - cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient - - # apply model by loop over crops - output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])] - assert not isinstance(output_list[0], - tuple) # todo cant deal with multiple model outputs check this never happens - - o = torch.stack(output_list, axis=-1) - o = o * weighting - # Reverse reshape to img shape - o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # stitch crops together - x_recon = fold(o) / normalization - - else: - if self.use_3daware: - x_noisy_3daware = self.to3daware(x_noisy) - x_recon = self.model(x_noisy_3daware, t, **cond) - else: - x_recon = self.model(x_noisy, t, **cond) - - if isinstance(x_recon, tuple) and not return_ids: - return x_recon[0] - else: - return x_recon - - def _predict_eps_from_xstart(self, x_t, t, pred_xstart): - return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) - - def _prior_bpd(self, x_start): - """ - Get the prior KL term for the variational lower-bound, measured in - bits-per-dim. - This term can't be optimized, as it only depends on the encoder. - :param x_start: the [N x C x ...] tensor of inputs. - :return: a batch of [N] KL values (in bits), one per batch element. - """ - batch_size = x_start.shape[0] - t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) - qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) - kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) - return mean_flat(kl_prior) / np.log(2.0) - - def p_losses(self, x_start, cond, t, noise=None, return_inter=False): - noise = default(noise, lambda: torch.randn_like(x_start)) - x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) - model_output = self.apply_model(x_noisy, t, cond) - - loss_dict = {} - prefix = 'train' if self.training else 'val' - - if self.parameterization == "x0": - target = x_start - elif self.parameterization == "eps": - target = noise - elif self.parameterization == "v": - target = self.get_v(x_start, noise, t) - else: - raise NotImplementedError() - - loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) - loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) - - logvar_t = self.logvar[t.to(self.logvar.device)].to(self.device) - loss = loss_simple / torch.exp(logvar_t) + logvar_t - # loss = loss_simple / torch.exp(self.logvar) + self.logvar - if self.learn_logvar: - loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) - loss_dict.update({'logvar': self.logvar.data.mean()}) - - loss = self.l_simple_weight * loss.mean() - - loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) - loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() - loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) - loss += (self.original_elbo_weight * loss_vlb) - loss_dict.update({f'{prefix}/loss': loss}) - - if return_inter: - return loss, loss_dict, self.predict_start_from_noise(x_noisy, t=t, noise=model_output) - else: - return loss, loss_dict - - def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, - return_x0=False, score_corrector=None, corrector_kwargs=None): - t_in = t - model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) - - if score_corrector is not None: - assert self.parameterization == "eps" - model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) - - if return_codebook_ids: - model_out, logits = model_out - - if self.parameterization == "eps": - x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) - elif self.parameterization == "x0": - x_recon = model_out - elif self.parameterization == "v": - x_recon = self.predict_start_from_z_and_v(x, t, model_out) - else: - raise NotImplementedError() - - if clip_denoised: - x_recon.clamp_(-1., 1.) - if quantize_denoised: - x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) - model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) - if return_codebook_ids: - return model_mean, posterior_variance, posterior_log_variance, logits - elif return_x0: - return model_mean, posterior_variance, posterior_log_variance, x_recon - else: - return model_mean, posterior_variance, posterior_log_variance - - @torch.no_grad() - def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, - return_codebook_ids=False, quantize_denoised=False, return_x0=False, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): - b, *_, device = *x.shape, x.device - outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, - return_codebook_ids=return_codebook_ids, - quantize_denoised=quantize_denoised, - return_x0=return_x0, - score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) - if return_codebook_ids: - raise DeprecationWarning("Support dropped.") - model_mean, _, model_log_variance, logits = outputs - elif return_x0: - model_mean, _, model_log_variance, x0 = outputs - else: - model_mean, _, model_log_variance = outputs - - noise = noise_like(x.shape, device, repeat_noise) * temperature - if noise_dropout > 0.: - noise = torch.nn.functional.dropout(noise, p=noise_dropout) - # no noise when t == 0 - nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) - - if return_codebook_ids: - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) - if return_x0: - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 - else: - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise - - @torch.no_grad() - def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, - img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., - score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, - log_every_t=None): - if not log_every_t: - log_every_t = self.log_every_t - timesteps = self.num_timesteps - if batch_size is not None: - b = batch_size if batch_size is not None else shape[0] - shape = [batch_size] + list(shape) - else: - b = batch_size = shape[0] - if x_T is None: - img = torch.randn(shape, device=self.device) - else: - img = x_T - intermediates = [] - if cond is not None: - if isinstance(cond, dict): - cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} - else: - cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] - - if start_T is not None: - timesteps = min(timesteps, start_T) - iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', - total=timesteps) if verbose else reversed( - range(0, timesteps)) - if type(temperature) == float: - temperature = [temperature] * timesteps - - for i in iterator: - ts = torch.full((b,), i, device=self.device, dtype=torch.long) - if self.shorten_cond_schedule: - assert self.model.conditioning_key != 'hybrid' - tc = self.cond_ids[ts].to(cond.device) - cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) - - img, x0_partial = self.p_sample(img, cond, ts, - clip_denoised=self.clip_denoised, - quantize_denoised=quantize_denoised, return_x0=True, - temperature=temperature[i], noise_dropout=noise_dropout, - score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) - if mask is not None: - assert x0 is not None - img_orig = self.q_sample(x0, ts) - img = img_orig * mask + (1. - mask) * img - - if i % log_every_t == 0 or i == timesteps - 1: - intermediates.append(x0_partial) - if callback: callback(i) - if img_callback: img_callback(img, i) - return img, intermediates - - @torch.no_grad() - def p_sample_loop(self, cond, shape, return_intermediates=False, - x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, - mask=None, x0=None, img_callback=None, start_T=None, - log_every_t=None): - - if not log_every_t: - log_every_t = self.log_every_t - device = self.betas.device - b = shape[0] - if x_T is None: - img = torch.randn(shape, device=device) - else: - img = x_T - - intermediates = [img] - if timesteps is None: - timesteps = self.num_timesteps - - if start_T is not None: - timesteps = min(timesteps, start_T) - iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( - range(0, timesteps)) - - if mask is not None: - assert x0 is not None - assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match - - for i in iterator: - ts = torch.full((b,), i, device=device, dtype=torch.long) - if self.shorten_cond_schedule: - assert self.model.conditioning_key != 'hybrid' - tc = self.cond_ids[ts].to(cond.device) - cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) - - # if self.is_test and i % 50 == 0: - # decode_res = self.decode_first_stage(img) - # rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder( - # decode_res, self.batch_rays, self.batch_img, - # ) - # rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0] - # imageio.imwrite(os.path.join(self.logger.log_dir, "sample_process_{}.png".format(i)), rgb_sample) - # colorize_res = self.first_stage_model.to_rgb(img) - # imageio.imwrite(os.path.join(self.logger.log_dir, "sample_process_latent_{}.png".format(i)), colorize_res[0]) - - img = self.p_sample(img, cond, ts, - clip_denoised=self.clip_denoised, - quantize_denoised=quantize_denoised) - if mask is not None: - img_orig = self.q_sample(x0, ts) - img = img_orig * mask + (1. - mask) * img - - if i % log_every_t == 0 or i == timesteps - 1: - intermediates.append(img) - if callback: callback(i) - if img_callback: img_callback(img, i) - - if return_intermediates: - return img, intermediates - return img - - @torch.no_grad() - def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, - verbose=True, timesteps=None, quantize_denoised=False, - mask=None, x0=None, shape=None,**kwargs): - if shape is None: - shape = (batch_size, self.channels, self.image_size, self.image_size * 3) - if cond is not None: - if isinstance(cond, dict): - cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} - else: - cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] - return self.p_sample_loop(cond, - shape, - return_intermediates=return_intermediates, x_T=x_T, - verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, - mask=mask, x0=x0) - - @torch.no_grad() - def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs): - - if ddim: - ddim_sampler = DDIMSampler(self) - shape = (self.channels, self.image_size, self.image_size) - samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size, - shape,cond,verbose=False,**kwargs) - - else: - samples, intermediates = self.sample(cond=cond, batch_size=batch_size, - return_intermediates=True,**kwargs) - - return samples, intermediates - - @torch.no_grad() - def validation_step(self, batch, batch_idx): - # x, c = self.get_input(batch, self.first_stage_key) - # self.batch_rays = batch['batch_rays'][0][1:2] - # self.batch_img = batch['img'][0][1:2] - # self.is_test = True - # self.test_schedule(x[0:1]) - # exit(0) - - _, loss_dict_no_ema = self.shared_step(batch) - with self.ema_scope(): - # _, loss_dict_ema = self.shared_step(batch) - x, c = self.get_input(batch, self.first_stage_key) - _, loss_dict_ema, inter_res = self(x, c, return_inter=True) - loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema} - self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True, sync_dist=True) - self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True, sync_dist=True) - - if batch_idx < 2: - if self.num_timesteps < 1000: - x_T = self.q_sample(x_start=x[0:1], t=torch.full((1,), self.num_timesteps-1, device=x.device, dtype=torch.long), noise=torch.randn_like(x[0:1])) - print("Specifying x_T when sampling!") - else: - x_T = None - with self.ema_scope(): - res = self.sample(c, 1, shape=x[0:1].shape, x_T = x_T) - decode_res = self.decode_first_stage(res) - decode_input = self.decode_first_stage(x[:1]) - decode_output = self.decode_first_stage(inter_res[:1]) - - colorize_res = self.first_stage_model.to_rgb(res)[0] - colorize_x = self.first_stage_model.to_rgb(x[:1])[0] - # imageio.imwrite(os.path.join(self.logger.log_dir, "sample_{}_{}.png".format(batch_idx, 0)), colorize_res[0]) - # imageio.imwrite(os.path.join(self.logger.log_dir, "gt_{}_{}.png".format(batch_idx, 0)), colorize_x[0]) - - rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder( - decode_res, batch['batch_rays'][0], batch['img'][0], - ) - rgb_input, _ = self.first_stage_model.render_triplane_eg3d_decoder( - decode_input, batch['batch_rays'][0], batch['img'][0], - ) - rgb_output, _ = self.first_stage_model.render_triplane_eg3d_decoder( - decode_output, batch['batch_rays'][0], batch['img'][0], - ) - rgb_sample = to8b(rgb_sample.detach().cpu().numpy()) - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_output = to8b(rgb_output.detach().cpu().numpy()) - - if rgb_sample.shape[0] == 1: - rgb_all = np.concatenate([rgb_sample[0], rgb_input[0], rgb_output[0]], 1) - else: - rgb_all = np.concatenate([rgb_sample[1], rgb_input[1], rgb_output[1]], 1) - - rgb_all = np.stack([rgb_all[..., 2], rgb_all[..., 1], rgb_all[..., 0]], -1) - - if self.model.conditioning_key is not None: - if self.cond_stage_key == 'img_cond': - cond_img = super().get_input(batch, self.cond_stage_key)[0].permute(1, 2, 0) - rgb_all = np.concatenate([rgb_all, to8b(cond_img.cpu().numpy())], 1) - else: - import cv2 - font = cv2.FONT_HERSHEY_SIMPLEX - # org - org = (50, 50) - # fontScale - fontScale = 1 - # Blue color in BGR - color = (255, 0, 0) - # Line thickness of 2 px - thickness = 2 - caption = super().get_input(batch, self.cond_stage_key)[0] - break_caption = [] - for i in range(len(caption) // 30 + 1): - break_caption_i = caption[i*30:(i+1)*30] - break_caption.append(break_caption_i) - for i, bci in enumerate(break_caption): - cv2.putText(rgb_all, bci, (50, 50*(i+1)), font, fontScale, color, thickness, cv2.LINE_AA) - - self.logger.experiment.log({ - "val/vis": [wandb.Image(rgb_all)], - "val/colorize_rse": [wandb.Image(colorize_res)], - "val/colorize_x": [wandb.Image(colorize_x)], - }) - - @torch.no_grad() - def test_schedule(self, x_start, freq=50): - noise = torch.randn_like(x_start) - img_list = [] - latent_list = [] - for t in tqdm(range(self.num_timesteps)): - if t % freq == 0: - t_long = torch.Tensor([t,]).long().to(x_start.device) - x_noisy = self.q_sample(x_start=x_start, t=t_long, noise=noise) - decode_res = self.decode_first_stage(x_noisy) - rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder( - decode_res, self.batch_rays, self.batch_img, - ) - rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0] - # imageio.imwrite(os.path.join(self.logger.log_dir, "add_noise_{}.png".format(t)), rgb_sample) - colorize_res = self.first_stage_model.to_rgb(x_noisy) - # imageio.imwrite(os.path.join(self.logger.log_dir, "add_noise_latent_{}.png".format(t)), colorize_res[0]) - img_list.append(rgb_sample) - latent_list.append(colorize_res[0]) - imageio.imwrite(os.path.join(self.logger.log_dir, "add_noise_{}_{}_{}_{}.png".format(self.linear_start, self.linear_end, self.beta_schedule, self.scale_factor)), np.concatenate(img_list, 1)) - imageio.imwrite(os.path.join(self.logger.log_dir, "add_noise_latent_{}_{}_{}_{}.png".format(self.linear_start, self.linear_end, self.beta_schedule, self.scale_factor)), np.concatenate(latent_list, 1)) - - @torch.no_grad() - def test_step(self, batch, batch_idx): - x, c = self.get_input(batch, self.first_stage_key) - if self.test_mode == 'fid': - bs = x.shape[0] - else: - bs = 1 - if self.test_mode == 'noise_schedule': - self.batch_rays = batch['batch_rays'][0][33:34] - self.batch_img = batch['img'][0][33:34] - self.is_test = True - self.test_schedule(x) - exit(0) - with self.ema_scope(): - if c is not None: - res = self.sample(c[:bs], bs, shape=x[0:bs].shape) - else: - res = self.sample(None, bs, shape=x[0:bs].shape) - decode_res = self.decode_first_stage(res) - if self.test_mode == 'fid': - folder = os.path.join(self.logger.log_dir, 'FID_' + self.test_tag) - if not os.path.exists(folder): - os.makedirs(folder, exist_ok=True) - rgb_sample_list = [] - for b in range(bs): - rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder( - decode_res[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb_sample = to8b(rgb_sample.detach().cpu().numpy()) - rgb_sample_list.append(rgb_sample) - for i in range(len(rgb_sample_list)): - for v in range(rgb_sample_list[i].shape[0]): - imageio.imwrite(os.path.join(folder, "sample_{}_{}_{}.png".format(batch_idx, i, v)), rgb_sample_list[i][v]) - elif self.test_mode == 'sample': - colorize_res = self.first_stage_model.to_rgb(res) - colorize_x = self.first_stage_model.to_rgb(x[:1]) - imageio.imwrite(os.path.join(self.logger.log_dir, "sample_{}_{}.png".format(batch_idx, 0)), colorize_res[0]) - imageio.imwrite(os.path.join(self.logger.log_dir, "gt_{}_{}.png".format(batch_idx, 0)), colorize_x[0]) - if self.model.conditioning_key is not None: - cond_img = super().get_input(batch, self.cond_stage_key)[0].permute(1, 2, 0) - cond_img = to8b(cond_img.cpu().numpy()) - imageio.imwrite(os.path.join(self.logger.log_dir, "cond_{}_{}.png".format(batch_idx, 0)), cond_img) - for b in range(bs): - video = [] - for v in tqdm(range(batch['batch_rays'].shape[1])): - rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder( - decode_res[b:b+1], batch['batch_rays'][0][v:v+1], batch['img'][0][v:v+1], - ) - rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0] - video.append(rgb_sample) - imageio.mimwrite(os.path.join(self.logger.log_dir, "sample_{}_{}.mp4".format(batch_idx, b)), video, fps=24) - print("Saving to {}".format(os.path.join(self.logger.log_dir, "sample_{}_{}.mp4".format(batch_idx, b)))) - - @torch.no_grad() - def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, - quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, - plot_diffusion_rows=True, **kwargs): - - use_ddim = ddim_steps is not None - - log = dict() - z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, - return_first_stage_outputs=True, - force_c_encode=True, - return_original_cond=True, - bs=N) - N = min(x.shape[0], N) - n_row = min(x.shape[0], n_row) - log["inputs"] = x - log["reconstruction"] = xrec - if self.model.conditioning_key is not None: - if hasattr(self.cond_stage_model, "decode"): - xc = self.cond_stage_model.decode(c) - log["conditioning"] = xc - elif self.cond_stage_key in ["caption"]: - xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"]) - log["conditioning"] = xc - elif self.cond_stage_key == 'class_label': - xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) - log['conditioning'] = xc - elif isimage(xc): - log["conditioning"] = xc - if ismap(xc): - log["original_conditioning"] = self.to_rgb(xc) - - if plot_diffusion_rows: - # get diffusion row - diffusion_row = list() - z_start = z[:n_row] - for t in range(self.num_timesteps): - if t % self.log_every_t == 0 or t == self.num_timesteps - 1: - t = repeat(torch.tensor([t]), '1 -> b', b=n_row) - t = t.to(self.device).long() - noise = torch.randn_like(z_start) - z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) - diffusion_row.append(self.decode_first_stage(z_noisy)) - - diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W - diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') - diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') - diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) - log["diffusion_row"] = diffusion_grid - - if sample: - # get denoise row - with self.ema_scope("Plotting"): - samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, - ddim_steps=ddim_steps,eta=ddim_eta) - # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) - x_samples = self.decode_first_stage(samples) - log["samples"] = x_samples - if plot_denoise_rows: - denoise_grid = self._get_denoise_row_from_list(z_denoise_row) - log["denoise_row"] = denoise_grid - - if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance( - self.first_stage_model, IdentityFirstStage): - # also display when quantizing x0 while sampling - with self.ema_scope("Plotting Quantized Denoised"): - samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, - ddim_steps=ddim_steps,eta=ddim_eta, - quantize_denoised=True) - # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, - # quantize_denoised=True) - x_samples = self.decode_first_stage(samples.to(self.device)) - log["samples_x0_quantized"] = x_samples - - if inpaint: - # make a simple center square - b, h, w = z.shape[0], z.shape[2], z.shape[3] - mask = torch.ones(N, h, w).to(self.device) - # zeros will be filled in - mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. - mask = mask[:, None, ...] - with self.ema_scope("Plotting Inpaint"): - - samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta, - ddim_steps=ddim_steps, x0=z[:N], mask=mask) - x_samples = self.decode_first_stage(samples.to(self.device)) - log["samples_inpainting"] = x_samples - log["mask"] = mask - - # outpaint - with self.ema_scope("Plotting Outpaint"): - samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta, - ddim_steps=ddim_steps, x0=z[:N], mask=mask) - x_samples = self.decode_first_stage(samples.to(self.device)) - log["samples_outpainting"] = x_samples - - if plot_progressive_rows: - with self.ema_scope("Plotting Progressives"): - img, progressives = self.progressive_denoising(c, - shape=(self.channels, self.image_size, self.image_size), - batch_size=N) - prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") - log["progressive_row"] = prog_row - - if return_keys: - if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: - return log - else: - return {key: log[key] for key in return_keys} - return log - - def configure_optimizers(self): - lr = self.learning_rate - params = list(self.model.parameters()) - if self.cond_stage_trainable: - print(f"{self.__class__.__name__}: Also optimizing conditioner params!") - params = params + list(self.cond_stage_model.parameters()) - if self.learn_logvar: - print('Diffusion model optimizing logvar') - params.append(self.logvar) - opt = torch.optim.AdamW(params, lr=lr) - if self.use_scheduler: - assert 'target' in self.scheduler_config - scheduler = instantiate_from_config(self.scheduler_config) - - print("Setting up LambdaLR scheduler...") - scheduler = [ - { - 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), - 'interval': 'step', - 'frequency': 1 - }] - return [opt], scheduler - return opt - - @torch.no_grad() - def to_rgb(self, x): - x = x.float() - if not hasattr(self, "colorize"): - self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) - x = nn.functional.conv2d(x, weight=self.colorize) - x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. - return x - - - -class DiffusionWrapper(pl.LightningModule): - def __init__(self, diff_model_config, conditioning_key): - super().__init__() - self.diffusion_model = instantiate_from_config(diff_model_config) - self.conditioning_key = conditioning_key - assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm'] - - def forward(self, x, t, c_concat: list = None, c_crossattn: list = None): - if self.conditioning_key is None: - out = self.diffusion_model(x, t) - elif self.conditioning_key == 'concat': - xc = torch.cat([x] + c_concat, dim=1) - out = self.diffusion_model(xc, t) - elif self.conditioning_key == 'crossattn': - cc = torch.cat(c_crossattn, 1) - out = self.diffusion_model(x, t, context=cc) - elif self.conditioning_key == 'hybrid': - xc = torch.cat([x] + c_concat, dim=1) - cc = torch.cat(c_crossattn, 1) - out = self.diffusion_model(xc, t, context=cc) - elif self.conditioning_key == 'adm': - cc = c_crossattn[0] - out = self.diffusion_model(x, t, y=cc) - else: - raise NotImplementedError() - - return out - - -class Layout2ImgDiffusion(LatentDiffusion): - # TODO: move all layout-specific hacks to this class - def __init__(self, cond_stage_key, *args, **kwargs): - assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' - super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs) - - def log_images(self, batch, N=8, *args, **kwargs): - logs = super().log_images(batch=batch, N=N, *args, **kwargs) - - key = 'train' if self.training else 'validation' - dset = self.trainer.datamodule.datasets[key] - mapper = dset.conditional_builders[self.cond_stage_key] - - bbox_imgs = [] - map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno)) - for tknzd_bbox in batch[self.cond_stage_key][:N]: - bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256)) - bbox_imgs.append(bboximg) - - cond_img = torch.stack(bbox_imgs, dim=0) - logs['bbox_image'] = cond_img - return logs diff --git a/3DTopia/ldm/models/diffusion/ddpm_preprocess.py b/3DTopia/ldm/models/diffusion/ddpm_preprocess.py deleted file mode 100644 index 74926ca5dcfd7e4b1f283e7cd03de42ced5e74ee..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/models/diffusion/ddpm_preprocess.py +++ /dev/null @@ -1,1716 +0,0 @@ -""" -wild mixture of -https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py -https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py -https://github.com/CompVis/taming-transformers --- merci -""" - -import os -import wandb -import torch -import imageio -import torch.nn as nn -import numpy as np -import pytorch_lightning as pl -from torch.optim.lr_scheduler import LambdaLR -from einops import rearrange, repeat -from contextlib import contextmanager -from functools import partial -from tqdm import tqdm -from torchvision.utils import make_grid -from pytorch_lightning.utilities.rank_zero import rank_zero_only - -from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config -from ldm.modules.ema import LitEma -from module.model_2d import DiagonalGaussianDistribution -from ldm.modules.distributions.distributions import normal_kl -from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL -from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like -from ldm.models.diffusion.ddim import DDIMSampler -from utility.triplane_renderer.renderer import to8b - -import ipdb -__conditioning_keys__ = {'concat': 'c_concat', - 'crossattn': 'c_crossattn', - 'adm': 'y'} - - -def disabled_train(self, mode=True): - """Overwrite model.train with this function to make sure train/eval mode - does not change anymore.""" - return self - - -def uniform_on_device(r1, r2, shape, device): - return (r1 - r2) * torch.rand(*shape, device=device) + r2 - - -class DDPM(pl.LightningModule): - # classic DDPM with Gaussian diffusion, in image space - def __init__(self, - unet_config, - timesteps=1000, - beta_schedule="linear", - loss_type="l2", - ckpt_path=None, - ignore_keys=[], - load_only_unet=False, - monitor="val/loss", - use_ema=True, - first_stage_key="image", - image_size=256, - channels=3, - log_every_t=100, - clip_denoised=True, - linear_start=1e-4, - linear_end=2e-2, - cosine_s=8e-3, - given_betas=None, - original_elbo_weight=0., - v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta - l_simple_weight=1., - conditioning_key=None, - parameterization="eps", # all assuming fixed variance schedules - scheduler_config=None, - use_positional_encodings=False, - learn_logvar=False, - logvar_init=0., - learning_rate=1e-4, - shift_scale=None, - ): - super().__init__() - assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"' - self.parameterization = parameterization - print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode") - self.cond_stage_model = None - self.clip_denoised = clip_denoised - self.log_every_t = log_every_t - self.first_stage_key = first_stage_key - self.image_size = image_size # try conv? - self.channels = channels - self.use_positional_encodings = use_positional_encodings - self.beta_schedule = beta_schedule - self.model = DiffusionWrapper(unet_config, conditioning_key) - count_params(self.model, verbose=True) - self.use_ema = use_ema - if self.use_ema: - self.model_ema = LitEma(self.model) - print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") - - self.use_scheduler = scheduler_config is not None - if self.use_scheduler: - self.scheduler_config = scheduler_config - - self.v_posterior = v_posterior - self.original_elbo_weight = original_elbo_weight - self.l_simple_weight = l_simple_weight - - if monitor is not None: - self.monitor = monitor - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) - - self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, - linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s, shift_scale=shift_scale) - - self.loss_type = loss_type - - self.learn_logvar = learn_logvar - self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) - if self.learn_logvar: - self.logvar = nn.Parameter(self.logvar, requires_grad=True) - - self.learning_rate = learning_rate - - - def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, - linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3, shift_scale=None): - if exists(given_betas): - betas = given_betas - else: - betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, - cosine_s=cosine_s, shift_scale=shift_scale) - alphas = 1. - betas - alphas_cumprod = np.cumprod(alphas, axis=0) - alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) - - timesteps, = betas.shape - self.num_timesteps = int(timesteps) - print("Using timesteps of {}".format(self.num_timesteps)) - self.linear_start = linear_start - self.linear_end = linear_end - assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' - - to_torch = partial(torch.tensor, dtype=torch.float32) - - self.register_buffer('betas', to_torch(betas)) - self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) - self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) - - # calculations for diffusion q(x_t | x_{t-1}) and others - self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) - # print("sqrt_alphas_cumprod", np.sqrt(alphas_cumprod)) - self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) - self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) - self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) - self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) - - # calculations for posterior q(x_{t-1} | x_t, x_0) - posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( - 1. - alphas_cumprod) + self.v_posterior * betas - # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) - self.register_buffer('posterior_variance', to_torch(posterior_variance)) - # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain - self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) - self.register_buffer('posterior_mean_coef1', to_torch( - betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) - self.register_buffer('posterior_mean_coef2', to_torch( - (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) - - if self.parameterization == "eps": - lvlb_weights = self.betas ** 2 / ( - 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) - elif self.parameterization == "x0": - lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) - elif self.parameterization == "v": - lvlb_weights = torch.ones_like(self.betas ** 2 / ( - 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))) - else: - raise NotImplementedError("mu not supported") - # TODO how to choose this term - lvlb_weights[0] = lvlb_weights[1] - self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) - assert not torch.isnan(self.lvlb_weights).all() - - @contextmanager - def ema_scope(self, context=None): - if self.use_ema: - self.model_ema.store(self.model.parameters()) - self.model_ema.copy_to(self.model) - if context is not None: - print(f"{context}: Switched to EMA weights") - try: - yield None - finally: - if self.use_ema: - self.model_ema.restore(self.model.parameters()) - if context is not None: - print(f"{context}: Restored training weights") - - def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): - sd = torch.load(path, map_location="cpu") - if "state_dict" in list(sd.keys()): - sd = sd["state_dict"] - keys = list(sd.keys()) - for k in keys: - for ik in ignore_keys: - if k.startswith(ik): - print("Deleting key {} from state_dict.".format(k)) - del sd[k] - missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( - sd, strict=False) - print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") - if len(missing) > 0: - print(f"Missing Keys: {missing}") - if len(unexpected) > 0: - print(f"Unexpected Keys: {unexpected}") - - def q_mean_variance(self, x_start, t): - """ - Get the distribution q(x_t | x_0). - :param x_start: the [N x C x ...] tensor of noiseless inputs. - :param t: the number of diffusion steps (minus 1). Here, 0 means one step. - :return: A tuple (mean, variance, log_variance), all of x_start's shape. - """ - mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) - variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) - log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) - return mean, variance, log_variance - - def predict_start_from_noise(self, x_t, t, noise): - return ( - extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise - ) - - def predict_start_from_z_and_v(self, x_t, t, v): - # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) - # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) - return ( - extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t - - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v - ) - - def predict_eps_from_z_and_v(self, x_t, t, v): - return ( - extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v + - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t - ) - - def q_posterior(self, x_start, x_t, t): - posterior_mean = ( - extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + - extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t - ) - posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) - posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) - return posterior_mean, posterior_variance, posterior_log_variance_clipped - - def p_mean_variance(self, x, t, clip_denoised: bool): - model_out = self.model(x, t) - if self.parameterization == "eps": - x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) - elif self.parameterization == "x0": - x_recon = model_out - elif self.parameterization == "v": - x_recon = self.predict_start_from_z_and_v(x, t, model_out) - if clip_denoised: - x_recon.clamp_(-1., 1.) - - model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) - return model_mean, posterior_variance, posterior_log_variance - - @torch.no_grad() - def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): - b, *_, device = *x.shape, x.device - model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) - noise = noise_like(x.shape, device, repeat_noise) - # no noise when t == 0 - nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise - - @torch.no_grad() - def p_sample_loop(self, shape, return_intermediates=False): - device = self.betas.device - b = shape[0] - img = torch.randn(shape, device=device) - intermediates = [img] - for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): - img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), - clip_denoised=self.clip_denoised) - if i % self.log_every_t == 0 or i == self.num_timesteps - 1: - intermediates.append(img) - if return_intermediates: - return img, intermediates - return img - - @torch.no_grad() - def sample(self, batch_size=16, return_intermediates=False): - image_size = self.image_size - channels = self.channels - return self.p_sample_loop((batch_size, channels, image_size, image_size), - return_intermediates=return_intermediates) - - def q_sample(self, x_start, t, noise=None): - noise = default(noise, lambda: torch.randn_like(x_start)) - return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) - - def get_v(self, x, noise, t): - return ( - extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise - - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x - ) - - def get_loss(self, pred, target, mean=True): - if self.loss_type == 'l1': - loss = (target - pred).abs() - if mean: - loss = loss.mean() - elif self.loss_type == 'l2': - if mean: - loss = torch.nn.functional.mse_loss(target, pred) - else: - loss = torch.nn.functional.mse_loss(target, pred, reduction='none') - else: - raise NotImplementedError("unknown loss type '{loss_type}'") - - return loss - - def p_losses(self, x_start, t, noise=None): - noise = default(noise, lambda: torch.randn_like(x_start)) - x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) - model_out = self.model(x_noisy, t) - - loss_dict = {} - if self.parameterization == "eps": - target = noise - elif self.parameterization == "x0": - target = x_start - elif self.parameterization == "v": - target = self.get_v(x_start, noise, t) - else: - raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported") - - loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) - - log_prefix = 'train' if self.training else 'val' - - loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()}) - loss_simple = loss.mean() * self.l_simple_weight - - loss_vlb = (self.lvlb_weights[t] * loss).mean() - loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb}) - - loss = loss_simple + self.original_elbo_weight * loss_vlb - - loss_dict.update({f'{log_prefix}/loss': loss}) - - return loss, loss_dict - - def forward(self, x, *args, **kwargs): - # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size - # assert h == img_size and w == img_size, f'height and width of image must be {img_size}' - t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() - return self.p_losses(x, t, *args, **kwargs) - - def get_input(self, batch, k): - x = batch[k] - if isinstance(x, list): - return x - # if len(x.shape) == 3: - # x = x[..., None] - # x = rearrange(x, 'b h w c -> b c h w') - x = x.to(memory_format=torch.contiguous_format).float() - return x - - def shared_step(self, batch): - x = self.get_input(batch, self.first_stage_key) - loss, loss_dict = self(x) - return loss, loss_dict - - def training_step(self, batch, batch_idx): - loss, loss_dict = self.shared_step(batch) - - self.log_dict(loss_dict, prog_bar=False, - logger=True, on_step=True, on_epoch=True) - - self.log("global_step", self.global_step, - prog_bar=False, logger=True, on_step=True, on_epoch=False) - - if self.use_scheduler: - lr = self.optimizers().param_groups[0]['lr'] - self.log('lr_abs', lr, prog_bar=False, logger=True, on_step=True, on_epoch=False) - - return loss - - @torch.no_grad() - def validation_step(self, batch, batch_idx): - _, loss_dict_no_ema = self.shared_step(batch) - with self.ema_scope(): - _, loss_dict_ema = self.shared_step(batch) - loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema} - self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) - self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) - - def on_train_batch_end(self, *args, **kwargs): - if self.use_ema: - self.model_ema(self.model) - - def _get_rows_from_list(self, samples): - n_imgs_per_row = len(samples) - denoise_grid = rearrange(samples, 'n b c h w -> b n c h w') - denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') - denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) - return denoise_grid - - @torch.no_grad() - def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): - log = dict() - x = self.get_input(batch, self.first_stage_key) - N = min(x.shape[0], N) - n_row = min(x.shape[0], n_row) - x = x.to(self.device)[:N] - log["inputs"] = x - - # get diffusion row - diffusion_row = list() - x_start = x[:n_row] - - for t in range(self.num_timesteps): - if t % self.log_every_t == 0 or t == self.num_timesteps - 1: - t = repeat(torch.tensor([t]), '1 -> b', b=n_row) - t = t.to(self.device).long() - noise = torch.randn_like(x_start) - x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) - diffusion_row.append(x_noisy) - - log["diffusion_row"] = self._get_rows_from_list(diffusion_row) - - if sample: - # get denoise row - with self.ema_scope("Plotting"): - samples, denoise_row = self.sample(batch_size=N, return_intermediates=True) - - log["samples"] = samples - log["denoise_row"] = self._get_rows_from_list(denoise_row) - - if return_keys: - if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: - return log - else: - return {key: log[key] for key in return_keys} - return log - - def configure_optimizers(self): - lr = self.learning_rate - params = list(self.model.parameters()) - if self.learn_logvar: - params = params + [self.logvar] - opt = torch.optim.AdamW(params, lr=lr) - return opt - - -class LatentDiffusion(DDPM): - """main class""" - def __init__(self, - first_stage_config, - cond_stage_config, - num_timesteps_cond=None, - cond_stage_key="image", - cond_stage_trainable=False, - concat_mode=True, - cond_stage_forward=None, - conditioning_key=None, - scale_factor=1.0, - scale_shift=0.0, - scale_by_std=False, - use_3daware=False, - *args, **kwargs): - self.num_timesteps_cond = default(num_timesteps_cond, 1) - self.scale_by_std = scale_by_std - assert self.num_timesteps_cond <= kwargs['timesteps'] - # for backwards compatibility after implementation of DiffusionWrapper - if conditioning_key is None: - conditioning_key = 'concat' if concat_mode else 'crossattn' - if cond_stage_config == '__is_unconditional__': - conditioning_key = None - ckpt_path = kwargs.pop("ckpt_path", None) - ignore_keys = kwargs.pop("ignore_keys", []) - super().__init__(conditioning_key=conditioning_key, *args, **kwargs) - self.concat_mode = concat_mode - self.cond_stage_trainable = cond_stage_trainable - self.cond_stage_key = cond_stage_key - try: - self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 - except: - self.num_downs = 0 - if not scale_by_std: - self.scale_factor = scale_factor - self.scale_shift = scale_shift - else: - self.register_buffer('scale_factor', torch.tensor(scale_factor)) - self.instantiate_first_stage(first_stage_config) - # self.instantiate_cond_stage(cond_stage_config) - self.cond_stage_forward = cond_stage_forward - self.clip_denoised = False - self.bbox_tokenizer = None - - self.restarted_from_ckpt = False - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys) - self.restarted_from_ckpt = True - - self.use_3daware = use_3daware - - self.is_test = False - - self.test_mode = None - self.test_tag = "" - - def make_cond_schedule(self, ): - self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) - ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() - self.cond_ids[:self.num_timesteps_cond] = ids - - @rank_zero_only - @torch.no_grad() - def on_train_batch_start(self, batch, batch_idx): - # only for very first batch - if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: - assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' - # set rescale weight to 1./std of encodings - print("### USING STD-RESCALING ###") - x = super().get_input(batch, self.first_stage_key) - x = x.to(self.device) - encoder_posterior = self.encode_first_stage(x) - z = self.get_first_stage_encoding(encoder_posterior).detach() - del self.scale_factor - self.register_buffer('scale_factor', 1. / z.flatten().std()) - print(f"setting self.scale_factor to {self.scale_factor}") - print("### USING STD-RESCALING ###") - - def register_schedule(self, - given_betas=None, beta_schedule="linear", timesteps=1000, - linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3, shift_scale=None): - super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s, shift_scale) - - self.shorten_cond_schedule = self.num_timesteps_cond > 1 - if self.shorten_cond_schedule: - self.make_cond_schedule() - - def instantiate_first_stage(self, config): - model = instantiate_from_config(config) - self.first_stage_model = model.eval() - self.first_stage_model.train = disabled_train - for param in self.first_stage_model.parameters(): - param.requires_grad = False - - def instantiate_cond_stage(self, config): - if not self.cond_stage_trainable: - if config == "__is_first_stage__": - print("Using first stage also as cond stage.") - self.cond_stage_model = self.first_stage_model - elif config == "__is_unconditional__": - print(f"Training {self.__class__.__name__} as an unconditional model.") - self.cond_stage_model = None - # self.be_unconditional = True - else: - model = instantiate_from_config(config) - self.cond_stage_model = model.eval() - self.cond_stage_model.train = disabled_train - for param in self.cond_stage_model.parameters(): - param.requires_grad = False - else: - assert config != '__is_first_stage__' - assert config != '__is_unconditional__' - model = instantiate_from_config(config) - self.cond_stage_model = model - - def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False): - denoise_row = [] - for zd in tqdm(samples, desc=desc): - denoise_row.append(self.decode_first_stage(zd.to(self.device), - force_not_quantize=force_no_decoder_quantization)) - n_imgs_per_row = len(denoise_row) - denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W - denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') - denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') - denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) - return denoise_grid - - def get_first_stage_encoding(self, encoder_posterior): - if isinstance(encoder_posterior, DiagonalGaussianDistribution): - z = encoder_posterior.sample() - elif isinstance(encoder_posterior, torch.Tensor): - z = encoder_posterior - else: - raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") - return self.scale_factor * (z + self.scale_shift) - - def get_learned_conditioning(self, c): - if self.cond_stage_forward is None: - if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): - c = self.cond_stage_model.encode(c) - if isinstance(c, DiagonalGaussianDistribution): - c = c.mode() - else: - c = self.cond_stage_model(c).float() - else: - assert hasattr(self.cond_stage_model, self.cond_stage_forward) - c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) - return c - - def meshgrid(self, h, w): - y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) - x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) - - arr = torch.cat([y, x], dim=-1) - return arr - - def delta_border(self, h, w): - """ - :param h: height - :param w: width - :return: normalized distance to image border, - wtith min distance = 0 at border and max dist = 0.5 at image center - """ - lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) - arr = self.meshgrid(h, w) / lower_right_corner - dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] - dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] - edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0] - return edge_dist - - def get_weighting(self, h, w, Ly, Lx, device): - weighting = self.delta_border(h, w) - weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"], - self.split_input_params["clip_max_weight"], ) - weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) - - if self.split_input_params["tie_braker"]: - L_weighting = self.delta_border(Ly, Lx) - L_weighting = torch.clip(L_weighting, - self.split_input_params["clip_min_tie_weight"], - self.split_input_params["clip_max_tie_weight"]) - - L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) - weighting = weighting * L_weighting - return weighting - - def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code - """ - :param x: img of size (bs, c, h, w) - :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) - """ - bs, nc, h, w = x.shape - - # number of crops in image - Ly = (h - kernel_size[0]) // stride[0] + 1 - Lx = (w - kernel_size[1]) // stride[1] + 1 - - if uf == 1 and df == 1: - fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) - unfold = torch.nn.Unfold(**fold_params) - - fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) - - weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype) - normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap - weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) - - elif uf > 1 and df == 1: - fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) - unfold = torch.nn.Unfold(**fold_params) - - fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), - dilation=1, padding=0, - stride=(stride[0] * uf, stride[1] * uf)) - fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2) - - weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype) - normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap - weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)) - - elif df > 1 and uf == 1: - fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) - unfold = torch.nn.Unfold(**fold_params) - - fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df), - dilation=1, padding=0, - stride=(stride[0] // df, stride[1] // df)) - fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2) - - weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype) - normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap - weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)) - - else: - raise NotImplementedError - - return fold, unfold, normalization, weighting - - @torch.no_grad() - def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False, - cond_key=None, return_original_cond=False, bs=None): - #ipdb.set_trace() - x = super().get_input(batch, k) - if bs is not None: - x = x[:bs] - #ipdb.set_trace() - z = x.to(self.device) #[:1,:8,:32,:96] - z = self.scale_factor * (z + self.scale_shift) - # encoder_posterior = self.encode_first_stage(x) - # z = self.get_first_stage_encoding(encoder_posterior).detach() - #ipdb.set_trace() - if self.model.conditioning_key is not None: - if cond_key is None: - cond_key = self.cond_stage_key - if cond_key != self.first_stage_key: - if cond_key in ['caption', 'coordinates_bbox']: - xc = batch[cond_key] - elif cond_key == 'class_label': - xc = batch - else: - xc = super().get_input(batch, cond_key).to(self.device) - else: - xc = x - #ipdb.set_trace() - c = xc - if bs is not None: - c = c[:bs] - - if self.use_positional_encodings: - pos_x, pos_y = self.compute_latent_shifts(batch) - ckey = __conditioning_keys__[self.model.conditioning_key] - c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y} - - else: - c = None - xc = None - if self.use_positional_encodings: - pos_x, pos_y = self.compute_latent_shifts(batch) - c = {'pos_x': pos_x, 'pos_y': pos_y} - out = [z, c] - if return_first_stage_outputs: - xrec = self.decode_first_stage(z) - out.extend([x, xrec]) - if return_original_cond: - out.append(xc) - - return out - - @torch.no_grad() - def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): - # assert not predict_cids - # if predict_cids: - # if z.dim() == 4: - # z = torch.argmax(z.exp(), dim=1).long() - # z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) - # z = rearrange(z, 'b h w c -> b c h w').contiguous() - - # import os - # import random - # import string - # z_np = z.detach().cpu().numpy() - # fname = ''.join(random.choices(string.ascii_uppercase + string.digits, k=8)) + '.npy' - # with open(os.path.join('/mnt/lustre/hongfangzhou.p/AE3D/tmp', fname), 'wb') as f: - # np.save(f, z_np) - - z = 1. / self.scale_factor * z - self.scale_shift - - # if hasattr(self, "split_input_params"): - # if self.split_input_params["patch_distributed_vq"]: - # ks = self.split_input_params["ks"] # eg. (128, 128) - # stride = self.split_input_params["stride"] # eg. (64, 64) - # uf = self.split_input_params["vqf"] - # bs, nc, h, w = z.shape - # if ks[0] > h or ks[1] > w: - # ks = (min(ks[0], h), min(ks[1], w)) - # print("reducing Kernel") - - # if stride[0] > h or stride[1] > w: - # stride = (min(stride[0], h), min(stride[1], w)) - # print("reducing stride") - - # fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) - - # z = unfold(z) # (bn, nc * prod(**ks), L) - # # 1. Reshape to img shape - # z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - # # 2. apply model loop over last dim - # if isinstance(self.first_stage_model, VQModelInterface): - # output_list = [self.first_stage_model.decode(z[:, :, :, :, i], - # force_not_quantize=predict_cids or force_not_quantize) - # for i in range(z.shape[-1])] - # else: - - # output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) - # for i in range(z.shape[-1])] - - # o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) - # o = o * weighting - # # Reverse 1. reshape to img shape - # o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # # stitch crops together - # decoded = fold(o) - # decoded = decoded / normalization # norm is shape (1, 1, h, w) - # return decoded - # else: - # if isinstance(self.first_stage_model, VQModelInterface): - # return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) - # else: - # return self.first_stage_model.decode(z) - - # else: - # if isinstance(self.first_stage_model, VQModelInterface): - # return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) - # else: - return self.first_stage_model.decode(z, unrollout=True) - - # same as above but without decorator - def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): - if predict_cids: - if z.dim() == 4: - z = torch.argmax(z.exp(), dim=1).long() - z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) - z = rearrange(z, 'b h w c -> b c h w').contiguous() - - z = 1. / self.scale_factor * z - self.scale_shift - - if hasattr(self, "split_input_params"): - if self.split_input_params["patch_distributed_vq"]: - ks = self.split_input_params["ks"] # eg. (128, 128) - stride = self.split_input_params["stride"] # eg. (64, 64) - uf = self.split_input_params["vqf"] - bs, nc, h, w = z.shape - if ks[0] > h or ks[1] > w: - ks = (min(ks[0], h), min(ks[1], w)) - print("reducing Kernel") - - if stride[0] > h or stride[1] > w: - stride = (min(stride[0], h), min(stride[1], w)) - print("reducing stride") - - fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) - - z = unfold(z) # (bn, nc * prod(**ks), L) - # 1. Reshape to img shape - z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - # 2. apply model loop over last dim - if isinstance(self.first_stage_model, VQModelInterface): - output_list = [self.first_stage_model.decode(z[:, :, :, :, i], - force_not_quantize=predict_cids or force_not_quantize) - for i in range(z.shape[-1])] - else: - - output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) - for i in range(z.shape[-1])] - - o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) - o = o * weighting - # Reverse 1. reshape to img shape - o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # stitch crops together - decoded = fold(o) - decoded = decoded / normalization # norm is shape (1, 1, h, w) - return decoded - else: - if isinstance(self.first_stage_model, VQModelInterface): - return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) - else: - return self.first_stage_model.decode(z) - - else: - if isinstance(self.first_stage_model, VQModelInterface): - return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) - else: - return self.first_stage_model.decode(z) - - @torch.no_grad() - def encode_first_stage(self, x): - # if hasattr(self, "split_input_params"): - # if self.split_input_params["patch_distributed_vq"]: - # ks = self.split_input_params["ks"] # eg. (128, 128) - # stride = self.split_input_params["stride"] # eg. (64, 64) - # df = self.split_input_params["vqf"] - # self.split_input_params['original_image_size'] = x.shape[-2:] - # bs, nc, h, w = x.shape - # if ks[0] > h or ks[1] > w: - # ks = (min(ks[0], h), min(ks[1], w)) - # print("reducing Kernel") - - # if stride[0] > h or stride[1] > w: - # stride = (min(stride[0], h), min(stride[1], w)) - # print("reducing stride") - - # fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df) - # z = unfold(x) # (bn, nc * prod(**ks), L) - # # Reshape to img shape - # z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - # output_list = [self.first_stage_model.encode(z[:, :, :, :, i]) - # for i in range(z.shape[-1])] - - # o = torch.stack(output_list, axis=-1) - # o = o * weighting - - # # Reverse reshape to img shape - # o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # # stitch crops together - # decoded = fold(o) - # decoded = decoded / normalization - # return decoded - - # else: - # return self.first_stage_model.encode(x) - # else: - return self.first_stage_model.encode(x, rollout=True) - - def shared_step(self, batch, **kwargs): - x, c = self.get_input(batch, self.first_stage_key) - loss = self(x, c) - return loss - - def forward(self, x, cond=None, return_inter=False, *args, **kwargs): - t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() - #ipdb.set_trace() - if self.model.conditioning_key is not None: - assert cond is not None - if self.cond_stage_trainable: - cond = self.get_learned_conditioning(cond) - if self.shorten_cond_schedule: # TODO: drop this option - tc = self.cond_ids[t].to(self.device) - cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond.float())) - #ipdb.set_trace() - return self.p_losses(x, cond, t, return_inter=return_inter, *args, **kwargs) - - def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset - def rescale_bbox(bbox): - x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) - y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) - w = min(bbox[2] / crop_coordinates[2], 1 - x0) - h = min(bbox[3] / crop_coordinates[3], 1 - y0) - return x0, y0, w, h - - return [rescale_bbox(b) for b in bboxes] - - def to3daware(self, triplane): - res = triplane.shape[-2] - plane1 = triplane[..., :res] - plane2 = triplane[..., res:2*res] - plane3 = triplane[..., 2*res:3*res] - - x_mp = torch.nn.AvgPool2d((res, 1)) - y_mp = torch.nn.AvgPool2d((1, res)) - x_mp_rep = lambda i: x_mp(i).repeat(1, 1, res, 1).permute(0, 1, 3, 2) - y_mp_rep = lambda i: y_mp(i).repeat(1, 1, 1, res).permute(0, 1, 3, 2) - # for plane1 - plane21 = x_mp_rep(plane2) - plane31 = torch.flip(y_mp_rep(plane3), (3,)) - new_plane1 = torch.cat([plane1, plane21, plane31], 1) - # for plane2 - plane12 = y_mp_rep(plane1) - plane32 = x_mp_rep(plane3) - new_plane2 = torch.cat([plane2, plane12, plane32], 1) - # for plane3 - plane13 = torch.flip(x_mp_rep(plane1), (2,)) - plane23 = y_mp_rep(plane2) - new_plane3 = torch.cat([plane3, plane13, plane23], 1) - - new_plane = torch.cat([new_plane1, new_plane2, new_plane3], -1).contiguous() - return new_plane - - # B, C, H, W = h.shape - # h_xy = th.cat([h[..., 0:(W//3)], h[..., (W//3):(2*W//3)].mean(-1).unsqueeze(-1).repeat(1, 1, 1, W//3), h[..., (2*W//3):W].mean(-2).unsqueeze(-2).repeat(1, 1, H, 1)], 1) - # h_xz = th.cat([h[..., (W//3):(2*W//3)], h[..., 0:(W//3)].mean(-1).unsqueeze(-1).repeat(1, 1, 1, W//3), h[..., (2*W//3):W].mean(-1).unsqueeze(-1).repeat(1, 1, 1, W//3)], 1) - # h_zy = th.cat([h[..., (2*W//3):W], h[..., 0:(W//3)].mean(-2).unsqueeze(-2).repeat(1, 1, H, 1), h[..., (W//3):(2*W//3)].mean(-2).unsqueeze(-2).repeat(1, 1, H, 1)], 1) - # h = th.cat([h_xy, h_xz, h_zy], -1) - - def apply_model(self, x_noisy, t, cond, return_ids=False): - #ipdb.set_trace() - if isinstance(cond, dict): - # hybrid case, cond is exptected to be a dict - pass - else: - if not isinstance(cond, list): - cond = [cond] - key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' - cond = {key: cond} - - if hasattr(self, "split_input_params"): - assert len(cond) == 1 # todo can only deal with one conditioning atm - assert not return_ids - ks = self.split_input_params["ks"] # eg. (128, 128) - stride = self.split_input_params["stride"] # eg. (64, 64) - - h, w = x_noisy.shape[-2:] - - fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride) - - z = unfold(x_noisy) # (bn, nc * prod(**ks), L) - # Reshape to img shape - z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])] - - if self.cond_stage_key in ["image", "LR_image", "segmentation", - 'bbox_img'] and self.model.conditioning_key: # todo check for completeness - c_key = next(iter(cond.keys())) # get key - c = next(iter(cond.values())) # get value - assert (len(c) == 1) # todo extend to list with more than one elem - c = c[0] # get element - - c = unfold(c) - c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])] - - elif self.cond_stage_key == 'coordinates_bbox': - assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size' - - # assuming padding of unfold is always 0 and its dilation is always 1 - n_patches_per_row = int((w - ks[0]) / stride[0] + 1) - full_img_h, full_img_w = self.split_input_params['original_image_size'] - # as we are operating on latents, we need the factor from the original image size to the - # spatial latent size to properly rescale the crops for regenerating the bbox annotations - num_downs = self.first_stage_model.encoder.num_resolutions - 1 - rescale_latent = 2 ** (num_downs) - - # get top left postions of patches as conforming for the bbbox tokenizer, therefore we - # need to rescale the tl patch coordinates to be in between (0,1) - tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w, - rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h) - for patch_nr in range(z.shape[-1])] - - # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w) - patch_limits = [(x_tl, y_tl, - rescale_latent * ks[0] / full_img_w, - rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates] - # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates] - - # tokenize crop coordinates for the bounding boxes of the respective patches - patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device) - for bbox in patch_limits] # list of length l with tensors of shape (1, 2) - print(patch_limits_tknzd[0].shape) - # cut tknzd crop position from conditioning - assert isinstance(cond, dict), 'cond must be dict to be fed into model' - cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device) - print(cut_cond.shape) - - adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd]) - adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n') - print(adapted_cond.shape) - adapted_cond = self.get_learned_conditioning(adapted_cond) - print(adapted_cond.shape) - adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1]) - print(adapted_cond.shape) - - cond_list = [{'c_crossattn': [e]} for e in adapted_cond] - - else: - cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient - - # apply model by loop over crops - output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])] - assert not isinstance(output_list[0], - tuple) # todo cant deal with multiple model outputs check this never happens - - o = torch.stack(output_list, axis=-1) - o = o * weighting - # Reverse reshape to img shape - o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # stitch crops together - x_recon = fold(o) / normalization - - else: - if self.use_3daware: - x_noisy_3daware = self.to3daware(x_noisy) - x_recon = self.model(x_noisy_3daware, t, **cond) - else: - x_recon = self.model(x_noisy, t, **cond) - - if isinstance(x_recon, tuple) and not return_ids: - return x_recon[0] - else: - return x_recon - - def _predict_eps_from_xstart(self, x_t, t, pred_xstart): - return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) - - def _prior_bpd(self, x_start): - """ - Get the prior KL term for the variational lower-bound, measured in - bits-per-dim. - This term can't be optimized, as it only depends on the encoder. - :param x_start: the [N x C x ...] tensor of inputs. - :return: a batch of [N] KL values (in bits), one per batch element. - """ - batch_size = x_start.shape[0] - t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) - qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) - kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) - return mean_flat(kl_prior) / np.log(2.0) - - def p_losses(self, x_start, cond, t, noise=None, return_inter=False): - noise = default(noise, lambda: torch.randn_like(x_start)) - x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) - model_output = self.apply_model(x_noisy, t, cond) - - loss_dict = {} - prefix = 'train' if self.training else 'val' - - if self.parameterization == "x0": - target = x_start - elif self.parameterization == "eps": - target = noise - elif self.parameterization == "v": - target = self.get_v(x_start, noise, t) - else: - raise NotImplementedError() - - loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) - loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) - - logvar_t = self.logvar[t.to(self.logvar.device)].to(self.device) - loss = loss_simple / torch.exp(logvar_t) + logvar_t - # loss = loss_simple / torch.exp(self.logvar) + self.logvar - if self.learn_logvar: - loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) - loss_dict.update({'logvar': self.logvar.data.mean()}) - - loss = self.l_simple_weight * loss.mean() - - loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) - loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() - loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) - loss += (self.original_elbo_weight * loss_vlb) - loss_dict.update({f'{prefix}/loss': loss}) - - if return_inter: - return loss, loss_dict, self.predict_start_from_noise(x_noisy, t=t, noise=model_output) - else: - return loss, loss_dict - - def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, - return_x0=False, score_corrector=None, corrector_kwargs=None): - t_in = t - model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) - - if score_corrector is not None: - assert self.parameterization == "eps" - model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) - - if return_codebook_ids: - model_out, logits = model_out - - if self.parameterization == "eps": - x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) - elif self.parameterization == "x0": - x_recon = model_out - elif self.parameterization == "v": - x_recon = self.predict_start_from_z_and_v(x, t, model_out) - else: - raise NotImplementedError() - - if clip_denoised: - x_recon.clamp_(-1., 1.) - if quantize_denoised: - x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) - model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) - if return_codebook_ids: - return model_mean, posterior_variance, posterior_log_variance, logits - elif return_x0: - return model_mean, posterior_variance, posterior_log_variance, x_recon - else: - return model_mean, posterior_variance, posterior_log_variance - - @torch.no_grad() - def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, - return_codebook_ids=False, quantize_denoised=False, return_x0=False, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): - b, *_, device = *x.shape, x.device - outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, - return_codebook_ids=return_codebook_ids, - quantize_denoised=quantize_denoised, - return_x0=return_x0, - score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) - if return_codebook_ids: - raise DeprecationWarning("Support dropped.") - model_mean, _, model_log_variance, logits = outputs - elif return_x0: - model_mean, _, model_log_variance, x0 = outputs - else: - model_mean, _, model_log_variance = outputs - - noise = noise_like(x.shape, device, repeat_noise) * temperature - if noise_dropout > 0.: - noise = torch.nn.functional.dropout(noise, p=noise_dropout) - # no noise when t == 0 - nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) - - if return_codebook_ids: - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) - if return_x0: - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 - else: - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise - - @torch.no_grad() - def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, - img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., - score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, - log_every_t=None): - if not log_every_t: - log_every_t = self.log_every_t - timesteps = self.num_timesteps - if batch_size is not None: - b = batch_size if batch_size is not None else shape[0] - shape = [batch_size] + list(shape) - else: - b = batch_size = shape[0] - if x_T is None: - img = torch.randn(shape, device=self.device) - else: - img = x_T - intermediates = [] - if cond is not None: - if isinstance(cond, dict): - cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} - else: - cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] - - if start_T is not None: - timesteps = min(timesteps, start_T) - iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', - total=timesteps) if verbose else reversed( - range(0, timesteps)) - if type(temperature) == float: - temperature = [temperature] * timesteps - - for i in iterator: - ts = torch.full((b,), i, device=self.device, dtype=torch.long) - if self.shorten_cond_schedule: - assert self.model.conditioning_key != 'hybrid' - tc = self.cond_ids[ts].to(cond.device) - cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) - - img, x0_partial = self.p_sample(img, cond, ts, - clip_denoised=self.clip_denoised, - quantize_denoised=quantize_denoised, return_x0=True, - temperature=temperature[i], noise_dropout=noise_dropout, - score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) - if mask is not None: - assert x0 is not None - img_orig = self.q_sample(x0, ts) - img = img_orig * mask + (1. - mask) * img - - if i % log_every_t == 0 or i == timesteps - 1: - intermediates.append(x0_partial) - if callback: callback(i) - if img_callback: img_callback(img, i) - return img, intermediates - - @torch.no_grad() - def p_sample_loop(self, cond, shape, return_intermediates=False, - x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, - mask=None, x0=None, img_callback=None, start_T=None, - log_every_t=None): - - if not log_every_t: - log_every_t = self.log_every_t - device = self.betas.device - b = shape[0] - if x_T is None: - img = torch.randn(shape, device=device) - else: - img = x_T - - intermediates = [img] - if timesteps is None: - timesteps = self.num_timesteps - - if start_T is not None: - timesteps = min(timesteps, start_T) - iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( - range(0, timesteps)) - - if mask is not None: - assert x0 is not None - assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match - - for i in iterator: - ts = torch.full((b,), i, device=device, dtype=torch.long) - if self.shorten_cond_schedule: - assert self.model.conditioning_key != 'hybrid' - tc = self.cond_ids[ts].to(cond.device) - cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) - - # if self.is_test and i % 50 == 0: - # decode_res = self.decode_first_stage(img) - # rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder( - # decode_res, self.batch_rays, self.batch_img, - # ) - # rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0] - # imageio.imwrite(os.path.join(self.logger.log_dir, "sample_process_{}.png".format(i)), rgb_sample) - # colorize_res = self.first_stage_model.to_rgb(img) - # imageio.imwrite(os.path.join(self.logger.log_dir, "sample_process_latent_{}.png".format(i)), colorize_res[0]) - - img = self.p_sample(img, cond, ts, - clip_denoised=self.clip_denoised, - quantize_denoised=quantize_denoised) - if mask is not None: - img_orig = self.q_sample(x0, ts) - img = img_orig * mask + (1. - mask) * img - - if i % log_every_t == 0 or i == timesteps - 1: - intermediates.append(img) - if callback: callback(i) - if img_callback: img_callback(img, i) - - if return_intermediates: - return img, intermediates - return img - - @torch.no_grad() - def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, - verbose=True, timesteps=None, quantize_denoised=False, - mask=None, x0=None, shape=None,**kwargs): - if shape is None: - shape = (batch_size, self.channels, self.image_size, self.image_size * 3) - if cond is not None: - if isinstance(cond, dict): - cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} - else: - cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] - return self.p_sample_loop(cond, - shape, - return_intermediates=return_intermediates, x_T=x_T, - verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, - mask=mask, x0=x0) - - @torch.no_grad() - def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs): - - if ddim: - ddim_sampler = DDIMSampler(self) - shape = (self.channels, self.image_size, self.image_size) - samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size, - shape,cond,verbose=False,**kwargs) - - else: - samples, intermediates = self.sample(cond=cond, batch_size=batch_size, - return_intermediates=True,**kwargs) - - return samples, intermediates - - @torch.no_grad() - def validation_step(self, batch, batch_idx): - # x, c = self.get_input(batch, self.first_stage_key) - # self.batch_rays = batch['batch_rays'][0][1:2] - # self.batch_img = batch['img'][0][1:2] - # self.is_test = True - # self.test_schedule(x[0:1]) - # exit(0) - - _, loss_dict_no_ema = self.shared_step(batch) - with self.ema_scope(): - # _, loss_dict_ema = self.shared_step(batch) - x, c = self.get_input(batch, self.first_stage_key) - _, loss_dict_ema, inter_res = self(x, c, return_inter=True) - loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema} - self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True, sync_dist=True) - self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True, sync_dist=True) - - if batch_idx < 2: - if self.num_timesteps < 1000: - x_T = self.q_sample(x_start=x[0:1], t=torch.full((1,), self.num_timesteps-1, device=x.device, dtype=torch.long), noise=torch.randn_like(x[0:1])) - print("Specifying x_T when sampling!") - else: - x_T = None - with self.ema_scope(): - res = self.sample(c, 1, shape=x[0:1].shape, x_T = x_T) - decode_res = self.decode_first_stage(res) - decode_input = self.decode_first_stage(x[:1]) - decode_output = self.decode_first_stage(inter_res[:1]) - - colorize_res = self.first_stage_model.to_rgb(res)[0] - colorize_x = self.first_stage_model.to_rgb(x[:1])[0] - # imageio.imwrite(os.path.join(self.logger.log_dir, "sample_{}_{}.png".format(batch_idx, 0)), colorize_res[0]) - # imageio.imwrite(os.path.join(self.logger.log_dir, "gt_{}_{}.png".format(batch_idx, 0)), colorize_x[0]) - - rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder( - decode_res, batch['batch_rays'][0], batch['img'][0], - ) - rgb_input, _ = self.first_stage_model.render_triplane_eg3d_decoder( - decode_input, batch['batch_rays'][0], batch['img'][0], - ) - rgb_output, _ = self.first_stage_model.render_triplane_eg3d_decoder( - decode_output, batch['batch_rays'][0], batch['img'][0], - ) - rgb_sample = to8b(rgb_sample.detach().cpu().numpy()) - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_output = to8b(rgb_output.detach().cpu().numpy()) - - if rgb_sample.shape[0] == 1: - rgb_all = np.concatenate([rgb_sample[0], rgb_input[0], rgb_output[0]], 1) - else: - rgb_all = np.concatenate([rgb_sample[1], rgb_input[1], rgb_output[1]], 1) - - - if self.model.conditioning_key is not None: - if self.cond_stage_key == 'img_cond': - cond_img = super().get_input(batch, self.cond_stage_key)[0].permute(1, 2, 0) - rgb_all = np.concatenate([rgb_all, to8b(cond_img.cpu().numpy())], 1) - elif 'caption' in self.cond_stage_key: - import cv2 - font = cv2.FONT_HERSHEY_SIMPLEX - # org - org = (50, 50) - # fontScale - fontScale = 1 - # Blue color in BGR - color = (255, 0, 0) - # Line thickness of 2 px - thickness = 2 - caption = super().get_input(batch, 'caption')[0] - break_caption = [] - for i in range(len(caption) // 30 + 1): - break_caption_i = caption[i*30:(i+1)*30] - break_caption.append(break_caption_i) - for i, bci in enumerate(break_caption): - cv2.putText(rgb_all, bci, (50, 50*(i+1)), font, fontScale, color, thickness, cv2.LINE_AA) - - self.logger.experiment.log({ - "val/vis": [wandb.Image(rgb_all)], - "val/colorize_rse": [wandb.Image(colorize_res)], - "val/colorize_x": [wandb.Image(colorize_x)], - }) - - @torch.no_grad() - def test_schedule(self, x_start, freq=50): - noise = torch.randn_like(x_start) - img_list = [] - latent_list = [] - for t in tqdm(range(self.num_timesteps)): - if t % freq == 0: - t_long = torch.Tensor([t,]).long().to(x_start.device) - x_noisy = self.q_sample(x_start=x_start, t=t_long, noise=noise) - decode_res = self.decode_first_stage(x_noisy) - rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder( - decode_res, self.batch_rays, self.batch_img, - ) - rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0] - # imageio.imwrite(os.path.join(self.logger.log_dir, "add_noise_{}.png".format(t)), rgb_sample) - colorize_res = self.first_stage_model.to_rgb(x_noisy) - # imageio.imwrite(os.path.join(self.logger.log_dir, "add_noise_latent_{}.png".format(t)), colorize_res[0]) - img_list.append(rgb_sample) - latent_list.append(colorize_res[0]) - imageio.imwrite(os.path.join(self.logger.log_dir, "add_noise_{}_{}_{}_{}.png".format(self.linear_start, self.linear_end, self.beta_schedule, self.scale_factor)), np.concatenate(img_list, 1)) - imageio.imwrite(os.path.join(self.logger.log_dir, "add_noise_latent_{}_{}_{}_{}.png".format(self.linear_start, self.linear_end, self.beta_schedule, self.scale_factor)), np.concatenate(latent_list, 1)) - - @torch.no_grad() - def test_step(self, batch, batch_idx): - x, c = self.get_input(batch, self.first_stage_key) - if self.test_mode == 'fid': - bs = x.shape[0] - else: - bs = 1 - if self.test_mode == 'noise_schedule': - self.batch_rays = batch['batch_rays'][0][33:34] - self.batch_img = batch['img'][0][33:34] - self.is_test = True - self.test_schedule(x) - exit(0) - with self.ema_scope(): - if c is not None: - res = self.sample(c[:bs], bs, shape=x[0:bs].shape) - else: - res = self.sample(None, bs, shape=x[0:bs].shape) - decode_res = self.decode_first_stage(res) - if self.test_mode == 'fid': - folder = os.path.join(self.logger.log_dir, 'FID_' + self.test_tag) - if not os.path.exists(folder): - os.makedirs(folder, exist_ok=True) - rgb_sample_list = [] - for b in range(bs): - rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder( - decode_res[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb_sample = to8b(rgb_sample.detach().cpu().numpy()) - rgb_sample_list.append(rgb_sample) - for i in range(len(rgb_sample_list)): - for v in range(rgb_sample_list[i].shape[0]): - imageio.imwrite(os.path.join(folder, "sample_{}_{}_{}.png".format(batch_idx, i, v)), rgb_sample_list[i][v]) - elif self.test_mode == 'sample': - colorize_res = self.first_stage_model.to_rgb(res) - colorize_x = self.first_stage_model.to_rgb(x[:1]) - imageio.imwrite(os.path.join(self.logger.log_dir, "sample_{}_{}.png".format(batch_idx, 0)), colorize_res[0]) - imageio.imwrite(os.path.join(self.logger.log_dir, "gt_{}_{}.png".format(batch_idx, 0)), colorize_x[0]) - if self.model.conditioning_key is not None: - cond_img = super().get_input(batch, self.cond_stage_key)[0].permute(1, 2, 0) - cond_img = to8b(cond_img.cpu().numpy()) - imageio.imwrite(os.path.join(self.logger.log_dir, "cond_{}_{}.png".format(batch_idx, 0)), cond_img) - for b in range(bs): - video = [] - for v in tqdm(range(batch['batch_rays'].shape[1])): - rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder( - decode_res[b:b+1], batch['batch_rays'][0][v:v+1], batch['img'][0][v:v+1], - ) - rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0] - video.append(rgb_sample) - imageio.mimwrite(os.path.join(self.logger.log_dir, "sample_{}_{}.mp4".format(batch_idx, b)), video, fps=24) - print("Saving to {}".format(os.path.join(self.logger.log_dir, "sample_{}_{}.mp4".format(batch_idx, b)))) - - @torch.no_grad() - def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, - quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, - plot_diffusion_rows=True, **kwargs): - - use_ddim = ddim_steps is not None - - log = dict() - z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, - return_first_stage_outputs=True, - force_c_encode=True, - return_original_cond=True, - bs=N) - N = min(x.shape[0], N) - n_row = min(x.shape[0], n_row) - log["inputs"] = x - log["reconstruction"] = xrec - if self.model.conditioning_key is not None: - if hasattr(self.cond_stage_model, "decode"): - xc = self.cond_stage_model.decode(c) - log["conditioning"] = xc - elif self.cond_stage_key in ["caption"]: - xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"]) - log["conditioning"] = xc - elif self.cond_stage_key == 'class_label': - xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) - log['conditioning'] = xc - elif isimage(xc): - log["conditioning"] = xc - if ismap(xc): - log["original_conditioning"] = self.to_rgb(xc) - - if plot_diffusion_rows: - # get diffusion row - diffusion_row = list() - z_start = z[:n_row] - for t in range(self.num_timesteps): - if t % self.log_every_t == 0 or t == self.num_timesteps - 1: - t = repeat(torch.tensor([t]), '1 -> b', b=n_row) - t = t.to(self.device).long() - noise = torch.randn_like(z_start) - z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) - diffusion_row.append(self.decode_first_stage(z_noisy)) - - diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W - diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') - diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') - diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) - log["diffusion_row"] = diffusion_grid - - if sample: - # get denoise row - with self.ema_scope("Plotting"): - samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, - ddim_steps=ddim_steps,eta=ddim_eta) - # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) - x_samples = self.decode_first_stage(samples) - log["samples"] = x_samples - if plot_denoise_rows: - denoise_grid = self._get_denoise_row_from_list(z_denoise_row) - log["denoise_row"] = denoise_grid - - if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance( - self.first_stage_model, IdentityFirstStage): - # also display when quantizing x0 while sampling - with self.ema_scope("Plotting Quantized Denoised"): - samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, - ddim_steps=ddim_steps,eta=ddim_eta, - quantize_denoised=True) - # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, - # quantize_denoised=True) - x_samples = self.decode_first_stage(samples.to(self.device)) - log["samples_x0_quantized"] = x_samples - - if inpaint: - # make a simple center square - b, h, w = z.shape[0], z.shape[2], z.shape[3] - mask = torch.ones(N, h, w).to(self.device) - # zeros will be filled in - mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. - mask = mask[:, None, ...] - with self.ema_scope("Plotting Inpaint"): - - samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta, - ddim_steps=ddim_steps, x0=z[:N], mask=mask) - x_samples = self.decode_first_stage(samples.to(self.device)) - log["samples_inpainting"] = x_samples - log["mask"] = mask - - # outpaint - with self.ema_scope("Plotting Outpaint"): - samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta, - ddim_steps=ddim_steps, x0=z[:N], mask=mask) - x_samples = self.decode_first_stage(samples.to(self.device)) - log["samples_outpainting"] = x_samples - - if plot_progressive_rows: - with self.ema_scope("Plotting Progressives"): - img, progressives = self.progressive_denoising(c, - shape=(self.channels, self.image_size, self.image_size), - batch_size=N) - prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") - log["progressive_row"] = prog_row - - if return_keys: - if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: - return log - else: - return {key: log[key] for key in return_keys} - return log - - def configure_optimizers(self): - lr = self.learning_rate - params = list(self.model.parameters()) - if self.cond_stage_trainable: - print(f"{self.__class__.__name__}: Also optimizing conditioner params!") - params = params + list(self.cond_stage_model.parameters()) - if self.learn_logvar: - print('Diffusion model optimizing logvar') - params.append(self.logvar) - opt = torch.optim.AdamW(params, lr=lr) - if self.use_scheduler: - assert 'target' in self.scheduler_config - scheduler = instantiate_from_config(self.scheduler_config) - - print("Setting up LambdaLR scheduler...") - scheduler = [ - { - 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), - 'interval': 'step', - 'frequency': 1 - }] - return [opt], scheduler - return opt - - @torch.no_grad() - def to_rgb(self, x): - x = x.float() - if not hasattr(self, "colorize"): - self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) - x = nn.functional.conv2d(x, weight=self.colorize) - x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. - return x - - - -class DiffusionWrapper(pl.LightningModule): - def __init__(self, diff_model_config, conditioning_key): - super().__init__() - self.diffusion_model = instantiate_from_config(diff_model_config) - self.conditioning_key = conditioning_key - assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm'] - - def forward(self, x, t, c_concat: list = None, c_crossattn: list = None): - if self.conditioning_key is None: - out = self.diffusion_model(x, t) - elif self.conditioning_key == 'concat': - xc = torch.cat([x] + c_concat, dim=1) - out = self.diffusion_model(xc, t) - elif self.conditioning_key == 'crossattn': - cc = torch.cat(c_crossattn, 1) - out = self.diffusion_model(x, t, context=cc) - elif self.conditioning_key == 'hybrid': - xc = torch.cat([x] + c_concat, dim=1) - cc = torch.cat(c_crossattn, 1) - out = self.diffusion_model(xc, t, context=cc) - elif self.conditioning_key == 'adm': - cc = c_crossattn[0] - out = self.diffusion_model(x, t, y=cc) - else: - raise NotImplementedError() - - return out - - -class Layout2ImgDiffusion(LatentDiffusion): - # TODO: move all layout-specific hacks to this class - def __init__(self, cond_stage_key, *args, **kwargs): - assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' - super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs) - - def log_images(self, batch, N=8, *args, **kwargs): - logs = super().log_images(batch=batch, N=N, *args, **kwargs) - - key = 'train' if self.training else 'validation' - dset = self.trainer.datamodule.datasets[key] - mapper = dset.conditional_builders[self.cond_stage_key] - - bbox_imgs = [] - map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno)) - for tknzd_bbox in batch[self.cond_stage_key][:N]: - bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256)) - bbox_imgs.append(bboximg) - - cond_img = torch.stack(bbox_imgs, dim=0) - logs['bbox_image'] = cond_img - return logs diff --git a/3DTopia/ldm/models/diffusion/dpm_solver/__init__.py b/3DTopia/ldm/models/diffusion/dpm_solver/__init__.py deleted file mode 100644 index 7427f38c07530afbab79154ea8aaf88c4bf70a08..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/models/diffusion/dpm_solver/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from .sampler import DPMSolverSampler \ No newline at end of file diff --git a/3DTopia/ldm/models/diffusion/dpm_solver/dpm_solver.py b/3DTopia/ldm/models/diffusion/dpm_solver/dpm_solver.py deleted file mode 100644 index bdb64e0c78cc3520f92d79db3124c85fc3cfb9b4..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/models/diffusion/dpm_solver/dpm_solver.py +++ /dev/null @@ -1,1184 +0,0 @@ -import torch -import torch.nn.functional as F -import math - - -class NoiseScheduleVP: - def __init__( - self, - schedule='discrete', - betas=None, - alphas_cumprod=None, - continuous_beta_0=0.1, - continuous_beta_1=20., - ): - """Create a wrapper class for the forward SDE (VP type). - - *** - Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t. - We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images. - *** - - The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ). - We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper). - Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have: - - log_alpha_t = self.marginal_log_mean_coeff(t) - sigma_t = self.marginal_std(t) - lambda_t = self.marginal_lambda(t) - - Moreover, as lambda(t) is an invertible function, we also support its inverse function: - - t = self.inverse_lambda(lambda_t) - - =============================================================== - - We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]). - - 1. For discrete-time DPMs: - - For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by: - t_i = (i + 1) / N - e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1. - We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3. - - Args: - betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details) - alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details) - - Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`. - - **Important**: Please pay special attention for the args for `alphas_cumprod`: - The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that - q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ). - Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have - alpha_{t_n} = \sqrt{\hat{alpha_n}}, - and - log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}). - - - 2. For continuous-time DPMs: - - We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise - schedule are the default settings in DDPM and improved-DDPM: - - Args: - beta_min: A `float` number. The smallest beta for the linear schedule. - beta_max: A `float` number. The largest beta for the linear schedule. - cosine_s: A `float` number. The hyperparameter in the cosine schedule. - cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule. - T: A `float` number. The ending time of the forward process. - - =============================================================== - - Args: - schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs, - 'linear' or 'cosine' for continuous-time DPMs. - Returns: - A wrapper object of the forward SDE (VP type). - - =============================================================== - - Example: - - # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1): - >>> ns = NoiseScheduleVP('discrete', betas=betas) - - # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1): - >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod) - - # For continuous-time DPMs (VPSDE), linear schedule: - >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.) - - """ - - if schedule not in ['discrete', 'linear', 'cosine']: - raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule)) - - self.schedule = schedule - if schedule == 'discrete': - if betas is not None: - log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) - else: - assert alphas_cumprod is not None - log_alphas = 0.5 * torch.log(alphas_cumprod) - self.total_N = len(log_alphas) - self.T = 1. - self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)) - self.log_alpha_array = log_alphas.reshape((1, -1,)) - else: - self.total_N = 1000 - self.beta_0 = continuous_beta_0 - self.beta_1 = continuous_beta_1 - self.cosine_s = 0.008 - self.cosine_beta_max = 999. - self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s - self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.)) - self.schedule = schedule - if schedule == 'cosine': - # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T. - # Note that T = 0.9946 may be not the optimal setting. However, we find it works well. - self.T = 0.9946 - else: - self.T = 1. - - def marginal_log_mean_coeff(self, t): - """ - Compute log(alpha_t) of a given continuous-time label t in [0, T]. - """ - if self.schedule == 'discrete': - return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1)) - elif self.schedule == 'linear': - return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 - elif self.schedule == 'cosine': - log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.)) - log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 - return log_alpha_t - - def marginal_alpha(self, t): - """ - Compute alpha_t of a given continuous-time label t in [0, T]. - """ - return torch.exp(self.marginal_log_mean_coeff(t)) - - def marginal_std(self, t): - """ - Compute sigma_t of a given continuous-time label t in [0, T]. - """ - return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) - - def marginal_lambda(self, t): - """ - Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. - """ - log_mean_coeff = self.marginal_log_mean_coeff(t) - log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff)) - return log_mean_coeff - log_std - - def inverse_lambda(self, lamb): - """ - Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. - """ - if self.schedule == 'linear': - tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) - Delta = self.beta_0**2 + tmp - return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) - elif self.schedule == 'discrete': - log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb) - t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1])) - return t.reshape((-1,)) - else: - log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) - t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s - t = t_fn(log_alpha) - return t - - -def model_wrapper( - model, - noise_schedule, - model_type="noise", - model_kwargs={}, - guidance_type="uncond", - condition=None, - unconditional_condition=None, - guidance_scale=1., - classifier_fn=None, - classifier_kwargs={}, -): - """Create a wrapper function for the noise prediction model. - - DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to - firstly wrap the model function to a noise prediction model that accepts the continuous time as the input. - - We support four types of the diffusion model by setting `model_type`: - - 1. "noise": noise prediction model. (Trained by predicting noise). - - 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0). - - 3. "v": velocity prediction model. (Trained by predicting the velocity). - The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2]. - - [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." - arXiv preprint arXiv:2202.00512 (2022). - [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models." - arXiv preprint arXiv:2210.02303 (2022). - - 4. "score": marginal score function. (Trained by denoising score matching). - Note that the score function and the noise prediction model follows a simple relationship: - ``` - noise(x_t, t) = -sigma_t * score(x_t, t) - ``` - - We support three types of guided sampling by DPMs by setting `guidance_type`: - 1. "uncond": unconditional sampling by DPMs. - The input `model` has the following format: - `` - model(x, t_input, **model_kwargs) -> noise | x_start | v | score - `` - - 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier. - The input `model` has the following format: - `` - model(x, t_input, **model_kwargs) -> noise | x_start | v | score - `` - - The input `classifier_fn` has the following format: - `` - classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond) - `` - - [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis," - in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794. - - 3. "classifier-free": classifier-free guidance sampling by conditional DPMs. - The input `model` has the following format: - `` - model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score - `` - And if cond == `unconditional_condition`, the model output is the unconditional DPM output. - - [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." - arXiv preprint arXiv:2207.12598 (2022). - - - The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999) - or continuous-time labels (i.e. epsilon to T). - - We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise: - `` - def model_fn(x, t_continuous) -> noise: - t_input = get_model_input_time(t_continuous) - return noise_pred(model, x, t_input, **model_kwargs) - `` - where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver. - - =============================================================== - - Args: - model: A diffusion model with the corresponding format described above. - noise_schedule: A noise schedule object, such as NoiseScheduleVP. - model_type: A `str`. The parameterization type of the diffusion model. - "noise" or "x_start" or "v" or "score". - model_kwargs: A `dict`. A dict for the other inputs of the model function. - guidance_type: A `str`. The type of the guidance for sampling. - "uncond" or "classifier" or "classifier-free". - condition: A pytorch tensor. The condition for the guided sampling. - Only used for "classifier" or "classifier-free" guidance type. - unconditional_condition: A pytorch tensor. The condition for the unconditional sampling. - Only used for "classifier-free" guidance type. - guidance_scale: A `float`. The scale for the guided sampling. - classifier_fn: A classifier function. Only used for the classifier guidance. - classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function. - Returns: - A noise prediction model that accepts the noised data and the continuous time as the inputs. - """ - - def get_model_input_time(t_continuous): - """ - Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. - For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. - For continuous-time DPMs, we just use `t_continuous`. - """ - if noise_schedule.schedule == 'discrete': - return (t_continuous - 1. / noise_schedule.total_N) * 1000. - else: - return t_continuous - - def noise_pred_fn(x, t_continuous, cond=None): - if t_continuous.reshape((-1,)).shape[0] == 1: - t_continuous = t_continuous.expand((x.shape[0])) - t_input = get_model_input_time(t_continuous) - if cond is None: - output = model(x, t_input, **model_kwargs) - else: - output = model(x, t_input, cond, **model_kwargs) - if model_type == "noise": - return output - elif model_type == "x_start": - alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) - dims = x.dim() - return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims) - elif model_type == "v": - alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) - dims = x.dim() - return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x - elif model_type == "score": - sigma_t = noise_schedule.marginal_std(t_continuous) - dims = x.dim() - return -expand_dims(sigma_t, dims) * output - - def cond_grad_fn(x, t_input): - """ - Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). - """ - with torch.enable_grad(): - x_in = x.detach().requires_grad_(True) - log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) - return torch.autograd.grad(log_prob.sum(), x_in)[0] - - def model_fn(x, t_continuous): - """ - The noise predicition model function that is used for DPM-Solver. - """ - if t_continuous.reshape((-1,)).shape[0] == 1: - t_continuous = t_continuous.expand((x.shape[0])) - if guidance_type == "uncond": - return noise_pred_fn(x, t_continuous) - elif guidance_type == "classifier": - assert classifier_fn is not None - t_input = get_model_input_time(t_continuous) - cond_grad = cond_grad_fn(x, t_input) - sigma_t = noise_schedule.marginal_std(t_continuous) - noise = noise_pred_fn(x, t_continuous) - return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad - elif guidance_type == "classifier-free": - if guidance_scale == 1. or unconditional_condition is None: - return noise_pred_fn(x, t_continuous, cond=condition) - else: - x_in = torch.cat([x] * 2) - t_in = torch.cat([t_continuous] * 2) - c_in = torch.cat([unconditional_condition, condition]) - noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) - return noise_uncond + guidance_scale * (noise - noise_uncond) - - assert model_type in ["noise", "x_start", "v"] - assert guidance_type in ["uncond", "classifier", "classifier-free"] - return model_fn - - -class DPM_Solver: - def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.): - """Construct a DPM-Solver. - - We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0"). - If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver). - If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++). - In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True. - The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales. - - Args: - model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]): - `` - def model_fn(x, t_continuous): - return noise - `` - noise_schedule: A noise schedule object, such as NoiseScheduleVP. - predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model. - thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1]. - max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding. - - [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b. - """ - self.model = model_fn - self.noise_schedule = noise_schedule - self.predict_x0 = predict_x0 - self.thresholding = thresholding - self.max_val = max_val - - def noise_prediction_fn(self, x, t): - """ - Return the noise prediction model. - """ - return self.model(x, t) - - def data_prediction_fn(self, x, t): - """ - Return the data prediction model (with thresholding). - """ - noise = self.noise_prediction_fn(x, t) - dims = x.dim() - alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) - x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims) - if self.thresholding: - p = 0.995 # A hyperparameter in the paper of "Imagen" [1]. - s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) - s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims) - x0 = torch.clamp(x0, -s, s) / s - return x0 - - def model_fn(self, x, t): - """ - Convert the model to the noise prediction model or the data prediction model. - """ - if self.predict_x0: - return self.data_prediction_fn(x, t) - else: - return self.noise_prediction_fn(x, t) - - def get_time_steps(self, skip_type, t_T, t_0, N, device): - """Compute the intermediate time steps for sampling. - - Args: - skip_type: A `str`. The type for the spacing of the time steps. We support three types: - - 'logSNR': uniform logSNR for the time steps. - - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.) - - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.) - t_T: A `float`. The starting time of the sampling (default is T). - t_0: A `float`. The ending time of the sampling (default is epsilon). - N: A `int`. The total number of the spacing of the time steps. - device: A torch device. - Returns: - A pytorch tensor of the time steps, with the shape (N + 1,). - """ - if skip_type == 'logSNR': - lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) - lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) - logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device) - return self.noise_schedule.inverse_lambda(logSNR_steps) - elif skip_type == 'time_uniform': - return torch.linspace(t_T, t_0, N + 1).to(device) - elif skip_type == 'time_quadratic': - t_order = 2 - t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device) - return t - else: - raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type)) - - def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device): - """ - Get the order of each step for sampling by the singlestep DPM-Solver. - - We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast". - Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is: - - If order == 1: - We take `steps` of DPM-Solver-1 (i.e. DDIM). - - If order == 2: - - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling. - - If steps % 2 == 0, we use K steps of DPM-Solver-2. - - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1. - - If order == 3: - - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling. - - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1. - - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1. - - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2. - - ============================================ - Args: - order: A `int`. The max order for the solver (2 or 3). - steps: A `int`. The total number of function evaluations (NFE). - skip_type: A `str`. The type for the spacing of the time steps. We support three types: - - 'logSNR': uniform logSNR for the time steps. - - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.) - - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.) - t_T: A `float`. The starting time of the sampling (default is T). - t_0: A `float`. The ending time of the sampling (default is epsilon). - device: A torch device. - Returns: - orders: A list of the solver order of each step. - """ - if order == 3: - K = steps // 3 + 1 - if steps % 3 == 0: - orders = [3,] * (K - 2) + [2, 1] - elif steps % 3 == 1: - orders = [3,] * (K - 1) + [1] - else: - orders = [3,] * (K - 1) + [2] - elif order == 2: - if steps % 2 == 0: - K = steps // 2 - orders = [2,] * K - else: - K = steps // 2 + 1 - orders = [2,] * (K - 1) + [1] - elif order == 1: - K = 1 - orders = [1,] * steps - else: - raise ValueError("'order' must be '1' or '2' or '3'.") - if skip_type == 'logSNR': - # To reproduce the results in DPM-Solver paper - timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device) - else: - timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders)).to(device)] - return timesteps_outer, orders - - def denoise_to_zero_fn(self, x, s): - """ - Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization. - """ - return self.data_prediction_fn(x, s) - - def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False): - """ - DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`. - - Args: - x: A pytorch tensor. The initial value at time `s`. - s: A pytorch tensor. The starting time, with the shape (x.shape[0],). - t: A pytorch tensor. The ending time, with the shape (x.shape[0],). - model_s: A pytorch tensor. The model function evaluated at time `s`. - If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. - return_intermediate: A `bool`. If true, also return the model value at time `s`. - Returns: - x_t: A pytorch tensor. The approximated solution at time `t`. - """ - ns = self.noise_schedule - dims = x.dim() - lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) - h = lambda_t - lambda_s - log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t) - sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t) - alpha_t = torch.exp(log_alpha_t) - - if self.predict_x0: - phi_1 = torch.expm1(-h) - if model_s is None: - model_s = self.model_fn(x, s) - x_t = ( - expand_dims(sigma_t / sigma_s, dims) * x - - expand_dims(alpha_t * phi_1, dims) * model_s - ) - if return_intermediate: - return x_t, {'model_s': model_s} - else: - return x_t - else: - phi_1 = torch.expm1(h) - if model_s is None: - model_s = self.model_fn(x, s) - x_t = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x - - expand_dims(sigma_t * phi_1, dims) * model_s - ) - if return_intermediate: - return x_t, {'model_s': model_s} - else: - return x_t - - def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, solver_type='dpm_solver'): - """ - Singlestep solver DPM-Solver-2 from time `s` to time `t`. - - Args: - x: A pytorch tensor. The initial value at time `s`. - s: A pytorch tensor. The starting time, with the shape (x.shape[0],). - t: A pytorch tensor. The ending time, with the shape (x.shape[0],). - r1: A `float`. The hyperparameter of the second-order solver. - model_s: A pytorch tensor. The model function evaluated at time `s`. - If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. - return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time). - solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. - The type slightly impacts the performance. We recommend to use 'dpm_solver' type. - Returns: - x_t: A pytorch tensor. The approximated solution at time `t`. - """ - if solver_type not in ['dpm_solver', 'taylor']: - raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type)) - if r1 is None: - r1 = 0.5 - ns = self.noise_schedule - dims = x.dim() - lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) - h = lambda_t - lambda_s - lambda_s1 = lambda_s + r1 * h - s1 = ns.inverse_lambda(lambda_s1) - log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(t) - sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t) - alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t) - - if self.predict_x0: - phi_11 = torch.expm1(-r1 * h) - phi_1 = torch.expm1(-h) - - if model_s is None: - model_s = self.model_fn(x, s) - x_s1 = ( - expand_dims(sigma_s1 / sigma_s, dims) * x - - expand_dims(alpha_s1 * phi_11, dims) * model_s - ) - model_s1 = self.model_fn(x_s1, s1) - if solver_type == 'dpm_solver': - x_t = ( - expand_dims(sigma_t / sigma_s, dims) * x - - expand_dims(alpha_t * phi_1, dims) * model_s - - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s) - ) - elif solver_type == 'taylor': - x_t = ( - expand_dims(sigma_t / sigma_s, dims) * x - - expand_dims(alpha_t * phi_1, dims) * model_s - + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (model_s1 - model_s) - ) - else: - phi_11 = torch.expm1(r1 * h) - phi_1 = torch.expm1(h) - - if model_s is None: - model_s = self.model_fn(x, s) - x_s1 = ( - expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x - - expand_dims(sigma_s1 * phi_11, dims) * model_s - ) - model_s1 = self.model_fn(x_s1, s1) - if solver_type == 'dpm_solver': - x_t = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x - - expand_dims(sigma_t * phi_1, dims) * model_s - - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s) - ) - elif solver_type == 'taylor': - x_t = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x - - expand_dims(sigma_t * phi_1, dims) * model_s - - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s) - ) - if return_intermediate: - return x_t, {'model_s': model_s, 'model_s1': model_s1} - else: - return x_t - - def singlestep_dpm_solver_third_update(self, x, s, t, r1=1./3., r2=2./3., model_s=None, model_s1=None, return_intermediate=False, solver_type='dpm_solver'): - """ - Singlestep solver DPM-Solver-3 from time `s` to time `t`. - - Args: - x: A pytorch tensor. The initial value at time `s`. - s: A pytorch tensor. The starting time, with the shape (x.shape[0],). - t: A pytorch tensor. The ending time, with the shape (x.shape[0],). - r1: A `float`. The hyperparameter of the third-order solver. - r2: A `float`. The hyperparameter of the third-order solver. - model_s: A pytorch tensor. The model function evaluated at time `s`. - If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it. - model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`). - If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it. - return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times). - solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. - The type slightly impacts the performance. We recommend to use 'dpm_solver' type. - Returns: - x_t: A pytorch tensor. The approximated solution at time `t`. - """ - if solver_type not in ['dpm_solver', 'taylor']: - raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type)) - if r1 is None: - r1 = 1. / 3. - if r2 is None: - r2 = 2. / 3. - ns = self.noise_schedule - dims = x.dim() - lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) - h = lambda_t - lambda_s - lambda_s1 = lambda_s + r1 * h - lambda_s2 = lambda_s + r2 * h - s1 = ns.inverse_lambda(lambda_s1) - s2 = ns.inverse_lambda(lambda_s2) - log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t) - sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(s2), ns.marginal_std(t) - alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t) - - if self.predict_x0: - phi_11 = torch.expm1(-r1 * h) - phi_12 = torch.expm1(-r2 * h) - phi_1 = torch.expm1(-h) - phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1. - phi_2 = phi_1 / h + 1. - phi_3 = phi_2 / h - 0.5 - - if model_s is None: - model_s = self.model_fn(x, s) - if model_s1 is None: - x_s1 = ( - expand_dims(sigma_s1 / sigma_s, dims) * x - - expand_dims(alpha_s1 * phi_11, dims) * model_s - ) - model_s1 = self.model_fn(x_s1, s1) - x_s2 = ( - expand_dims(sigma_s2 / sigma_s, dims) * x - - expand_dims(alpha_s2 * phi_12, dims) * model_s - + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s) - ) - model_s2 = self.model_fn(x_s2, s2) - if solver_type == 'dpm_solver': - x_t = ( - expand_dims(sigma_t / sigma_s, dims) * x - - expand_dims(alpha_t * phi_1, dims) * model_s - + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s) - ) - elif solver_type == 'taylor': - D1_0 = (1. / r1) * (model_s1 - model_s) - D1_1 = (1. / r2) * (model_s2 - model_s) - D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1) - D2 = 2. * (D1_1 - D1_0) / (r2 - r1) - x_t = ( - expand_dims(sigma_t / sigma_s, dims) * x - - expand_dims(alpha_t * phi_1, dims) * model_s - + expand_dims(alpha_t * phi_2, dims) * D1 - - expand_dims(alpha_t * phi_3, dims) * D2 - ) - else: - phi_11 = torch.expm1(r1 * h) - phi_12 = torch.expm1(r2 * h) - phi_1 = torch.expm1(h) - phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1. - phi_2 = phi_1 / h - 1. - phi_3 = phi_2 / h - 0.5 - - if model_s is None: - model_s = self.model_fn(x, s) - if model_s1 is None: - x_s1 = ( - expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x - - expand_dims(sigma_s1 * phi_11, dims) * model_s - ) - model_s1 = self.model_fn(x_s1, s1) - x_s2 = ( - expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x - - expand_dims(sigma_s2 * phi_12, dims) * model_s - - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s) - ) - model_s2 = self.model_fn(x_s2, s2) - if solver_type == 'dpm_solver': - x_t = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x - - expand_dims(sigma_t * phi_1, dims) * model_s - - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s) - ) - elif solver_type == 'taylor': - D1_0 = (1. / r1) * (model_s1 - model_s) - D1_1 = (1. / r2) * (model_s2 - model_s) - D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1) - D2 = 2. * (D1_1 - D1_0) / (r2 - r1) - x_t = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x - - expand_dims(sigma_t * phi_1, dims) * model_s - - expand_dims(sigma_t * phi_2, dims) * D1 - - expand_dims(sigma_t * phi_3, dims) * D2 - ) - - if return_intermediate: - return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2} - else: - return x_t - - def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"): - """ - Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`. - - Args: - x: A pytorch tensor. The initial value at time `s`. - model_prev_list: A list of pytorch tensor. The previous computed model values. - t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],) - t: A pytorch tensor. The ending time, with the shape (x.shape[0],). - solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. - The type slightly impacts the performance. We recommend to use 'dpm_solver' type. - Returns: - x_t: A pytorch tensor. The approximated solution at time `t`. - """ - if solver_type not in ['dpm_solver', 'taylor']: - raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type)) - ns = self.noise_schedule - dims = x.dim() - model_prev_1, model_prev_0 = model_prev_list - t_prev_1, t_prev_0 = t_prev_list - lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t) - log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) - sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) - alpha_t = torch.exp(log_alpha_t) - - h_0 = lambda_prev_0 - lambda_prev_1 - h = lambda_t - lambda_prev_0 - r0 = h_0 / h - D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1) - if self.predict_x0: - if solver_type == 'dpm_solver': - x_t = ( - expand_dims(sigma_t / sigma_prev_0, dims) * x - - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0 - - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0 - ) - elif solver_type == 'taylor': - x_t = ( - expand_dims(sigma_t / sigma_prev_0, dims) * x - - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0 - + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0 - ) - else: - if solver_type == 'dpm_solver': - x_t = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x - - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0 - - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0 - ) - elif solver_type == 'taylor': - x_t = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x - - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0 - - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0 - ) - return x_t - - def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'): - """ - Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`. - - Args: - x: A pytorch tensor. The initial value at time `s`. - model_prev_list: A list of pytorch tensor. The previous computed model values. - t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],) - t: A pytorch tensor. The ending time, with the shape (x.shape[0],). - solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. - The type slightly impacts the performance. We recommend to use 'dpm_solver' type. - Returns: - x_t: A pytorch tensor. The approximated solution at time `t`. - """ - ns = self.noise_schedule - dims = x.dim() - model_prev_2, model_prev_1, model_prev_0 = model_prev_list - t_prev_2, t_prev_1, t_prev_0 = t_prev_list - lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t) - log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) - sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) - alpha_t = torch.exp(log_alpha_t) - - h_1 = lambda_prev_1 - lambda_prev_2 - h_0 = lambda_prev_0 - lambda_prev_1 - h = lambda_t - lambda_prev_0 - r0, r1 = h_0 / h, h_1 / h - D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1) - D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2) - D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1) - D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1) - if self.predict_x0: - x_t = ( - expand_dims(sigma_t / sigma_prev_0, dims) * x - - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0 - + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1 - - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h**2 - 0.5), dims) * D2 - ) - else: - x_t = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x - - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0 - - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1 - - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h**2 - 0.5), dims) * D2 - ) - return x_t - - def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None, r2=None): - """ - Singlestep DPM-Solver with the order `order` from time `s` to time `t`. - - Args: - x: A pytorch tensor. The initial value at time `s`. - s: A pytorch tensor. The starting time, with the shape (x.shape[0],). - t: A pytorch tensor. The ending time, with the shape (x.shape[0],). - order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3. - return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times). - solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. - The type slightly impacts the performance. We recommend to use 'dpm_solver' type. - r1: A `float`. The hyperparameter of the second-order or third-order solver. - r2: A `float`. The hyperparameter of the third-order solver. - Returns: - x_t: A pytorch tensor. The approximated solution at time `t`. - """ - if order == 1: - return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate) - elif order == 2: - return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1) - elif order == 3: - return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1, r2=r2) - else: - raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order)) - - def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'): - """ - Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`. - - Args: - x: A pytorch tensor. The initial value at time `s`. - model_prev_list: A list of pytorch tensor. The previous computed model values. - t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],) - t: A pytorch tensor. The ending time, with the shape (x.shape[0],). - order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3. - solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. - The type slightly impacts the performance. We recommend to use 'dpm_solver' type. - Returns: - x_t: A pytorch tensor. The approximated solution at time `t`. - """ - if order == 1: - return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1]) - elif order == 2: - return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type) - elif order == 3: - return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type) - else: - raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order)) - - def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type='dpm_solver'): - """ - The adaptive step size solver based on singlestep DPM-Solver. - - Args: - x: A pytorch tensor. The initial value at time `t_T`. - order: A `int`. The (higher) order of the solver. We only support order == 2 or 3. - t_T: A `float`. The starting time of the sampling (default is T). - t_0: A `float`. The ending time of the sampling (default is epsilon). - h_init: A `float`. The initial step size (for logSNR). - atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1]. - rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05. - theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1]. - t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the - current time and `t_0` is less than `t_err`. The default setting is 1e-5. - solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers. - The type slightly impacts the performance. We recommend to use 'dpm_solver' type. - Returns: - x_0: A pytorch tensor. The approximated solution at time `t_0`. - - [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021. - """ - ns = self.noise_schedule - s = t_T * torch.ones((x.shape[0],)).to(x) - lambda_s = ns.marginal_lambda(s) - lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x)) - h = h_init * torch.ones_like(s).to(x) - x_prev = x - nfe = 0 - if order == 2: - r1 = 0.5 - lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True) - higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, solver_type=solver_type, **kwargs) - elif order == 3: - r1, r2 = 1. / 3., 2. / 3. - lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type) - higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs) - else: - raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order)) - while torch.abs((s - t_0)).mean() > t_err: - t = ns.inverse_lambda(lambda_s + h) - x_lower, lower_noise_kwargs = lower_update(x, s, t) - x_higher = higher_update(x, s, t, **lower_noise_kwargs) - delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev))) - norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True)) - E = norm_fn((x_higher - x_lower) / delta).max() - if torch.all(E <= 1.): - x = x_higher - s = t - x_prev = x_lower - lambda_s = ns.marginal_lambda(s) - h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s) - nfe += order - print('adaptive solver nfe', nfe) - return x - - def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform', - method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver', - atol=0.0078, rtol=0.05, - ): - """ - Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`. - - ===================================================== - - We support the following algorithms for both noise prediction model and data prediction model: - - 'singlestep': - Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver. - We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps). - The total number of function evaluations (NFE) == `steps`. - Given a fixed NFE == `steps`, the sampling procedure is: - - If `order` == 1: - - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM). - - If `order` == 2: - - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling. - - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2. - - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1. - - If `order` == 3: - - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling. - - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1. - - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1. - - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2. - - 'multistep': - Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`. - We initialize the first `order` values by lower order multistep solvers. - Given a fixed NFE == `steps`, the sampling procedure is: - Denote K = steps. - - If `order` == 1: - - We use K steps of DPM-Solver-1 (i.e. DDIM). - - If `order` == 2: - - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2. - - If `order` == 3: - - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3. - - 'singlestep_fixed': - Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3). - We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE. - - 'adaptive': - Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper). - We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`. - You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs - (NFE) and the sample quality. - - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2. - - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3. - - ===================================================== - - Some advices for choosing the algorithm: - - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs: - Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`. - e.g. - >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False) - >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3, - skip_type='time_uniform', method='singlestep') - - For **guided sampling with large guidance scale** by DPMs: - Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`. - e.g. - >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True) - >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2, - skip_type='time_uniform', method='multistep') - - We support three types of `skip_type`: - - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images** - - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**. - - 'time_quadratic': quadratic time for the time steps. - - ===================================================== - Args: - x: A pytorch tensor. The initial value at time `t_start` - e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution. - steps: A `int`. The total number of function evaluations (NFE). - t_start: A `float`. The starting time of the sampling. - If `T` is None, we use self.noise_schedule.T (default is 1.0). - t_end: A `float`. The ending time of the sampling. - If `t_end` is None, we use 1. / self.noise_schedule.total_N. - e.g. if total_N == 1000, we have `t_end` == 1e-3. - For discrete-time DPMs: - - We recommend `t_end` == 1. / self.noise_schedule.total_N. - For continuous-time DPMs: - - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15. - order: A `int`. The order of DPM-Solver. - skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'. - method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'. - denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step. - Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1). - - This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and - score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID - for diffusion models sampling by diffusion SDEs for low-resolutional images - (such as CIFAR-10). However, we observed that such trick does not matter for - high-resolutional images. As it needs an additional NFE, we do not recommend - it for high-resolutional images. - lower_order_final: A `bool`. Whether to use lower order solvers at the final steps. - Only valid for `method=multistep` and `steps < 15`. We empirically find that - this trick is a key to stabilizing the sampling by DPM-Solver with very few steps - (especially for steps <= 10). So we recommend to set it to be `True`. - solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`. - atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'. - rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'. - Returns: - x_end: A pytorch tensor. The approximated solution at time `t_end`. - - """ - t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end - t_T = self.noise_schedule.T if t_start is None else t_start - device = x.device - if method == 'adaptive': - with torch.no_grad(): - x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, solver_type=solver_type) - elif method == 'multistep': - assert steps >= order - timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) - assert timesteps.shape[0] - 1 == steps - with torch.no_grad(): - vec_t = timesteps[0].expand((x.shape[0])) - model_prev_list = [self.model_fn(x, vec_t)] - t_prev_list = [vec_t] - # Init the first `order` values by lower order multistep DPM-Solver. - for init_order in range(1, order): - vec_t = timesteps[init_order].expand(x.shape[0]) - x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order, solver_type=solver_type) - model_prev_list.append(self.model_fn(x, vec_t)) - t_prev_list.append(vec_t) - # Compute the remaining values by `order`-th order multistep DPM-Solver. - for step in range(order, steps + 1): - vec_t = timesteps[step].expand(x.shape[0]) - if lower_order_final and steps < 15: - step_order = min(order, steps + 1 - step) - else: - step_order = order - x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order, solver_type=solver_type) - for i in range(order - 1): - t_prev_list[i] = t_prev_list[i + 1] - model_prev_list[i] = model_prev_list[i + 1] - t_prev_list[-1] = vec_t - # We do not need to evaluate the final model value. - if step < steps: - model_prev_list[-1] = self.model_fn(x, vec_t) - elif method in ['singlestep', 'singlestep_fixed']: - if method == 'singlestep': - timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order, skip_type=skip_type, t_T=t_T, t_0=t_0, device=device) - elif method == 'singlestep_fixed': - K = steps // order - orders = [order,] * K - timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device) - for i, order in enumerate(orders): - t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1] - timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(), N=order, device=device) - lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner) - vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0]) - h = lambda_inner[-1] - lambda_inner[0] - r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h - r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h - x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2) - if denoise_to_zero: - x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0) - return x - - - -############################################################# -# other utility functions -############################################################# - -def interpolate_fn(x, xp, yp): - """ - A piecewise linear function y = f(x), using xp and yp as keypoints. - We implement f(x) in a differentiable way (i.e. applicable for autograd). - The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) - - Args: - x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). - xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. - yp: PyTorch tensor with shape [C, K]. - Returns: - The function values f(x), with shape [N, C]. - """ - N, K = x.shape[0], xp.shape[1] - all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) - sorted_all_x, x_indices = torch.sort(all_x, dim=2) - x_idx = torch.argmin(x_indices, dim=2) - cand_start_idx = x_idx - 1 - start_idx = torch.where( - torch.eq(x_idx, 0), - torch.tensor(1, device=x.device), - torch.where( - torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, - ), - ) - end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) - start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) - end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) - start_idx2 = torch.where( - torch.eq(x_idx, 0), - torch.tensor(0, device=x.device), - torch.where( - torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, - ), - ) - y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) - start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) - end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) - cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) - return cand - - -def expand_dims(v, dims): - """ - Expand the tensor `v` to the dim `dims`. - - Args: - `v`: a PyTorch tensor with shape [N]. - `dim`: a `int`. - Returns: - a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. - """ - return v[(...,) + (None,)*(dims - 1)] \ No newline at end of file diff --git a/3DTopia/ldm/models/diffusion/dpm_solver/sampler.py b/3DTopia/ldm/models/diffusion/dpm_solver/sampler.py deleted file mode 100644 index 2c42d6f964d92658e769df95a81dec92250e5a99..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/models/diffusion/dpm_solver/sampler.py +++ /dev/null @@ -1,82 +0,0 @@ -"""SAMPLING ONLY.""" - -import torch - -from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver - - -class DPMSolverSampler(object): - def __init__(self, model, **kwargs): - super().__init__() - self.model = model - to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device) - self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod)) - - def register_buffer(self, name, attr): - if type(attr) == torch.Tensor: - if attr.device != torch.device("cuda"): - attr = attr.to(torch.device("cuda")) - setattr(self, name, attr) - - @torch.no_grad() - def sample(self, - S, - batch_size, - shape, - conditioning=None, - callback=None, - normals_sequence=None, - img_callback=None, - quantize_x0=False, - eta=0., - mask=None, - x0=None, - temperature=1., - noise_dropout=0., - score_corrector=None, - corrector_kwargs=None, - verbose=True, - x_T=None, - log_every_t=100, - unconditional_guidance_scale=1., - unconditional_conditioning=None, - # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... - **kwargs - ): - if conditioning is not None: - if isinstance(conditioning, dict): - cbs = conditioning[list(conditioning.keys())[0]].shape[0] - if cbs != batch_size: - print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") - else: - if conditioning.shape[0] != batch_size: - print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") - - # sampling - C, H, W = shape - size = (batch_size, C, H, W) - - # print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}') - - device = self.model.betas.device - if x_T is None: - img = torch.randn(size, device=device) - else: - img = x_T - - ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod) - - model_fn = model_wrapper( - lambda x, t, c: self.model.apply_model(x, t, c), - ns, - model_type="noise", - guidance_type="classifier-free", - condition=conditioning, - unconditional_condition=unconditional_conditioning, - guidance_scale=unconditional_guidance_scale, - ) - - dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False) - x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True) - - return x.to(device), None diff --git a/3DTopia/ldm/models/diffusion/plms.py b/3DTopia/ldm/models/diffusion/plms.py deleted file mode 100644 index 78eeb1003aa45d27bdbfc6b4a1d7ccbff57cd2e3..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/models/diffusion/plms.py +++ /dev/null @@ -1,236 +0,0 @@ -"""SAMPLING ONLY.""" - -import torch -import numpy as np -from tqdm import tqdm -from functools import partial - -from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like - - -class PLMSSampler(object): - def __init__(self, model, schedule="linear", **kwargs): - super().__init__() - self.model = model - self.ddpm_num_timesteps = model.num_timesteps - self.schedule = schedule - - def register_buffer(self, name, attr): - if type(attr) == torch.Tensor: - if attr.device != torch.device("cuda"): - attr = attr.to(torch.device("cuda")) - setattr(self, name, attr) - - def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): - if ddim_eta != 0: - raise ValueError('ddim_eta must be 0 for PLMS') - self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, - num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) - alphas_cumprod = self.model.alphas_cumprod - assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' - to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) - - self.register_buffer('betas', to_torch(self.model.betas)) - self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) - self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) - - # calculations for diffusion q(x_t | x_{t-1}) and others - self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) - self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) - self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) - self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) - self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) - - # ddim sampling parameters - ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), - ddim_timesteps=self.ddim_timesteps, - eta=ddim_eta,verbose=verbose) - self.register_buffer('ddim_sigmas', ddim_sigmas) - self.register_buffer('ddim_alphas', ddim_alphas) - self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) - self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) - sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( - (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( - 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) - self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) - - @torch.no_grad() - def sample(self, - S, - batch_size, - shape, - conditioning=None, - callback=None, - normals_sequence=None, - img_callback=None, - quantize_x0=False, - eta=0., - mask=None, - x0=None, - temperature=1., - noise_dropout=0., - score_corrector=None, - corrector_kwargs=None, - verbose=True, - x_T=None, - log_every_t=100, - unconditional_guidance_scale=1., - unconditional_conditioning=None, - # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... - **kwargs - ): - if conditioning is not None: - if isinstance(conditioning, dict): - cbs = conditioning[list(conditioning.keys())[0]].shape[0] - if cbs != batch_size: - print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") - else: - if conditioning.shape[0] != batch_size: - print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") - - self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) - # sampling - C, H, W = shape - size = (batch_size, C, H, W) - print(f'Data shape for PLMS sampling is {size}') - - samples, intermediates = self.plms_sampling(conditioning, size, - callback=callback, - img_callback=img_callback, - quantize_denoised=quantize_x0, - mask=mask, x0=x0, - ddim_use_original_steps=False, - noise_dropout=noise_dropout, - temperature=temperature, - score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - x_T=x_T, - log_every_t=log_every_t, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning, - ) - return samples, intermediates - - @torch.no_grad() - def plms_sampling(self, cond, shape, - x_T=None, ddim_use_original_steps=False, - callback=None, timesteps=None, quantize_denoised=False, - mask=None, x0=None, img_callback=None, log_every_t=100, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, - unconditional_guidance_scale=1., unconditional_conditioning=None,): - device = self.model.betas.device - b = shape[0] - if x_T is None: - img = torch.randn(shape, device=device) - else: - img = x_T - - if timesteps is None: - timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps - elif timesteps is not None and not ddim_use_original_steps: - subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 - timesteps = self.ddim_timesteps[:subset_end] - - intermediates = {'x_inter': [img], 'pred_x0': [img]} - time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps) - total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] - print(f"Running PLMS Sampling with {total_steps} timesteps") - - iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps) - old_eps = [] - - for i, step in enumerate(iterator): - index = total_steps - i - 1 - ts = torch.full((b,), step, device=device, dtype=torch.long) - ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long) - - if mask is not None: - assert x0 is not None - img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? - img = img_orig * mask + (1. - mask) * img - - outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, - quantize_denoised=quantize_denoised, temperature=temperature, - noise_dropout=noise_dropout, score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning, - old_eps=old_eps, t_next=ts_next) - img, pred_x0, e_t = outs - old_eps.append(e_t) - if len(old_eps) >= 4: - old_eps.pop(0) - if callback: callback(i) - if img_callback: img_callback(pred_x0, i) - - if index % log_every_t == 0 or index == total_steps - 1: - intermediates['x_inter'].append(img) - intermediates['pred_x0'].append(pred_x0) - - return img, intermediates - - @torch.no_grad() - def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, - unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None): - b, *_, device = *x.shape, x.device - - def get_model_output(x, t): - if unconditional_conditioning is None or unconditional_guidance_scale == 1.: - e_t = self.model.apply_model(x, t, c) - else: - x_in = torch.cat([x] * 2) - t_in = torch.cat([t] * 2) - c_in = torch.cat([unconditional_conditioning, c]) - e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) - e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) - - if score_corrector is not None: - assert self.model.parameterization == "eps" - e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) - - return e_t - - alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas - alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev - sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas - sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas - - def get_x_prev_and_pred_x0(e_t, index): - # select parameters corresponding to the currently considered timestep - a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) - a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) - sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) - sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) - - # current prediction for x_0 - pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() - if quantize_denoised: - pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) - # direction pointing to x_t - dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t - noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature - if noise_dropout > 0.: - noise = torch.nn.functional.dropout(noise, p=noise_dropout) - x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise - return x_prev, pred_x0 - - e_t = get_model_output(x, t) - if len(old_eps) == 0: - # Pseudo Improved Euler (2nd order) - x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index) - e_t_next = get_model_output(x_prev, t_next) - e_t_prime = (e_t + e_t_next) / 2 - elif len(old_eps) == 1: - # 2nd order Pseudo Linear Multistep (Adams-Bashforth) - e_t_prime = (3 * e_t - old_eps[-1]) / 2 - elif len(old_eps) == 2: - # 3nd order Pseudo Linear Multistep (Adams-Bashforth) - e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12 - elif len(old_eps) >= 3: - # 4nd order Pseudo Linear Multistep (Adams-Bashforth) - e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24 - - x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index) - - return x_prev, pred_x0, e_t diff --git a/3DTopia/ldm/modules/attention.py b/3DTopia/ldm/modules/attention.py deleted file mode 100644 index f4eff39ccb6d75daa764f6eb70a7cef024fb5a3f..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/modules/attention.py +++ /dev/null @@ -1,261 +0,0 @@ -from inspect import isfunction -import math -import torch -import torch.nn.functional as F -from torch import nn, einsum -from einops import rearrange, repeat - -from ldm.modules.diffusionmodules.util import checkpoint - - -def exists(val): - return val is not None - - -def uniq(arr): - return{el: True for el in arr}.keys() - - -def default(val, d): - if exists(val): - return val - return d() if isfunction(d) else d - - -def max_neg_value(t): - return -torch.finfo(t.dtype).max - - -def init_(tensor): - dim = tensor.shape[-1] - std = 1 / math.sqrt(dim) - tensor.uniform_(-std, std) - return tensor - - -# feedforward -class GEGLU(nn.Module): - def __init__(self, dim_in, dim_out): - super().__init__() - self.proj = nn.Linear(dim_in, dim_out * 2) - - def forward(self, x): - x, gate = self.proj(x).chunk(2, dim=-1) - return x * F.gelu(gate) - - -class FeedForward(nn.Module): - def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): - super().__init__() - inner_dim = int(dim * mult) - dim_out = default(dim_out, dim) - project_in = nn.Sequential( - nn.Linear(dim, inner_dim), - nn.GELU() - ) if not glu else GEGLU(dim, inner_dim) - - self.net = nn.Sequential( - project_in, - nn.Dropout(dropout), - nn.Linear(inner_dim, dim_out) - ) - - def forward(self, x): - return self.net(x) - - -def zero_module(module): - """ - Zero out the parameters of a module and return it. - """ - for p in module.parameters(): - p.detach().zero_() - return module - - -def Normalize(in_channels): - return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) - - -class LinearAttention(nn.Module): - def __init__(self, dim, heads=4, dim_head=32): - super().__init__() - self.heads = heads - hidden_dim = dim_head * heads - self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) - self.to_out = nn.Conv2d(hidden_dim, dim, 1) - - def forward(self, x): - b, c, h, w = x.shape - qkv = self.to_qkv(x) - q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) - k = k.softmax(dim=-1) - context = torch.einsum('bhdn,bhen->bhde', k, v) - out = torch.einsum('bhde,bhdn->bhen', context, q) - out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) - return self.to_out(out) - - -class SpatialSelfAttention(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.in_channels = in_channels - - self.norm = Normalize(in_channels) - self.q = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.k = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.v = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.proj_out = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - - def forward(self, x): - h_ = x - h_ = self.norm(h_) - q = self.q(h_) - k = self.k(h_) - v = self.v(h_) - - # compute attention - b,c,h,w = q.shape - q = rearrange(q, 'b c h w -> b (h w) c') - k = rearrange(k, 'b c h w -> b c (h w)') - w_ = torch.einsum('bij,bjk->bik', q, k) - - w_ = w_ * (int(c)**(-0.5)) - w_ = torch.nn.functional.softmax(w_, dim=2) - - # attend to values - v = rearrange(v, 'b c h w -> b c (h w)') - w_ = rearrange(w_, 'b i j -> b j i') - h_ = torch.einsum('bij,bjk->bik', v, w_) - h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) - h_ = self.proj_out(h_) - - return x+h_ - - -class CrossAttention(nn.Module): - def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): - super().__init__() - inner_dim = dim_head * heads - context_dim = default(context_dim, query_dim) - - self.scale = dim_head ** -0.5 - self.heads = heads - - self.to_q = nn.Linear(query_dim, inner_dim, bias=False) - self.to_k = nn.Linear(context_dim, inner_dim, bias=False) - self.to_v = nn.Linear(context_dim, inner_dim, bias=False) - - self.to_out = nn.Sequential( - nn.Linear(inner_dim, query_dim), - nn.Dropout(dropout) - ) - - def forward(self, x, context=None, mask=None): - h = self.heads - - q = self.to_q(x) - context = default(context, x) - k = self.to_k(context) - v = self.to_v(context) - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) - - sim = einsum('b i d, b j d -> b i j', q, k) * self.scale - - if exists(mask): - mask = rearrange(mask, 'b ... -> b (...)') - max_neg_value = -torch.finfo(sim.dtype).max - mask = repeat(mask, 'b j -> (b h) () j', h=h) - sim.masked_fill_(~mask, max_neg_value) - - # attention, what we cannot get enough of - attn = sim.softmax(dim=-1) - - out = einsum('b i j, b j d -> b i d', attn, v) - out = rearrange(out, '(b h) n d -> b n (h d)', h=h) - return self.to_out(out) - - -class BasicTransformerBlock(nn.Module): - def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True): - super().__init__() - self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention - self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) - self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, - heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none - self.norm1 = nn.LayerNorm(dim) - self.norm2 = nn.LayerNorm(dim) - self.norm3 = nn.LayerNorm(dim) - self.checkpoint = checkpoint - - def forward(self, x, context=None): - return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) - - def _forward(self, x, context=None): - x = self.attn1(self.norm1(x)) + x - x = self.attn2(self.norm2(x), context=context) + x - x = self.ff(self.norm3(x)) + x - return x - - -class SpatialTransformer(nn.Module): - """ - Transformer block for image-like data. - First, project the input (aka embedding) - and reshape to b, t, d. - Then apply standard transformer action. - Finally, reshape to image - """ - def __init__(self, in_channels, n_heads, d_head, - depth=1, dropout=0., context_dim=None): - super().__init__() - self.in_channels = in_channels - inner_dim = n_heads * d_head - self.norm = Normalize(in_channels) - - self.proj_in = nn.Conv2d(in_channels, - inner_dim, - kernel_size=1, - stride=1, - padding=0) - - self.transformer_blocks = nn.ModuleList( - [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) - for d in range(depth)] - ) - - self.proj_out = zero_module(nn.Conv2d(inner_dim, - in_channels, - kernel_size=1, - stride=1, - padding=0)) - - def forward(self, x, context=None): - # note: if no context is given, cross-attention defaults to self-attention - b, c, h, w = x.shape - x_in = x - x = self.norm(x) - x = self.proj_in(x) - x = rearrange(x, 'b c h w -> b (h w) c') - for block in self.transformer_blocks: - x = block(x, context=context) - x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w) - x = self.proj_out(x) - return x + x_in \ No newline at end of file diff --git a/3DTopia/ldm/modules/diffusionmodules/__init__.py b/3DTopia/ldm/modules/diffusionmodules/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/3DTopia/ldm/modules/diffusionmodules/model.py b/3DTopia/ldm/modules/diffusionmodules/model.py deleted file mode 100644 index 533e589a2024f1d7c52093d8c472c3b1b6617e26..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/modules/diffusionmodules/model.py +++ /dev/null @@ -1,835 +0,0 @@ -# pytorch_diffusion + derived encoder decoder -import math -import torch -import torch.nn as nn -import numpy as np -from einops import rearrange - -from ldm.util import instantiate_from_config -from ldm.modules.attention import LinearAttention - - -def get_timestep_embedding(timesteps, embedding_dim): - """ - This matches the implementation in Denoising Diffusion Probabilistic Models: - From Fairseq. - Build sinusoidal embeddings. - This matches the implementation in tensor2tensor, but differs slightly - from the description in Section 3.5 of "Attention Is All You Need". - """ - assert len(timesteps.shape) == 1 - - half_dim = embedding_dim // 2 - emb = math.log(10000) / (half_dim - 1) - emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) - emb = emb.to(device=timesteps.device) - emb = timesteps.float()[:, None] * emb[None, :] - emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) - if embedding_dim % 2 == 1: # zero pad - emb = torch.nn.functional.pad(emb, (0,1,0,0)) - return emb - - -def nonlinearity(x): - # swish - return x*torch.sigmoid(x) - - -def Normalize(in_channels, num_groups=32): - return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) - - -class Upsample(nn.Module): - def __init__(self, in_channels, with_conv): - super().__init__() - self.with_conv = with_conv - if self.with_conv: - self.conv = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") - if self.with_conv: - x = self.conv(x) - return x - - -class Downsample(nn.Module): - def __init__(self, in_channels, with_conv): - super().__init__() - self.with_conv = with_conv - if self.with_conv: - # no asymmetric padding in torch conv, must do it ourselves - self.conv = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=3, - stride=2, - padding=0) - - def forward(self, x): - if self.with_conv: - pad = (0,1,0,1) - x = torch.nn.functional.pad(x, pad, mode="constant", value=0) - x = self.conv(x) - else: - x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) - return x - - -class ResnetBlock(nn.Module): - def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, - dropout, temb_channels=512): - super().__init__() - self.in_channels = in_channels - out_channels = in_channels if out_channels is None else out_channels - self.out_channels = out_channels - self.use_conv_shortcut = conv_shortcut - - self.norm1 = Normalize(in_channels) - self.conv1 = torch.nn.Conv2d(in_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - if temb_channels > 0: - self.temb_proj = torch.nn.Linear(temb_channels, - out_channels) - self.norm2 = Normalize(out_channels) - self.dropout = torch.nn.Dropout(dropout) - self.conv2 = torch.nn.Conv2d(out_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - self.conv_shortcut = torch.nn.Conv2d(in_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - else: - self.nin_shortcut = torch.nn.Conv2d(in_channels, - out_channels, - kernel_size=1, - stride=1, - padding=0) - - def forward(self, x, temb): - h = x - h = self.norm1(h) - h = nonlinearity(h) - h = self.conv1(h) - - if temb is not None: - h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] - - h = self.norm2(h) - h = nonlinearity(h) - h = self.dropout(h) - h = self.conv2(h) - - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - x = self.conv_shortcut(x) - else: - x = self.nin_shortcut(x) - - return x+h - - -class LinAttnBlock(LinearAttention): - """to match AttnBlock usage""" - def __init__(self, in_channels): - super().__init__(dim=in_channels, heads=1, dim_head=in_channels) - - -class AttnBlock(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.in_channels = in_channels - - self.norm = Normalize(in_channels) - self.q = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.k = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.v = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.proj_out = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - - - def forward(self, x): - h_ = x - h_ = self.norm(h_) - q = self.q(h_) - k = self.k(h_) - v = self.v(h_) - - # compute attention - b,c,h,w = q.shape - q = q.reshape(b,c,h*w) - q = q.permute(0,2,1) # b,hw,c - k = k.reshape(b,c,h*w) # b,c,hw - w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] - w_ = w_ * (int(c)**(-0.5)) - w_ = torch.nn.functional.softmax(w_, dim=2) - - # attend to values - v = v.reshape(b,c,h*w) - w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q) - h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] - h_ = h_.reshape(b,c,h,w) - - h_ = self.proj_out(h_) - - return x+h_ - - -def make_attn(in_channels, attn_type="vanilla"): - assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown' - print(f"making attention of type '{attn_type}' with {in_channels} in_channels") - if attn_type == "vanilla": - return AttnBlock(in_channels) - elif attn_type == "none": - return nn.Identity(in_channels) - else: - return LinAttnBlock(in_channels) - - -class Model(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"): - super().__init__() - if use_linear_attn: attn_type = "linear" - self.ch = ch - self.temb_ch = self.ch*4 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - - self.use_timestep = use_timestep - if self.use_timestep: - # timestep embedding - self.temb = nn.Module() - self.temb.dense = nn.ModuleList([ - torch.nn.Linear(self.ch, - self.temb_ch), - torch.nn.Linear(self.temb_ch, - self.temb_ch), - ]) - - # downsampling - self.conv_in = torch.nn.Conv2d(in_channels, - self.ch, - kernel_size=3, - stride=1, - padding=1) - - curr_res = resolution - in_ch_mult = (1,)+tuple(ch_mult) - self.down = nn.ModuleList() - for i_level in range(self.num_resolutions): - block = nn.ModuleList() - attn = nn.ModuleList() - block_in = ch*in_ch_mult[i_level] - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks): - block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - down = nn.Module() - down.block = block - down.attn = attn - if i_level != self.num_resolutions-1: - down.downsample = Downsample(block_in, resamp_with_conv) - curr_res = curr_res // 2 - self.down.append(down) - - # middle - self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) - self.mid.block_2 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # upsampling - self.up = nn.ModuleList() - for i_level in reversed(range(self.num_resolutions)): - block = nn.ModuleList() - attn = nn.ModuleList() - block_out = ch*ch_mult[i_level] - skip_in = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks+1): - if i_block == self.num_res_blocks: - skip_in = ch*in_ch_mult[i_level] - block.append(ResnetBlock(in_channels=block_in+skip_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - up = nn.Module() - up.block = block - up.attn = attn - if i_level != 0: - up.upsample = Upsample(block_in, resamp_with_conv) - curr_res = curr_res * 2 - self.up.insert(0, up) # prepend to get consistent order - - # end - self.norm_out = Normalize(block_in) - self.conv_out = torch.nn.Conv2d(block_in, - out_ch, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x, t=None, context=None): - #assert x.shape[2] == x.shape[3] == self.resolution - if context is not None: - # assume aligned context, cat along channel axis - x = torch.cat((x, context), dim=1) - if self.use_timestep: - # timestep embedding - assert t is not None - temb = get_timestep_embedding(t, self.ch) - temb = self.temb.dense[0](temb) - temb = nonlinearity(temb) - temb = self.temb.dense[1](temb) - else: - temb = None - - # downsampling - hs = [self.conv_in(x)] - for i_level in range(self.num_resolutions): - for i_block in range(self.num_res_blocks): - h = self.down[i_level].block[i_block](hs[-1], temb) - if len(self.down[i_level].attn) > 0: - h = self.down[i_level].attn[i_block](h) - hs.append(h) - if i_level != self.num_resolutions-1: - hs.append(self.down[i_level].downsample(hs[-1])) - - # middle - h = hs[-1] - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - # upsampling - for i_level in reversed(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks+1): - h = self.up[i_level].block[i_block]( - torch.cat([h, hs.pop()], dim=1), temb) - if len(self.up[i_level].attn) > 0: - h = self.up[i_level].attn[i_block](h) - if i_level != 0: - h = self.up[i_level].upsample(h) - - # end - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - return h - - def get_last_layer(self): - return self.conv_out.weight - - -class Encoder(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla", - **ignore_kwargs): - super().__init__() - if use_linear_attn: attn_type = "linear" - self.ch = ch - self.temb_ch = 0 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - - # downsampling - self.conv_in = torch.nn.Conv2d(in_channels, - self.ch, - kernel_size=3, - stride=1, - padding=1) - - curr_res = resolution - in_ch_mult = (1,)+tuple(ch_mult) - self.in_ch_mult = in_ch_mult - self.down = nn.ModuleList() - for i_level in range(self.num_resolutions): - block = nn.ModuleList() - attn = nn.ModuleList() - block_in = ch*in_ch_mult[i_level] - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks): - block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - down = nn.Module() - down.block = block - down.attn = attn - if i_level != self.num_resolutions-1: - down.downsample = Downsample(block_in, resamp_with_conv) - curr_res = curr_res // 2 - self.down.append(down) - - # middle - self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) - self.mid.block_2 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # end - self.norm_out = Normalize(block_in) - self.conv_out = torch.nn.Conv2d(block_in, - 2*z_channels if double_z else z_channels, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - # timestep embedding - temb = None - - # downsampling - hs = [self.conv_in(x)] - for i_level in range(self.num_resolutions): - for i_block in range(self.num_res_blocks): - h = self.down[i_level].block[i_block](hs[-1], temb) - if len(self.down[i_level].attn) > 0: - h = self.down[i_level].attn[i_block](h) - hs.append(h) - if i_level != self.num_resolutions-1: - hs.append(self.down[i_level].downsample(hs[-1])) - - # middle - h = hs[-1] - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - # end - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - return h - - -class Decoder(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, - attn_type="vanilla", **ignorekwargs): - super().__init__() - if use_linear_attn: attn_type = "linear" - self.ch = ch - self.temb_ch = 0 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - self.give_pre_end = give_pre_end - self.tanh_out = tanh_out - - # compute in_ch_mult, block_in and curr_res at lowest res - in_ch_mult = (1,)+tuple(ch_mult) - block_in = ch*ch_mult[self.num_resolutions-1] - curr_res = resolution // 2**(self.num_resolutions-1) - self.z_shape = (1,z_channels,curr_res,curr_res) - print("Working with z of shape {} = {} dimensions.".format( - self.z_shape, np.prod(self.z_shape))) - - # z to block_in - self.conv_in = torch.nn.Conv2d(z_channels, - block_in, - kernel_size=3, - stride=1, - padding=1) - - # middle - self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) - self.mid.block_2 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # upsampling - self.up = nn.ModuleList() - for i_level in reversed(range(self.num_resolutions)): - block = nn.ModuleList() - attn = nn.ModuleList() - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks+1): - block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - up = nn.Module() - up.block = block - up.attn = attn - if i_level != 0: - up.upsample = Upsample(block_in, resamp_with_conv) - curr_res = curr_res * 2 - self.up.insert(0, up) # prepend to get consistent order - - # end - self.norm_out = Normalize(block_in) - self.conv_out = torch.nn.Conv2d(block_in, - out_ch, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, z): - #assert z.shape[1:] == self.z_shape[1:] - self.last_z_shape = z.shape - - # timestep embedding - temb = None - - # z to block_in - h = self.conv_in(z) - - # middle - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - # upsampling - for i_level in reversed(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks+1): - h = self.up[i_level].block[i_block](h, temb) - if len(self.up[i_level].attn) > 0: - h = self.up[i_level].attn[i_block](h) - if i_level != 0: - h = self.up[i_level].upsample(h) - - # end - if self.give_pre_end: - return h - - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - if self.tanh_out: - h = torch.tanh(h) - return h - - -class SimpleDecoder(nn.Module): - def __init__(self, in_channels, out_channels, *args, **kwargs): - super().__init__() - self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1), - ResnetBlock(in_channels=in_channels, - out_channels=2 * in_channels, - temb_channels=0, dropout=0.0), - ResnetBlock(in_channels=2 * in_channels, - out_channels=4 * in_channels, - temb_channels=0, dropout=0.0), - ResnetBlock(in_channels=4 * in_channels, - out_channels=2 * in_channels, - temb_channels=0, dropout=0.0), - nn.Conv2d(2*in_channels, in_channels, 1), - Upsample(in_channels, with_conv=True)]) - # end - self.norm_out = Normalize(in_channels) - self.conv_out = torch.nn.Conv2d(in_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - for i, layer in enumerate(self.model): - if i in [1,2,3]: - x = layer(x, None) - else: - x = layer(x) - - h = self.norm_out(x) - h = nonlinearity(h) - x = self.conv_out(h) - return x - - -class UpsampleDecoder(nn.Module): - def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution, - ch_mult=(2,2), dropout=0.0): - super().__init__() - # upsampling - self.temb_ch = 0 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - block_in = in_channels - curr_res = resolution // 2 ** (self.num_resolutions - 1) - self.res_blocks = nn.ModuleList() - self.upsample_blocks = nn.ModuleList() - for i_level in range(self.num_resolutions): - res_block = [] - block_out = ch * ch_mult[i_level] - for i_block in range(self.num_res_blocks + 1): - res_block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - self.res_blocks.append(nn.ModuleList(res_block)) - if i_level != self.num_resolutions - 1: - self.upsample_blocks.append(Upsample(block_in, True)) - curr_res = curr_res * 2 - - # end - self.norm_out = Normalize(block_in) - self.conv_out = torch.nn.Conv2d(block_in, - out_channels, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - # upsampling - h = x - for k, i_level in enumerate(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks + 1): - h = self.res_blocks[i_level][i_block](h, None) - if i_level != self.num_resolutions - 1: - h = self.upsample_blocks[k](h) - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - return h - - -class LatentRescaler(nn.Module): - def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2): - super().__init__() - # residual block, interpolate, residual block - self.factor = factor - self.conv_in = nn.Conv2d(in_channels, - mid_channels, - kernel_size=3, - stride=1, - padding=1) - self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels, - out_channels=mid_channels, - temb_channels=0, - dropout=0.0) for _ in range(depth)]) - self.attn = AttnBlock(mid_channels) - self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels, - out_channels=mid_channels, - temb_channels=0, - dropout=0.0) for _ in range(depth)]) - - self.conv_out = nn.Conv2d(mid_channels, - out_channels, - kernel_size=1, - ) - - def forward(self, x): - x = self.conv_in(x) - for block in self.res_block1: - x = block(x, None) - x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor)))) - x = self.attn(x) - for block in self.res_block2: - x = block(x, None) - x = self.conv_out(x) - return x - - -class MergedRescaleEncoder(nn.Module): - def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, - ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1): - super().__init__() - intermediate_chn = ch * ch_mult[-1] - self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult, - z_channels=intermediate_chn, double_z=False, resolution=resolution, - attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv, - out_ch=None) - self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn, - mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth) - - def forward(self, x): - x = self.encoder(x) - x = self.rescaler(x) - return x - - -class MergedRescaleDecoder(nn.Module): - def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8), - dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1): - super().__init__() - tmp_chn = z_channels*ch_mult[-1] - self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout, - resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks, - ch_mult=ch_mult, resolution=resolution, ch=ch) - self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn, - out_channels=tmp_chn, depth=rescale_module_depth) - - def forward(self, x): - x = self.rescaler(x) - x = self.decoder(x) - return x - - -class Upsampler(nn.Module): - def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2): - super().__init__() - assert out_size >= in_size - num_blocks = int(np.log2(out_size//in_size))+1 - factor_up = 1.+ (out_size % in_size) - print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}") - self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels, - out_channels=in_channels) - self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2, - attn_resolutions=[], in_channels=None, ch=in_channels, - ch_mult=[ch_mult for _ in range(num_blocks)]) - - def forward(self, x): - x = self.rescaler(x) - x = self.decoder(x) - return x - - -class Resize(nn.Module): - def __init__(self, in_channels=None, learned=False, mode="bilinear"): - super().__init__() - self.with_conv = learned - self.mode = mode - if self.with_conv: - print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode") - raise NotImplementedError() - assert in_channels is not None - # no asymmetric padding in torch conv, must do it ourselves - self.conv = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=4, - stride=2, - padding=1) - - def forward(self, x, scale_factor=1.0): - if scale_factor==1.0: - return x - else: - x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor) - return x - -class FirstStagePostProcessor(nn.Module): - - def __init__(self, ch_mult:list, in_channels, - pretrained_model:nn.Module=None, - reshape=False, - n_channels=None, - dropout=0., - pretrained_config=None): - super().__init__() - if pretrained_config is None: - assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None' - self.pretrained_model = pretrained_model - else: - assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None' - self.instantiate_pretrained(pretrained_config) - - self.do_reshape = reshape - - if n_channels is None: - n_channels = self.pretrained_model.encoder.ch - - self.proj_norm = Normalize(in_channels,num_groups=in_channels//2) - self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3, - stride=1,padding=1) - - blocks = [] - downs = [] - ch_in = n_channels - for m in ch_mult: - blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout)) - ch_in = m * n_channels - downs.append(Downsample(ch_in, with_conv=False)) - - self.model = nn.ModuleList(blocks) - self.downsampler = nn.ModuleList(downs) - - - def instantiate_pretrained(self, config): - model = instantiate_from_config(config) - self.pretrained_model = model.eval() - # self.pretrained_model.train = False - for param in self.pretrained_model.parameters(): - param.requires_grad = False - - - @torch.no_grad() - def encode_with_pretrained(self,x): - c = self.pretrained_model.encode(x) - if isinstance(c, DiagonalGaussianDistribution): - c = c.mode() - return c - - def forward(self,x): - z_fs = self.encode_with_pretrained(x) - z = self.proj_norm(z_fs) - z = self.proj(z) - z = nonlinearity(z) - - for submodel, downmodel in zip(self.model,self.downsampler): - z = submodel(z,temb=None) - z = downmodel(z) - - if self.do_reshape: - z = rearrange(z,'b c h w -> b (h w) c') - return z - diff --git a/3DTopia/ldm/modules/diffusionmodules/openaimodel.py b/3DTopia/ldm/modules/diffusionmodules/openaimodel.py deleted file mode 100644 index 43edcfbcad0cc3e26d9979734a67b1ca0e593392..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/modules/diffusionmodules/openaimodel.py +++ /dev/null @@ -1,965 +0,0 @@ -from abc import abstractmethod -from functools import partial -import math -from typing import Iterable - -import numpy as np -import torch as th -import torch.nn as nn -import torch.nn.functional as F - -from ldm.modules.diffusionmodules.util import ( - checkpoint, - conv_nd, - linear, - avg_pool_nd, - zero_module, - normalization, - timestep_embedding, -) -from ldm.modules.attention import SpatialTransformer - - -# dummy replace -def convert_module_to_f16(x): - pass - -def convert_module_to_f32(x): - pass - - -## go -class AttentionPool2d(nn.Module): - """ - Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py - """ - - def __init__( - self, - spacial_dim: int, - embed_dim: int, - num_heads_channels: int, - output_dim: int = None, - ): - super().__init__() - self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5) - self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) - self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) - self.num_heads = embed_dim // num_heads_channels - self.attention = QKVAttention(self.num_heads) - - def forward(self, x): - b, c, *_spatial = x.shape - x = x.reshape(b, c, -1) # NC(HW) - x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1) - x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1) - x = self.qkv_proj(x) - x = self.attention(x) - x = self.c_proj(x) - return x[:, :, 0] - - -class TimestepBlock(nn.Module): - """ - Any module where forward() takes timestep embeddings as a second argument. - """ - - @abstractmethod - def forward(self, x, emb): - """ - Apply the module to `x` given `emb` timestep embeddings. - """ - - -class TimestepEmbedSequential(nn.Sequential, TimestepBlock): - """ - A sequential module that passes timestep embeddings to the children that - support it as an extra input. - """ - - def forward(self, x, emb, context=None): - for layer in self: - if isinstance(layer, TimestepBlock): - x = layer(x, emb) - elif isinstance(layer, SpatialTransformer): - x = layer(x, context) - else: - x = layer(x) - return x - - -class Upsample(nn.Module): - """ - An upsampling layer with an optional convolution. - :param channels: channels in the inputs and outputs. - :param use_conv: a bool determining if a convolution is applied. - :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then - upsampling occurs in the inner-two dimensions. - """ - - def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.dims = dims - if use_conv: - self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) - - def forward(self, x): - assert x.shape[1] == self.channels - if self.dims == 3: - x = F.interpolate( - x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" - ) - else: - x = F.interpolate(x, scale_factor=2, mode="nearest") - if self.use_conv: - x = self.conv(x) - return x - -class TransposedUpsample(nn.Module): - 'Learned 2x upsampling without padding' - def __init__(self, channels, out_channels=None, ks=5): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - - self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2) - - def forward(self,x): - return self.up(x) - - -class Downsample(nn.Module): - """ - A downsampling layer with an optional convolution. - :param channels: channels in the inputs and outputs. - :param use_conv: a bool determining if a convolution is applied. - :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then - downsampling occurs in the inner-two dimensions. - """ - - def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.dims = dims - stride = 2 if dims != 3 else (1, 2, 2) - if use_conv: - self.op = conv_nd( - dims, self.channels, self.out_channels, 3, stride=stride, padding=padding - ) - else: - assert self.channels == self.out_channels - self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) - - def forward(self, x): - assert x.shape[1] == self.channels - return self.op(x) - - -class ResBlock(TimestepBlock): - """ - A residual block that can optionally change the number of channels. - :param channels: the number of input channels. - :param emb_channels: the number of timestep embedding channels. - :param dropout: the rate of dropout. - :param out_channels: if specified, the number of out channels. - :param use_conv: if True and out_channels is specified, use a spatial - convolution instead of a smaller 1x1 convolution to change the - channels in the skip connection. - :param dims: determines if the signal is 1D, 2D, or 3D. - :param use_checkpoint: if True, use gradient checkpointing on this module. - :param up: if True, use this block for upsampling. - :param down: if True, use this block for downsampling. - """ - - def __init__( - self, - channels, - emb_channels, - dropout, - out_channels=None, - use_conv=False, - use_scale_shift_norm=False, - dims=2, - use_checkpoint=False, - up=False, - down=False, - ): - super().__init__() - self.channels = channels - self.emb_channels = emb_channels - self.dropout = dropout - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.use_checkpoint = use_checkpoint - self.use_scale_shift_norm = use_scale_shift_norm - - self.in_layers = nn.Sequential( - normalization(channels), - nn.SiLU(), - conv_nd(dims, channels, self.out_channels, 3, padding=1), - ) - - self.updown = up or down - - if up: - self.h_upd = Upsample(channels, False, dims) - self.x_upd = Upsample(channels, False, dims) - elif down: - self.h_upd = Downsample(channels, False, dims) - self.x_upd = Downsample(channels, False, dims) - else: - self.h_upd = self.x_upd = nn.Identity() - - self.emb_layers = nn.Sequential( - nn.SiLU(), - linear( - emb_channels, - 2 * self.out_channels if use_scale_shift_norm else self.out_channels, - ), - ) - self.out_layers = nn.Sequential( - normalization(self.out_channels), - nn.SiLU(), - nn.Dropout(p=dropout), - zero_module( - conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) - ), - ) - - if self.out_channels == channels: - self.skip_connection = nn.Identity() - elif use_conv: - self.skip_connection = conv_nd( - dims, channels, self.out_channels, 3, padding=1 - ) - else: - self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) - - def forward(self, x, emb): - """ - Apply the block to a Tensor, conditioned on a timestep embedding. - :param x: an [N x C x ...] Tensor of features. - :param emb: an [N x emb_channels] Tensor of timestep embeddings. - :return: an [N x C x ...] Tensor of outputs. - """ - return checkpoint( - self._forward, (x, emb), self.parameters(), self.use_checkpoint - ) - - - def _forward(self, x, emb): - if self.updown: - in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] - h = in_rest(x) - h = self.h_upd(h) - x = self.x_upd(x) - h = in_conv(h) - else: - h = self.in_layers(x) - emb_out = self.emb_layers(emb).type(h.dtype) - while len(emb_out.shape) < len(h.shape): - emb_out = emb_out[..., None] - if self.use_scale_shift_norm: - out_norm, out_rest = self.out_layers[0], self.out_layers[1:] - scale, shift = th.chunk(emb_out, 2, dim=1) - h = out_norm(h) * (1 + scale) + shift - h = out_rest(h) - else: - h = h + emb_out - h = self.out_layers(h) - return self.skip_connection(x) + h - - -class AttentionBlock(nn.Module): - """ - An attention block that allows spatial positions to attend to each other. - Originally ported from here, but adapted to the N-d case. - https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. - """ - - def __init__( - self, - channels, - num_heads=1, - num_head_channels=-1, - use_checkpoint=False, - use_new_attention_order=False, - ): - super().__init__() - self.channels = channels - if num_head_channels == -1: - self.num_heads = num_heads - else: - assert ( - channels % num_head_channels == 0 - ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" - self.num_heads = channels // num_head_channels - self.use_checkpoint = use_checkpoint - self.norm = normalization(channels) - self.qkv = conv_nd(1, channels, channels * 3, 1) - if use_new_attention_order: - # split qkv before split heads - self.attention = QKVAttention(self.num_heads) - else: - # split heads before split qkv - self.attention = QKVAttentionLegacy(self.num_heads) - - self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) - - def forward(self, x): - return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!! - #return pt_checkpoint(self._forward, x) # pytorch - - def _forward(self, x): - b, c, *spatial = x.shape - x = x.reshape(b, c, -1) - qkv = self.qkv(self.norm(x)) - h = self.attention(qkv) - h = self.proj_out(h) - return (x + h).reshape(b, c, *spatial) - - -def count_flops_attn(model, _x, y): - """ - A counter for the `thop` package to count the operations in an - attention operation. - Meant to be used like: - macs, params = thop.profile( - model, - inputs=(inputs, timestamps), - custom_ops={QKVAttention: QKVAttention.count_flops}, - ) - """ - b, c, *spatial = y[0].shape - num_spatial = int(np.prod(spatial)) - # We perform two matmuls with the same number of ops. - # The first computes the weight matrix, the second computes - # the combination of the value vectors. - matmul_ops = 2 * b * (num_spatial ** 2) * c - model.total_ops += th.DoubleTensor([matmul_ops]) - - -class QKVAttentionLegacy(nn.Module): - """ - A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping - """ - - def __init__(self, n_heads): - super().__init__() - self.n_heads = n_heads - - def forward(self, qkv): - """ - Apply QKV attention. - :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. - :return: an [N x (H * C) x T] tensor after attention. - """ - bs, width, length = qkv.shape - assert width % (3 * self.n_heads) == 0 - ch = width // (3 * self.n_heads) - q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) - scale = 1 / math.sqrt(math.sqrt(ch)) - weight = th.einsum( - "bct,bcs->bts", q * scale, k * scale - ) # More stable with f16 than dividing afterwards - weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) - a = th.einsum("bts,bcs->bct", weight, v) - return a.reshape(bs, -1, length) - - @staticmethod - def count_flops(model, _x, y): - return count_flops_attn(model, _x, y) - - -class QKVAttention(nn.Module): - """ - A module which performs QKV attention and splits in a different order. - """ - - def __init__(self, n_heads): - super().__init__() - self.n_heads = n_heads - - def forward(self, qkv): - """ - Apply QKV attention. - :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. - :return: an [N x (H * C) x T] tensor after attention. - """ - bs, width, length = qkv.shape - assert width % (3 * self.n_heads) == 0 - ch = width // (3 * self.n_heads) - q, k, v = qkv.chunk(3, dim=1) - scale = 1 / math.sqrt(math.sqrt(ch)) - weight = th.einsum( - "bct,bcs->bts", - (q * scale).view(bs * self.n_heads, ch, length), - (k * scale).view(bs * self.n_heads, ch, length), - ) # More stable with f16 than dividing afterwards - weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) - a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) - return a.reshape(bs, -1, length) - - @staticmethod - def count_flops(model, _x, y): - return count_flops_attn(model, _x, y) - - -class UNetModel(nn.Module): - """ - The full UNet model with attention and timestep embedding. - :param in_channels: channels in the input Tensor. - :param model_channels: base channel count for the model. - :param out_channels: channels in the output Tensor. - :param num_res_blocks: number of residual blocks per downsample. - :param attention_resolutions: a collection of downsample rates at which - attention will take place. May be a set, list, or tuple. - For example, if this contains 4, then at 4x downsampling, attention - will be used. - :param dropout: the dropout probability. - :param channel_mult: channel multiplier for each level of the UNet. - :param conv_resample: if True, use learned convolutions for upsampling and - downsampling. - :param dims: determines if the signal is 1D, 2D, or 3D. - :param num_classes: if specified (as an int), then this model will be - class-conditional with `num_classes` classes. - :param use_checkpoint: use gradient checkpointing to reduce memory usage. - :param num_heads: the number of attention heads in each attention layer. - :param num_heads_channels: if specified, ignore num_heads and instead use - a fixed channel width per attention head. - :param num_heads_upsample: works with num_heads to set a different number - of heads for upsampling. Deprecated. - :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. - :param resblock_updown: use residual blocks for up/downsampling. - :param use_new_attention_order: use a different attention pattern for potentially - increased efficiency. - """ - - def __init__( - self, - image_size, - in_channels, - model_channels, - out_channels, - num_res_blocks, - attention_resolutions, - dropout=0, - channel_mult=(1, 2, 4, 8), - conv_resample=True, - dims=2, - num_classes=None, - use_checkpoint=False, - use_fp16=False, - num_heads=-1, - num_head_channels=-1, - num_heads_upsample=-1, - use_scale_shift_norm=False, - resblock_updown=False, - use_new_attention_order=False, - use_spatial_transformer=False, # custom transformer support - transformer_depth=1, # custom transformer support - context_dim=None, # custom transformer support - n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model - legacy=True, - ): - super().__init__() - if use_spatial_transformer: - assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' - - if context_dim is not None: - assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' - from omegaconf.listconfig import ListConfig - if type(context_dim) == ListConfig: - context_dim = list(context_dim) - - if num_heads_upsample == -1: - num_heads_upsample = num_heads - - if num_heads == -1: - assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' - - if num_head_channels == -1: - assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' - - self.image_size = image_size - self.in_channels = in_channels - self.model_channels = model_channels - self.out_channels = out_channels - self.num_res_blocks = num_res_blocks - self.attention_resolutions = attention_resolutions - self.dropout = dropout - self.channel_mult = channel_mult - self.conv_resample = conv_resample - self.num_classes = num_classes - self.use_checkpoint = use_checkpoint - self.dtype = th.float16 if use_fp16 else th.float32 - self.num_heads = num_heads - self.num_head_channels = num_head_channels - self.num_heads_upsample = num_heads_upsample - self.predict_codebook_ids = n_embed is not None - - time_embed_dim = model_channels * 4 - self.time_embed = nn.Sequential( - linear(model_channels, time_embed_dim), - nn.SiLU(), - linear(time_embed_dim, time_embed_dim), - ) - - if self.num_classes is not None: - self.label_emb = nn.Embedding(num_classes, time_embed_dim) - - self.input_blocks = nn.ModuleList( - [ - TimestepEmbedSequential( - conv_nd(dims, in_channels, model_channels, 3, padding=1) - ) - ] - ) - self._feature_size = model_channels - input_block_chans = [model_channels] - ch = model_channels - ds = 1 - for level, mult in enumerate(channel_mult): - for _ in range(num_res_blocks): - layers = [ - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=mult * model_channels, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ) - ] - ch = mult * model_channels - if ds in attention_resolutions: - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - layers.append( - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=dim_head, - use_new_attention_order=use_new_attention_order, - ) if not use_spatial_transformer else SpatialTransformer( - ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim - ) - ) - self.input_blocks.append(TimestepEmbedSequential(*layers)) - self._feature_size += ch - input_block_chans.append(ch) - if level != len(channel_mult) - 1: - out_ch = ch - self.input_blocks.append( - TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - down=True, - ) - if resblock_updown - else Downsample( - ch, conv_resample, dims=dims, out_channels=out_ch - ) - ) - ) - ch = out_ch - input_block_chans.append(ch) - ds *= 2 - self._feature_size += ch - - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - self.middle_block = TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=dim_head, - use_new_attention_order=use_new_attention_order, - ) if not use_spatial_transformer else SpatialTransformer( - ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim - ), - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - ) - self._feature_size += ch - - self.output_blocks = nn.ModuleList([]) - for level, mult in list(enumerate(channel_mult))[::-1]: - for i in range(num_res_blocks + 1): - ich = input_block_chans.pop() - layers = [ - ResBlock( - ch + ich, - time_embed_dim, - dropout, - out_channels=model_channels * mult, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ) - ] - ch = model_channels * mult - if ds in attention_resolutions: - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - layers.append( - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads_upsample, - num_head_channels=dim_head, - use_new_attention_order=use_new_attention_order, - ) if not use_spatial_transformer else SpatialTransformer( - ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim - ) - ) - if level and i == num_res_blocks: - out_ch = ch - layers.append( - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - up=True, - ) - if resblock_updown - else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) - ) - ds //= 2 - self.output_blocks.append(TimestepEmbedSequential(*layers)) - self._feature_size += ch - - self.out = nn.Sequential( - normalization(ch), - nn.SiLU(), - zero_module(conv_nd(dims, ch, out_channels, 3, padding=1)), - ) - if self.predict_codebook_ids: - self.id_predictor = nn.Sequential( - normalization(ch), - conv_nd(dims, ch, n_embed, 1), - #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits - ) - - def convert_to_fp16(self): - """ - Convert the torso of the model to float16. - """ - self.input_blocks.apply(convert_module_to_f16) - self.middle_block.apply(convert_module_to_f16) - self.output_blocks.apply(convert_module_to_f16) - - def convert_to_fp32(self): - """ - Convert the torso of the model to float32. - """ - self.input_blocks.apply(convert_module_to_f32) - self.middle_block.apply(convert_module_to_f32) - self.output_blocks.apply(convert_module_to_f32) - - def forward(self, x, timesteps=None, context=None, y=None,**kwargs): - """ - Apply the model to an input batch. - :param x: an [N x C x ...] Tensor of inputs. - :param timesteps: a 1-D batch of timesteps. - :param context: conditioning plugged in via crossattn - :param y: an [N] Tensor of labels, if class-conditional. - :return: an [N x C x ...] Tensor of outputs. - """ - assert (y is not None) == ( - self.num_classes is not None - ), "must specify y if and only if the model is class-conditional" - hs = [] - t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) - emb = self.time_embed(t_emb) - - if self.num_classes is not None: - assert y.shape == (x.shape[0],) - emb = emb + self.label_emb(y) - - h = x.type(self.dtype) - for module in self.input_blocks: - h = module(h, emb, context) - hs.append(h) - h = self.middle_block(h, emb, context) - for module in self.output_blocks: - # if h.shape[1] == 640: - # # h[:, :320] = h[:, :320] * 1.4 - # # print("here") - # h = h * 1.2 - h = th.cat([h, hs.pop()], dim=1) - h = module(h, emb, context) - h = h.type(x.dtype) - if self.predict_codebook_ids: - return self.id_predictor(h) - else: - return self.out(h) - - -class EncoderUNetModel(nn.Module): - """ - The half UNet model with attention and timestep embedding. - For usage, see UNet. - """ - - def __init__( - self, - image_size, - in_channels, - model_channels, - out_channels, - num_res_blocks, - attention_resolutions, - dropout=0, - channel_mult=(1, 2, 4, 8), - conv_resample=True, - dims=2, - use_checkpoint=False, - use_fp16=False, - num_heads=1, - num_head_channels=-1, - num_heads_upsample=-1, - use_scale_shift_norm=False, - resblock_updown=False, - use_new_attention_order=False, - pool="adaptive", - *args, - **kwargs - ): - super().__init__() - - if num_heads_upsample == -1: - num_heads_upsample = num_heads - - self.in_channels = in_channels - self.model_channels = model_channels - self.out_channels = out_channels - self.num_res_blocks = num_res_blocks - self.attention_resolutions = attention_resolutions - self.dropout = dropout - self.channel_mult = channel_mult - self.conv_resample = conv_resample - self.use_checkpoint = use_checkpoint - self.dtype = th.float16 if use_fp16 else th.float32 - self.num_heads = num_heads - self.num_head_channels = num_head_channels - self.num_heads_upsample = num_heads_upsample - - time_embed_dim = model_channels * 4 - self.time_embed = nn.Sequential( - linear(model_channels, time_embed_dim), - nn.SiLU(), - linear(time_embed_dim, time_embed_dim), - ) - - self.input_blocks = nn.ModuleList( - [ - TimestepEmbedSequential( - conv_nd(dims, in_channels, model_channels, 3, padding=1) - ) - ] - ) - self._feature_size = model_channels - input_block_chans = [model_channels] - ch = model_channels - ds = 1 - for level, mult in enumerate(channel_mult): - for _ in range(num_res_blocks): - layers = [ - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=mult * model_channels, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ) - ] - ch = mult * model_channels - if ds in attention_resolutions: - layers.append( - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=num_head_channels, - use_new_attention_order=use_new_attention_order, - ) - ) - self.input_blocks.append(TimestepEmbedSequential(*layers)) - self._feature_size += ch - input_block_chans.append(ch) - if level != len(channel_mult) - 1: - out_ch = ch - self.input_blocks.append( - TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - down=True, - ) - if resblock_updown - else Downsample( - ch, conv_resample, dims=dims, out_channels=out_ch - ) - ) - ) - ch = out_ch - input_block_chans.append(ch) - ds *= 2 - self._feature_size += ch - - self.middle_block = TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=num_head_channels, - use_new_attention_order=use_new_attention_order, - ), - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - ) - self._feature_size += ch - self.pool = pool - if pool == "adaptive": - self.out = nn.Sequential( - normalization(ch), - nn.SiLU(), - nn.AdaptiveAvgPool2d((1, 1)), - zero_module(conv_nd(dims, ch, out_channels, 1)), - nn.Flatten(), - ) - elif pool == "attention": - assert num_head_channels != -1 - self.out = nn.Sequential( - normalization(ch), - nn.SiLU(), - AttentionPool2d( - (image_size // ds), ch, num_head_channels, out_channels - ), - ) - elif pool == "spatial": - self.out = nn.Sequential( - nn.Linear(self._feature_size, 2048), - nn.ReLU(), - nn.Linear(2048, self.out_channels), - ) - elif pool == "spatial_v2": - self.out = nn.Sequential( - nn.Linear(self._feature_size, 2048), - normalization(2048), - nn.SiLU(), - nn.Linear(2048, self.out_channels), - ) - else: - raise NotImplementedError(f"Unexpected {pool} pooling") - - def convert_to_fp16(self): - """ - Convert the torso of the model to float16. - """ - self.input_blocks.apply(convert_module_to_f16) - self.middle_block.apply(convert_module_to_f16) - - def convert_to_fp32(self): - """ - Convert the torso of the model to float32. - """ - self.input_blocks.apply(convert_module_to_f32) - self.middle_block.apply(convert_module_to_f32) - - def forward(self, x, timesteps): - """ - Apply the model to an input batch. - :param x: an [N x C x ...] Tensor of inputs. - :param timesteps: a 1-D batch of timesteps. - :return: an [N x K] Tensor of outputs. - """ - emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) - - results = [] - h = x.type(self.dtype) - for module in self.input_blocks: - h = module(h, emb) - if self.pool.startswith("spatial"): - results.append(h.type(x.dtype).mean(dim=(2, 3))) - h = self.middle_block(h, emb) - if self.pool.startswith("spatial"): - results.append(h.type(x.dtype).mean(dim=(2, 3))) - h = th.cat(results, axis=-1) - return self.out(h) - else: - h = h.type(x.dtype) - return self.out(h) - diff --git a/3DTopia/ldm/modules/diffusionmodules/triplane_3daware_unet.py b/3DTopia/ldm/modules/diffusionmodules/triplane_3daware_unet.py deleted file mode 100644 index 1358d5f9e24d47e8e8142c87292374c755fd7e53..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/modules/diffusionmodules/triplane_3daware_unet.py +++ /dev/null @@ -1,991 +0,0 @@ -from abc import abstractmethod -from functools import partial -import math -from typing import Iterable - -import numpy as np -import torch as th -import torch.nn as nn -import torch.nn.functional as F - -from ldm.modules.diffusionmodules.util import ( - checkpoint, - conv_nd, - linear, - avg_pool_nd, - zero_module, - normalization, - timestep_embedding, -) -from ldm.modules.attention import SpatialTransformer - - -# dummy replace -def convert_module_to_f16(x): - pass - -def convert_module_to_f32(x): - pass - - -## go -class AttentionPool2d(nn.Module): - """ - Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py - """ - - def __init__( - self, - spacial_dim: int, - embed_dim: int, - num_heads_channels: int, - output_dim: int = None, - ): - super().__init__() - self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5) - self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) - self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) - self.num_heads = embed_dim // num_heads_channels - self.attention = QKVAttention(self.num_heads) - - def forward(self, x): - b, c, *_spatial = x.shape - x = x.reshape(b, c, -1) # NC(HW) - x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1) - x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1) - x = self.qkv_proj(x) - x = self.attention(x) - x = self.c_proj(x) - return x[:, :, 0] - - -class TimestepBlock(nn.Module): - """ - Any module where forward() takes timestep embeddings as a second argument. - """ - - @abstractmethod - def forward(self, x, emb): - """ - Apply the module to `x` given `emb` timestep embeddings. - """ - - -class TimestepEmbedSequential(nn.Sequential, TimestepBlock): - """ - A sequential module that passes timestep embeddings to the children that - support it as an extra input. - """ - - def forward(self, x, emb, context=None): - for layer in self: - if isinstance(layer, TimestepBlock): - x = layer(x, emb) - elif isinstance(layer, SpatialTransformer): - x = layer(x, context) - else: - x = layer(x) - return x - - -class Upsample(nn.Module): - """ - An upsampling layer with an optional convolution. - :param channels: channels in the inputs and outputs. - :param use_conv: a bool determining if a convolution is applied. - :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then - upsampling occurs in the inner-two dimensions. - """ - - def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.dims = dims - if use_conv: - self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) - - def forward(self, x): - assert x.shape[1] == self.channels - if self.dims == 3: - x = F.interpolate( - x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" - ) - else: - x = F.interpolate(x, scale_factor=2, mode="nearest") - if self.use_conv: - x = self.conv(x) - return x - -class TransposedUpsample(nn.Module): - 'Learned 2x upsampling without padding' - def __init__(self, channels, out_channels=None, ks=5): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - - self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2) - - def forward(self,x): - return self.up(x) - - -class Downsample(nn.Module): - """ - A downsampling layer with an optional convolution. - :param channels: channels in the inputs and outputs. - :param use_conv: a bool determining if a convolution is applied. - :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then - downsampling occurs in the inner-two dimensions. - """ - - def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.dims = dims - stride = 2 if dims != 3 else (1, 2, 2) - if use_conv: - self.op = conv_nd( - dims, self.channels, self.out_channels, 3, stride=stride, padding=padding - ) - else: - assert self.channels == self.out_channels - self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) - - def forward(self, x): - assert x.shape[1] == self.channels - return self.op(x) - - -class ResBlock(TimestepBlock): - """ - A residual block that can optionally change the number of channels. - :param channels: the number of input channels. - :param emb_channels: the number of timestep embedding channels. - :param dropout: the rate of dropout. - :param out_channels: if specified, the number of out channels. - :param use_conv: if True and out_channels is specified, use a spatial - convolution instead of a smaller 1x1 convolution to change the - channels in the skip connection. - :param dims: determines if the signal is 1D, 2D, or 3D. - :param use_checkpoint: if True, use gradient checkpointing on this module. - :param up: if True, use this block for upsampling. - :param down: if True, use this block for downsampling. - """ - - def __init__( - self, - channels, - emb_channels, - dropout, - out_channels=None, - use_conv=False, - use_scale_shift_norm=False, - dims=2, - use_checkpoint=False, - up=False, - down=False, - ): - # print("Using 3d aware resblock!") - - super().__init__() - self.channels = channels - self.emb_channels = emb_channels - self.dropout = dropout - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.use_checkpoint = use_checkpoint - self.use_scale_shift_norm = use_scale_shift_norm - - self.in_layers = nn.Sequential( - normalization(channels), - nn.SiLU(), - conv_nd(dims, channels, self.out_channels, 3, padding=1), - ) - - self.updown = up or down - - if up: - self.h_upd = Upsample(channels, False, dims) - self.x_upd = Upsample(channels, False, dims) - elif down: - self.h_upd = Downsample(channels, False, dims) - self.x_upd = Downsample(channels, False, dims) - else: - self.h_upd = self.x_upd = nn.Identity() - - self.emb_layers = nn.Sequential( - nn.SiLU(), - linear( - emb_channels, - 2 * self.out_channels if use_scale_shift_norm else self.out_channels, - ), - ) - self.out_layers = nn.Sequential( - normalization(self.out_channels), - nn.SiLU(), - nn.Dropout(p=dropout), - zero_module( - conv_nd(dims, self.out_channels * 3, self.out_channels, 3, padding=1) - ), - ) - - if self.out_channels == channels: - self.skip_connection = nn.Identity() - elif use_conv: - self.skip_connection = conv_nd( - dims, channels, self.out_channels, 3, padding=1 - ) - else: - self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) - - def forward(self, x, emb): - """ - Apply the block to a Tensor, conditioned on a timestep embedding. - :param x: an [N x C x ...] Tensor of features. - :param emb: an [N x emb_channels] Tensor of timestep embeddings. - :return: an [N x C x ...] Tensor of outputs. - """ - return checkpoint( - self._forward, (x, emb), self.parameters(), self.use_checkpoint - ) - - def to3daware(self, triplane): - res = triplane.shape[-2] - plane1 = triplane[..., :res] - plane2 = triplane[..., res:2*res] - plane3 = triplane[..., 2*res:3*res] - - x_mp = th.nn.AvgPool2d((res, 1)) - y_mp = th.nn.AvgPool2d((1, res)) - x_mp_rep = lambda i: x_mp(i).repeat(1, 1, res, 1).permute(0, 1, 3, 2) - y_mp_rep = lambda i: y_mp(i).repeat(1, 1, 1, res).permute(0, 1, 3, 2) - # for plane1 - plane21 = x_mp_rep(plane2) - plane31 = th.flip(y_mp_rep(plane3), (3,)) - new_plane1 = th.cat([plane1, plane21, plane31], 1) - # for plane2 - plane12 = y_mp_rep(plane1) - plane32 = x_mp_rep(plane3) - new_plane2 = th.cat([plane2, plane12, plane32], 1) - # for plane3 - plane13 = th.flip(x_mp_rep(plane1), (2,)) - plane23 = y_mp_rep(plane2) - new_plane3 = th.cat([plane3, plane13, plane23], 1) - - new_plane = th.cat([new_plane1, new_plane2, new_plane3], -1).contiguous() - return new_plane - - def _forward(self, x, emb): - if self.updown: - in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] - h = in_rest(x) - h = self.h_upd(h) - x = self.x_upd(x) - h = in_conv(h) - else: - h = self.in_layers(x) - emb_out = self.emb_layers(emb).type(h.dtype) - while len(emb_out.shape) < len(h.shape): - emb_out = emb_out[..., None] - if self.use_scale_shift_norm: - out_norm, out_rest = self.out_layers[0], self.out_layers[1:] - scale, shift = th.chunk(emb_out, 2, dim=1) - h = out_norm(h) * (1 + scale) + shift - h = self.to3daware(h) - h = out_rest(h) - else: - h = h + emb_out - out_norm, out_rest = self.out_layers[0], self.out_layers[1:] - h = self.to3daware(out_norm(h)) - h = out_rest(h) - return self.skip_connection(x) + h - - -class AttentionBlock(nn.Module): - """ - An attention block that allows spatial positions to attend to each other. - Originally ported from here, but adapted to the N-d case. - https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. - """ - - def __init__( - self, - channels, - num_heads=1, - num_head_channels=-1, - use_checkpoint=False, - use_new_attention_order=False, - ): - super().__init__() - self.channels = channels - if num_head_channels == -1: - self.num_heads = num_heads - else: - assert ( - channels % num_head_channels == 0 - ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" - self.num_heads = channels // num_head_channels - self.use_checkpoint = use_checkpoint - self.norm = normalization(channels) - self.qkv = conv_nd(1, channels, channels * 3, 1) - if use_new_attention_order: - # split qkv before split heads - self.attention = QKVAttention(self.num_heads) - else: - # split heads before split qkv - self.attention = QKVAttentionLegacy(self.num_heads) - - self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) - - def forward(self, x): - return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!! - #return pt_checkpoint(self._forward, x) # pytorch - - def _forward(self, x): - b, c, *spatial = x.shape - x = x.reshape(b, c, -1) - qkv = self.qkv(self.norm(x)) - h = self.attention(qkv) - h = self.proj_out(h) - return (x + h).reshape(b, c, *spatial) - - -def count_flops_attn(model, _x, y): - """ - A counter for the `thop` package to count the operations in an - attention operation. - Meant to be used like: - macs, params = thop.profile( - model, - inputs=(inputs, timestamps), - custom_ops={QKVAttention: QKVAttention.count_flops}, - ) - """ - b, c, *spatial = y[0].shape - num_spatial = int(np.prod(spatial)) - # We perform two matmuls with the same number of ops. - # The first computes the weight matrix, the second computes - # the combination of the value vectors. - matmul_ops = 2 * b * (num_spatial ** 2) * c - model.total_ops += th.DoubleTensor([matmul_ops]) - - -class QKVAttentionLegacy(nn.Module): - """ - A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping - """ - - def __init__(self, n_heads): - super().__init__() - self.n_heads = n_heads - - def forward(self, qkv): - """ - Apply QKV attention. - :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. - :return: an [N x (H * C) x T] tensor after attention. - """ - bs, width, length = qkv.shape - assert width % (3 * self.n_heads) == 0 - ch = width // (3 * self.n_heads) - q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) - scale = 1 / math.sqrt(math.sqrt(ch)) - weight = th.einsum( - "bct,bcs->bts", q * scale, k * scale - ) # More stable with f16 than dividing afterwards - weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) - a = th.einsum("bts,bcs->bct", weight, v) - return a.reshape(bs, -1, length) - - @staticmethod - def count_flops(model, _x, y): - return count_flops_attn(model, _x, y) - - -class QKVAttention(nn.Module): - """ - A module which performs QKV attention and splits in a different order. - """ - - def __init__(self, n_heads): - super().__init__() - self.n_heads = n_heads - - def forward(self, qkv): - """ - Apply QKV attention. - :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. - :return: an [N x (H * C) x T] tensor after attention. - """ - bs, width, length = qkv.shape - assert width % (3 * self.n_heads) == 0 - ch = width // (3 * self.n_heads) - q, k, v = qkv.chunk(3, dim=1) - scale = 1 / math.sqrt(math.sqrt(ch)) - weight = th.einsum( - "bct,bcs->bts", - (q * scale).view(bs * self.n_heads, ch, length), - (k * scale).view(bs * self.n_heads, ch, length), - ) # More stable with f16 than dividing afterwards - weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) - a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) - return a.reshape(bs, -1, length) - - @staticmethod - def count_flops(model, _x, y): - return count_flops_attn(model, _x, y) - - -class UNetModel(nn.Module): - """ - The full UNet model with attention and timestep embedding. - :param in_channels: channels in the input Tensor. - :param model_channels: base channel count for the model. - :param out_channels: channels in the output Tensor. - :param num_res_blocks: number of residual blocks per downsample. - :param attention_resolutions: a collection of downsample rates at which - attention will take place. May be a set, list, or tuple. - For example, if this contains 4, then at 4x downsampling, attention - will be used. - :param dropout: the dropout probability. - :param channel_mult: channel multiplier for each level of the UNet. - :param conv_resample: if True, use learned convolutions for upsampling and - downsampling. - :param dims: determines if the signal is 1D, 2D, or 3D. - :param num_classes: if specified (as an int), then this model will be - class-conditional with `num_classes` classes. - :param use_checkpoint: use gradient checkpointing to reduce memory usage. - :param num_heads: the number of attention heads in each attention layer. - :param num_heads_channels: if specified, ignore num_heads and instead use - a fixed channel width per attention head. - :param num_heads_upsample: works with num_heads to set a different number - of heads for upsampling. Deprecated. - :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. - :param resblock_updown: use residual blocks for up/downsampling. - :param use_new_attention_order: use a different attention pattern for potentially - increased efficiency. - """ - - def __init__( - self, - image_size, - in_channels, - model_channels, - out_channels, - num_res_blocks, - attention_resolutions, - dropout=0, - channel_mult=(1, 2, 4, 8), - conv_resample=True, - dims=2, - num_classes=None, - use_checkpoint=False, - use_fp16=False, - num_heads=-1, - num_head_channels=-1, - num_heads_upsample=-1, - use_scale_shift_norm=False, - resblock_updown=False, - use_new_attention_order=False, - use_spatial_transformer=False, # custom transformer support - transformer_depth=1, # custom transformer support - context_dim=None, # custom transformer support - n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model - legacy=True, - ): - super().__init__() - if use_spatial_transformer: - assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' - - if context_dim is not None: - assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' - from omegaconf.listconfig import ListConfig - if type(context_dim) == ListConfig: - context_dim = list(context_dim) - - if num_heads_upsample == -1: - num_heads_upsample = num_heads - - if num_heads == -1: - assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' - - if num_head_channels == -1: - assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' - - self.image_size = image_size - self.in_channels = in_channels - self.model_channels = model_channels - self.out_channels = out_channels - self.num_res_blocks = num_res_blocks - self.attention_resolutions = attention_resolutions - self.dropout = dropout - self.channel_mult = channel_mult - self.conv_resample = conv_resample - self.num_classes = num_classes - self.use_checkpoint = use_checkpoint - self.dtype = th.float16 if use_fp16 else th.float32 - self.num_heads = num_heads - self.num_head_channels = num_head_channels - self.num_heads_upsample = num_heads_upsample - self.predict_codebook_ids = n_embed is not None - - time_embed_dim = model_channels * 4 - self.time_embed = nn.Sequential( - linear(model_channels, time_embed_dim), - nn.SiLU(), - linear(time_embed_dim, time_embed_dim), - ) - - if self.num_classes is not None: - self.label_emb = nn.Embedding(num_classes, time_embed_dim) - - self.input_blocks = nn.ModuleList( - [ - TimestepEmbedSequential( - conv_nd(dims, in_channels, model_channels, 3, padding=1) - ) - ] - ) - self._feature_size = model_channels - input_block_chans = [model_channels] - ch = model_channels - ds = 1 - for level, mult in enumerate(channel_mult): - for _ in range(num_res_blocks): - layers = [ - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=mult * model_channels, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ) - ] - ch = mult * model_channels - if ds in attention_resolutions: - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - layers.append( - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=dim_head, - use_new_attention_order=use_new_attention_order, - ) if not use_spatial_transformer else SpatialTransformer( - ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim - ) - ) - self.input_blocks.append(TimestepEmbedSequential(*layers)) - self._feature_size += ch - input_block_chans.append(ch) - if level != len(channel_mult) - 1: - out_ch = ch - self.input_blocks.append( - TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - down=True, - ) - if resblock_updown - else Downsample( - ch, conv_resample, dims=dims, out_channels=out_ch - ) - ) - ) - ch = out_ch - input_block_chans.append(ch) - ds *= 2 - self._feature_size += ch - - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - self.middle_block = TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=dim_head, - use_new_attention_order=use_new_attention_order, - ) if not use_spatial_transformer else SpatialTransformer( - ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim - ), - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - ) - self._feature_size += ch - - self.output_blocks = nn.ModuleList([]) - for level, mult in list(enumerate(channel_mult))[::-1]: - for i in range(num_res_blocks + 1): - ich = input_block_chans.pop() - layers = [ - ResBlock( - ch + ich, - time_embed_dim, - dropout, - out_channels=model_channels * mult, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ) - ] - ch = model_channels * mult - if ds in attention_resolutions: - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - layers.append( - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads_upsample, - num_head_channels=dim_head, - use_new_attention_order=use_new_attention_order, - ) if not use_spatial_transformer else SpatialTransformer( - ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim - ) - ) - if level and i == num_res_blocks: - out_ch = ch - layers.append( - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - up=True, - ) - if resblock_updown - else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) - ) - ds //= 2 - self.output_blocks.append(TimestepEmbedSequential(*layers)) - self._feature_size += ch - - self.out = nn.Sequential( - normalization(ch), - nn.SiLU(), - zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), - ) - if self.predict_codebook_ids: - self.id_predictor = nn.Sequential( - normalization(ch), - conv_nd(dims, model_channels, n_embed, 1), - #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits - ) - - def convert_to_fp16(self): - """ - Convert the torso of the model to float16. - """ - self.input_blocks.apply(convert_module_to_f16) - self.middle_block.apply(convert_module_to_f16) - self.output_blocks.apply(convert_module_to_f16) - - def convert_to_fp32(self): - """ - Convert the torso of the model to float32. - """ - self.input_blocks.apply(convert_module_to_f32) - self.middle_block.apply(convert_module_to_f32) - self.output_blocks.apply(convert_module_to_f32) - - def forward(self, x, timesteps=None, context=None, y=None,**kwargs): - """ - Apply the model to an input batch. - :param x: an [N x C x ...] Tensor of inputs. - :param timesteps: a 1-D batch of timesteps. - :param context: conditioning plugged in via crossattn - :param y: an [N] Tensor of labels, if class-conditional. - :return: an [N x C x ...] Tensor of outputs. - """ - assert (y is not None) == ( - self.num_classes is not None - ), "must specify y if and only if the model is class-conditional" - hs = [] - t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) - emb = self.time_embed(t_emb) - - if self.num_classes is not None: - assert y.shape == (x.shape[0],) - emb = emb + self.label_emb(y) - - h = x.type(self.dtype) - for module in self.input_blocks: - h = module(h, emb, context) - hs.append(h) - h = self.middle_block(h, emb, context) - for module in self.output_blocks: - h = th.cat([h, hs.pop()], dim=1) - h = module(h, emb, context) - h = h.type(x.dtype) - if self.predict_codebook_ids: - return self.id_predictor(h) - else: - return self.out(h) - - -class EncoderUNetModel(nn.Module): - """ - The half UNet model with attention and timestep embedding. - For usage, see UNet. - """ - - def __init__( - self, - image_size, - in_channels, - model_channels, - out_channels, - num_res_blocks, - attention_resolutions, - dropout=0, - channel_mult=(1, 2, 4, 8), - conv_resample=True, - dims=2, - use_checkpoint=False, - use_fp16=False, - num_heads=1, - num_head_channels=-1, - num_heads_upsample=-1, - use_scale_shift_norm=False, - resblock_updown=False, - use_new_attention_order=False, - pool="adaptive", - *args, - **kwargs - ): - super().__init__() - - if num_heads_upsample == -1: - num_heads_upsample = num_heads - - self.in_channels = in_channels - self.model_channels = model_channels - self.out_channels = out_channels - self.num_res_blocks = num_res_blocks - self.attention_resolutions = attention_resolutions - self.dropout = dropout - self.channel_mult = channel_mult - self.conv_resample = conv_resample - self.use_checkpoint = use_checkpoint - self.dtype = th.float16 if use_fp16 else th.float32 - self.num_heads = num_heads - self.num_head_channels = num_head_channels - self.num_heads_upsample = num_heads_upsample - - time_embed_dim = model_channels * 4 - self.time_embed = nn.Sequential( - linear(model_channels, time_embed_dim), - nn.SiLU(), - linear(time_embed_dim, time_embed_dim), - ) - - self.input_blocks = nn.ModuleList( - [ - TimestepEmbedSequential( - conv_nd(dims, in_channels, model_channels, 3, padding=1) - ) - ] - ) - self._feature_size = model_channels - input_block_chans = [model_channels] - ch = model_channels - ds = 1 - for level, mult in enumerate(channel_mult): - for _ in range(num_res_blocks): - layers = [ - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=mult * model_channels, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ) - ] - ch = mult * model_channels - if ds in attention_resolutions: - layers.append( - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=num_head_channels, - use_new_attention_order=use_new_attention_order, - ) - ) - self.input_blocks.append(TimestepEmbedSequential(*layers)) - self._feature_size += ch - input_block_chans.append(ch) - if level != len(channel_mult) - 1: - out_ch = ch - self.input_blocks.append( - TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - down=True, - ) - if resblock_updown - else Downsample( - ch, conv_resample, dims=dims, out_channels=out_ch - ) - ) - ) - ch = out_ch - input_block_chans.append(ch) - ds *= 2 - self._feature_size += ch - - self.middle_block = TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=num_head_channels, - use_new_attention_order=use_new_attention_order, - ), - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - ) - self._feature_size += ch - self.pool = pool - if pool == "adaptive": - self.out = nn.Sequential( - normalization(ch), - nn.SiLU(), - nn.AdaptiveAvgPool2d((1, 1)), - zero_module(conv_nd(dims, ch, out_channels, 1)), - nn.Flatten(), - ) - elif pool == "attention": - assert num_head_channels != -1 - self.out = nn.Sequential( - normalization(ch), - nn.SiLU(), - AttentionPool2d( - (image_size // ds), ch, num_head_channels, out_channels - ), - ) - elif pool == "spatial": - self.out = nn.Sequential( - nn.Linear(self._feature_size, 2048), - nn.ReLU(), - nn.Linear(2048, self.out_channels), - ) - elif pool == "spatial_v2": - self.out = nn.Sequential( - nn.Linear(self._feature_size, 2048), - normalization(2048), - nn.SiLU(), - nn.Linear(2048, self.out_channels), - ) - else: - raise NotImplementedError(f"Unexpected {pool} pooling") - - def convert_to_fp16(self): - """ - Convert the torso of the model to float16. - """ - self.input_blocks.apply(convert_module_to_f16) - self.middle_block.apply(convert_module_to_f16) - - def convert_to_fp32(self): - """ - Convert the torso of the model to float32. - """ - self.input_blocks.apply(convert_module_to_f32) - self.middle_block.apply(convert_module_to_f32) - - def forward(self, x, timesteps): - """ - Apply the model to an input batch. - :param x: an [N x C x ...] Tensor of inputs. - :param timesteps: a 1-D batch of timesteps. - :return: an [N x K] Tensor of outputs. - """ - emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) - - results = [] - h = x.type(self.dtype) - for module in self.input_blocks: - h = module(h, emb) - if self.pool.startswith("spatial"): - results.append(h.type(x.dtype).mean(dim=(2, 3))) - h = self.middle_block(h, emb) - if self.pool.startswith("spatial"): - results.append(h.type(x.dtype).mean(dim=(2, 3))) - h = th.cat(results, axis=-1) - return self.out(h) - else: - h = h.type(x.dtype) - return self.out(h) - diff --git a/3DTopia/ldm/modules/diffusionmodules/triplane_context_crossattention_unet.py b/3DTopia/ldm/modules/diffusionmodules/triplane_context_crossattention_unet.py deleted file mode 100644 index 4a846be183fba569d7178e2fd34cc145f9669cec..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/modules/diffusionmodules/triplane_context_crossattention_unet.py +++ /dev/null @@ -1,1126 +0,0 @@ -from abc import abstractmethod -from functools import partial -import math -from typing import Iterable - -import numpy as np -import torch as th -import torch.nn as nn -import torch.nn.functional as F -from torch import nn, einsum -from einops import rearrange, repeat -from inspect import isfunction - -from ldm.modules.diffusionmodules.util import ( - checkpoint, - conv_nd, - linear, - avg_pool_nd, - zero_module, - normalization, - timestep_embedding, -) -from ldm.modules.attention import SpatialTransformer - - -# dummy replace -def convert_module_to_f16(x): - pass - -def convert_module_to_f32(x): - pass - - -## go -class AttentionPool2d(nn.Module): - """ - Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py - """ - - def __init__( - self, - spacial_dim: int, - embed_dim: int, - num_heads_channels: int, - output_dim: int = None, - ): - super().__init__() - self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5) - self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) - self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) - self.num_heads = embed_dim // num_heads_channels - self.attention = QKVAttention(self.num_heads) - - def forward(self, x): - b, c, *_spatial = x.shape - x = x.reshape(b, c, -1) # NC(HW) - x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1) - x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1) - x = self.qkv_proj(x) - x = self.attention(x) - x = self.c_proj(x) - return x[:, :, 0] - - -class TimestepBlock(nn.Module): - """ - Any module where forward() takes timestep embeddings as a second argument. - """ - - @abstractmethod - def forward(self, x, emb): - """ - Apply the module to `x` given `emb` timestep embeddings. - """ - - -class TimestepEmbedSequential(nn.Sequential, TimestepBlock): - """ - A sequential module that passes timestep embeddings to the children that - support it as an extra input. - """ - - def forward(self, x, emb, context=None): - for layer in self: - if isinstance(layer, TimestepBlock): - x = layer(x, emb) - elif isinstance(layer, TriplaneAttentionBlock): - x = layer(x, context) - else: - x = layer(x) - return x - - -class Upsample(nn.Module): - """ - An upsampling layer with an optional convolution. - :param channels: channels in the inputs and outputs. - :param use_conv: a bool determining if a convolution is applied. - :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then - upsampling occurs in the inner-two dimensions. - """ - - def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.dims = dims - if use_conv: - self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) - - def forward(self, x): - assert x.shape[1] == self.channels - if self.dims == 3: - x = F.interpolate( - x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" - ) - else: - x = F.interpolate(x, scale_factor=2, mode="nearest") - if self.use_conv: - x = self.conv(x) - return x - -class TransposedUpsample(nn.Module): - 'Learned 2x upsampling without padding' - def __init__(self, channels, out_channels=None, ks=5): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - - self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2) - - def forward(self,x): - return self.up(x) - - -class Downsample(nn.Module): - """ - A downsampling layer with an optional convolution. - :param channels: channels in the inputs and outputs. - :param use_conv: a bool determining if a convolution is applied. - :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then - downsampling occurs in the inner-two dimensions. - """ - - def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.dims = dims - stride = 2 if dims != 3 else (1, 2, 2) - if use_conv: - self.op = conv_nd( - dims, self.channels, self.out_channels, 3, stride=stride, padding=padding - ) - else: - assert self.channels == self.out_channels - self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) - - def forward(self, x): - assert x.shape[1] == self.channels - return self.op(x) - - -class ResBlock(TimestepBlock): - """ - A residual block that can optionally change the number of channels. - :param channels: the number of input channels. - :param emb_channels: the number of timestep embedding channels. - :param dropout: the rate of dropout. - :param out_channels: if specified, the number of out channels. - :param use_conv: if True and out_channels is specified, use a spatial - convolution instead of a smaller 1x1 convolution to change the - channels in the skip connection. - :param dims: determines if the signal is 1D, 2D, or 3D. - :param use_checkpoint: if True, use gradient checkpointing on this module. - :param up: if True, use this block for upsampling. - :param down: if True, use this block for downsampling. - """ - - def __init__( - self, - channels, - emb_channels, - dropout, - out_channels=None, - use_conv=False, - use_scale_shift_norm=False, - dims=2, - use_checkpoint=False, - up=False, - down=False, - ): - super().__init__() - self.channels = channels - self.emb_channels = emb_channels - self.dropout = dropout - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.use_checkpoint = use_checkpoint - self.use_scale_shift_norm = use_scale_shift_norm - - self.in_layers = nn.Sequential( - normalization(channels), - nn.SiLU(), - conv_nd(dims, channels, self.out_channels, 3, padding=1), - ) - - self.updown = up or down - - if up: - self.h_upd = Upsample(channels, False, dims) - self.x_upd = Upsample(channels, False, dims) - elif down: - self.h_upd = Downsample(channels, False, dims) - self.x_upd = Downsample(channels, False, dims) - else: - self.h_upd = self.x_upd = nn.Identity() - - self.emb_layers = nn.Sequential( - nn.SiLU(), - linear( - emb_channels, - 2 * self.out_channels if use_scale_shift_norm else self.out_channels, - ), - ) - self.out_layers = nn.Sequential( - normalization(self.out_channels), - nn.SiLU(), - nn.Dropout(p=dropout), - zero_module( - conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) - ), - ) - - if self.out_channels == channels: - self.skip_connection = nn.Identity() - elif use_conv: - self.skip_connection = conv_nd( - dims, channels, self.out_channels, 3, padding=1 - ) - else: - self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) - - def forward(self, x, emb): - """ - Apply the block to a Tensor, conditioned on a timestep embedding. - :param x: an [N x C x ...] Tensor of features. - :param emb: an [N x emb_channels] Tensor of timestep embeddings. - :return: an [N x C x ...] Tensor of outputs. - """ - return checkpoint( - self._forward, (x, emb), self.parameters(), self.use_checkpoint - ) - - - def _forward(self, x, emb): - if self.updown: - in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] - h = in_rest(x) - h = self.h_upd(h) - x = self.x_upd(x) - h = in_conv(h) - else: - h = self.in_layers(x) - emb_out = self.emb_layers(emb).type(h.dtype) - while len(emb_out.shape) < len(h.shape): - emb_out = emb_out[..., None] - if self.use_scale_shift_norm: - out_norm, out_rest = self.out_layers[0], self.out_layers[1:] - scale, shift = th.chunk(emb_out, 2, dim=1) - h = out_norm(h) * (1 + scale) + shift - h = out_rest(h) - else: - h = h + emb_out - h = self.out_layers(h) - return self.skip_connection(x) + h - -def exists(val): - return val is not None - -def default(val, d): - if exists(val): - return val - return d() if isfunction(d) else d - -class CrossAttention(nn.Module): - def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): - super().__init__() - inner_dim = dim_head * heads - context_dim = default(context_dim, query_dim) - - self.scale = dim_head ** -0.5 - self.heads = heads - - self.to_q = nn.Linear(query_dim, inner_dim, bias=False) - self.to_k = nn.Linear(context_dim, inner_dim, bias=False) - self.to_v = nn.Linear(context_dim, inner_dim, bias=False) - - self.to_out = nn.Sequential( - nn.Linear(inner_dim, query_dim), - nn.Dropout(dropout) - ) - - def forward(self, x, context=None, mask=None): - h = self.heads - - x = x.permute(0, 2, 1) - context = context.permute(0, 2, 1) - - q = self.to_q(x) - context = default(context, x) - k = self.to_k(context) - v = self.to_v(context) - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) - - sim = einsum('b i d, b j d -> b i j', q, k) * self.scale - - if exists(mask): - mask = rearrange(mask, 'b ... -> b (...)') - max_neg_value = -th.finfo(sim.dtype).max - mask = repeat(mask, 'b j -> (b h) () j', h=h) - sim.masked_fill_(~mask, max_neg_value) - - # attention, what we cannot get enough of - attn = sim.softmax(dim=-1) - - out = einsum('b i j, b j d -> b i d', attn, v) - out = rearrange(out, '(b h) n d -> b n (h d)', h=h) - return self.to_out(out).permute(0, 2, 1) - -class CrossAttentionContext(nn.Module): - def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): - super().__init__() - inner_dim = dim_head * heads - context_dim = default(context_dim, query_dim) - - self.scale = dim_head ** -0.5 - self.heads = heads - - self.to_q = nn.Linear(query_dim, inner_dim, bias=False) - self.to_k = nn.Linear(context_dim, inner_dim, bias=False) - self.to_v = nn.Linear(context_dim, inner_dim, bias=False) - - self.to_out = nn.Sequential( - nn.Linear(inner_dim, query_dim), - nn.Dropout(dropout) - ) - - def forward(self, x, context=None, mask=None): - - # import pdb; pdb.set_trace() - - h = self.heads - - x = x.permute(0, 2, 1) - - q = self.to_q(x) - context = default(context, x) - k = self.to_k(context) - v = self.to_v(context) - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) - - sim = einsum('b i d, b j d -> b i j', q, k) * self.scale - - if exists(mask): - mask = rearrange(mask, 'b ... -> b (...)') - max_neg_value = -torch.finfo(sim.dtype).max - mask = repeat(mask, 'b j -> (b h) () j', h=h) - sim.masked_fill_(~mask, max_neg_value) - - # attention, what we cannot get enough of - attn = sim.softmax(dim=-1) - - out = einsum('b i j, b j d -> b i d', attn, v) - out = rearrange(out, '(b h) n d -> b n (h d)', h=h) - return self.to_out(out).permute(0, 2, 1) - - -class TriplaneAttentionBlock(nn.Module): - def __init__( - self, - channels, - context_channels, - num_heads=1, - num_head_channels=-1, - use_checkpoint=False, - use_new_attention_order=False, - ): - super().__init__() - self.channels = channels - if num_head_channels == -1: - self.num_heads = num_heads - else: - assert ( - channels % num_head_channels == 0 - ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" - self.num_heads = channels // num_head_channels - self.use_checkpoint = use_checkpoint - # self.norm = normalization(channels) - self.norm1 = normalization(channels) - self.norm2 = normalization(channels) - self.norm3 = normalization(channels) - self.norm4 = normalization(channels) - self.norm5 = normalization(channels) - # self.norm6 = normalization(context_channels) - # self.norm1 = nn.LayerNorm(channels) - # self.norm2 = nn.LayerNorm(channels) - # self.norm3 = nn.LayerNorm(channels) - # self.norm4 = nn.LayerNorm(channels) - # self.norm5 = nn.LayerNorm(channels) - # self.norm6 = nn.LayerNorm(context_channels) - - self.plane1_ca = CrossAttention(channels, channels, self.num_heads, num_head_channels) - self.plane2_ca = CrossAttention(channels, channels, self.num_heads, num_head_channels) - self.plane3_ca = CrossAttention(channels, channels, self.num_heads, num_head_channels) - - self.context_ca = CrossAttentionContext(channels, context_channels, self.num_heads, num_head_channels) - - def forward(self, x, context): - return checkpoint(self._forward, (x, context), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!! - #return pt_checkpoint(self._forward, x) # pytorch - - def _forward(self, x, context): - b, c, *spatial = x.shape - res = x.shape[-2] - plane1 = x[..., :res].reshape(b, c, -1) - plane2 = x[..., res:res*2].reshape(b, c, -1) - plane3 = x[..., 2*res:3*res].reshape(b, c, -1) - x = x.reshape(b, c, -1) - - plane1_output = self.plane1_ca(self.norm1(plane1), self.norm4(x)) - plane2_output = self.plane2_ca(self.norm2(plane2), self.norm4(x)) - plane3_output = self.plane3_ca(self.norm3(plane3), self.norm4(x)) - - h = th.cat([plane1_output, plane2_output, plane3_output], -1) - - h = self.context_ca(self.norm5(h), context=context) - - return (x + h).reshape(b, c, *spatial) - - -class AttentionBlock(nn.Module): - """ - An attention block that allows spatial positions to attend to each other. - Originally ported from here, but adapted to the N-d case. - https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. - """ - - def __init__( - self, - channels, - num_heads=1, - num_head_channels=-1, - use_checkpoint=False, - use_new_attention_order=False, - ): - super().__init__() - self.channels = channels - if num_head_channels == -1: - self.num_heads = num_heads - else: - assert ( - channels % num_head_channels == 0 - ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" - self.num_heads = channels // num_head_channels - self.use_checkpoint = use_checkpoint - self.norm = normalization(channels) - self.qkv = conv_nd(1, channels, channels * 3, 1) - if use_new_attention_order: - # split qkv before split heads - self.attention = QKVAttention(self.num_heads) - else: - # split heads before split qkv - self.attention = QKVAttentionLegacy(self.num_heads) - - self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) - - def forward(self, x): - return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!! - #return pt_checkpoint(self._forward, x) # pytorch - - def _forward(self, x): - b, c, *spatial = x.shape - x = x.reshape(b, c, -1) - qkv = self.qkv(self.norm(x)) - h = self.attention(qkv) - h = self.proj_out(h) - return (x + h).reshape(b, c, *spatial) - - -def count_flops_attn(model, _x, y): - """ - A counter for the `thop` package to count the operations in an - attention operation. - Meant to be used like: - macs, params = thop.profile( - model, - inputs=(inputs, timestamps), - custom_ops={QKVAttention: QKVAttention.count_flops}, - ) - """ - b, c, *spatial = y[0].shape - num_spatial = int(np.prod(spatial)) - # We perform two matmuls with the same number of ops. - # The first computes the weight matrix, the second computes - # the combination of the value vectors. - matmul_ops = 2 * b * (num_spatial ** 2) * c - model.total_ops += th.DoubleTensor([matmul_ops]) - - -class QKVAttentionLegacy(nn.Module): - """ - A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping - """ - - def __init__(self, n_heads): - super().__init__() - self.n_heads = n_heads - - def forward(self, qkv): - """ - Apply QKV attention. - :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. - :return: an [N x (H * C) x T] tensor after attention. - """ - bs, width, length = qkv.shape - assert width % (3 * self.n_heads) == 0 - ch = width // (3 * self.n_heads) - q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) - scale = 1 / math.sqrt(math.sqrt(ch)) - weight = th.einsum( - "bct,bcs->bts", q * scale, k * scale - ) # More stable with f16 than dividing afterwards - weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) - a = th.einsum("bts,bcs->bct", weight, v) - return a.reshape(bs, -1, length) - - @staticmethod - def count_flops(model, _x, y): - return count_flops_attn(model, _x, y) - - -class QKVAttention(nn.Module): - """ - A module which performs QKV attention and splits in a different order. - """ - - def __init__(self, n_heads): - super().__init__() - self.n_heads = n_heads - - def forward(self, qkv): - """ - Apply QKV attention. - :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. - :return: an [N x (H * C) x T] tensor after attention. - """ - bs, width, length = qkv.shape - assert width % (3 * self.n_heads) == 0 - ch = width // (3 * self.n_heads) - q, k, v = qkv.chunk(3, dim=1) - scale = 1 / math.sqrt(math.sqrt(ch)) - weight = th.einsum( - "bct,bcs->bts", - (q * scale).view(bs * self.n_heads, ch, length), - (k * scale).view(bs * self.n_heads, ch, length), - ) # More stable with f16 than dividing afterwards - weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) - a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) - return a.reshape(bs, -1, length) - - @staticmethod - def count_flops(model, _x, y): - return count_flops_attn(model, _x, y) - - -class UNetModel(nn.Module): - """ - The full UNet model with attention and timestep embedding. - :param in_channels: channels in the input Tensor. - :param model_channels: base channel count for the model. - :param out_channels: channels in the output Tensor. - :param num_res_blocks: number of residual blocks per downsample. - :param attention_resolutions: a collection of downsample rates at which - attention will take place. May be a set, list, or tuple. - For example, if this contains 4, then at 4x downsampling, attention - will be used. - :param dropout: the dropout probability. - :param channel_mult: channel multiplier for each level of the UNet. - :param conv_resample: if True, use learned convolutions for upsampling and - downsampling. - :param dims: determines if the signal is 1D, 2D, or 3D. - :param num_classes: if specified (as an int), then this model will be - class-conditional with `num_classes` classes. - :param use_checkpoint: use gradient checkpointing to reduce memory usage. - :param num_heads: the number of attention heads in each attention layer. - :param num_heads_channels: if specified, ignore num_heads and instead use - a fixed channel width per attention head. - :param num_heads_upsample: works with num_heads to set a different number - of heads for upsampling. Deprecated. - :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. - :param resblock_updown: use residual blocks for up/downsampling. - :param use_new_attention_order: use a different attention pattern for potentially - increased efficiency. - """ - - def __init__( - self, - image_size, - in_channels, - model_channels, - out_channels, - num_res_blocks, - attention_resolutions, - dropout=0, - channel_mult=(1, 2, 4, 8), - conv_resample=True, - dims=2, - num_classes=None, - use_checkpoint=False, - use_fp16=False, - num_heads=-1, - num_head_channels=-1, - num_heads_upsample=-1, - use_scale_shift_norm=False, - resblock_updown=False, - use_new_attention_order=False, - use_spatial_transformer=False, # custom transformer support - transformer_depth=1, # custom transformer support - context_dim=None, # custom transformer support - n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model - legacy=True, - ): - super().__init__() - if use_spatial_transformer: - assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' - - if context_dim is not None: - assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' - from omegaconf.listconfig import ListConfig - if type(context_dim) == ListConfig: - context_dim = list(context_dim) - - if num_heads_upsample == -1: - num_heads_upsample = num_heads - - if num_heads == -1: - assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' - - if num_head_channels == -1: - assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' - - self.image_size = image_size - self.in_channels = in_channels - self.model_channels = model_channels - self.out_channels = out_channels - self.num_res_blocks = num_res_blocks - self.attention_resolutions = attention_resolutions - self.dropout = dropout - self.channel_mult = channel_mult - self.conv_resample = conv_resample - self.num_classes = num_classes - self.use_checkpoint = use_checkpoint - self.dtype = th.float16 if use_fp16 else th.float32 - self.num_heads = num_heads - self.num_head_channels = num_head_channels - self.num_heads_upsample = num_heads_upsample - self.predict_codebook_ids = n_embed is not None - - time_embed_dim = model_channels * 4 - self.time_embed = nn.Sequential( - linear(model_channels, time_embed_dim), - nn.SiLU(), - linear(time_embed_dim, time_embed_dim), - ) - - if self.num_classes is not None: - self.label_emb = nn.Embedding(num_classes, time_embed_dim) - - self.input_blocks = nn.ModuleList( - [ - TimestepEmbedSequential( - conv_nd(dims, in_channels, model_channels, 3, padding=1) - ) - ] - ) - self._feature_size = model_channels - input_block_chans = [model_channels] - ch = model_channels - ds = 1 - for level, mult in enumerate(channel_mult): - for _ in range(num_res_blocks): - layers = [ - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=mult * model_channels, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ) - ] - ch = mult * model_channels - if ds in attention_resolutions: - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - layers.append( - TriplaneAttentionBlock( - ch, - context_dim, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=dim_head, - use_new_attention_order=use_new_attention_order, - ) - ) - self.input_blocks.append(TimestepEmbedSequential(*layers)) - self._feature_size += ch - input_block_chans.append(ch) - if level != len(channel_mult) - 1: - out_ch = ch - self.input_blocks.append( - TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - down=True, - ) - if resblock_updown - else Downsample( - ch, conv_resample, dims=dims, out_channels=out_ch - ) - ) - ) - ch = out_ch - input_block_chans.append(ch) - ds *= 2 - self._feature_size += ch - - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - self.middle_block = TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - TriplaneAttentionBlock( - ch, - context_dim, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=dim_head, - use_new_attention_order=use_new_attention_order, - ), - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - ) - self._feature_size += ch - - self.output_blocks = nn.ModuleList([]) - for level, mult in list(enumerate(channel_mult))[::-1]: - for i in range(num_res_blocks + 1): - ich = input_block_chans.pop() - layers = [ - ResBlock( - ch + ich, - time_embed_dim, - dropout, - out_channels=model_channels * mult, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ) - ] - ch = model_channels * mult - if ds in attention_resolutions: - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - layers.append( - TriplaneAttentionBlock( - ch, - context_dim, - use_checkpoint=use_checkpoint, - num_heads=num_heads_upsample, - num_head_channels=dim_head, - use_new_attention_order=use_new_attention_order, - ) - ) - if level and i == num_res_blocks: - out_ch = ch - layers.append( - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - up=True, - ) - if resblock_updown - else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) - ) - ds //= 2 - self.output_blocks.append(TimestepEmbedSequential(*layers)) - self._feature_size += ch - - self.out = nn.Sequential( - normalization(ch), - nn.SiLU(), - zero_module(conv_nd(dims, ch, out_channels, 3, padding=1)), - ) - if self.predict_codebook_ids: - self.id_predictor = nn.Sequential( - normalization(ch), - conv_nd(dims, ch, n_embed, 1), - #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits - ) - - def convert_to_fp16(self): - """ - Convert the torso of the model to float16. - """ - self.input_blocks.apply(convert_module_to_f16) - self.middle_block.apply(convert_module_to_f16) - self.output_blocks.apply(convert_module_to_f16) - - def convert_to_fp32(self): - """ - Convert the torso of the model to float32. - """ - self.input_blocks.apply(convert_module_to_f32) - self.middle_block.apply(convert_module_to_f32) - self.output_blocks.apply(convert_module_to_f32) - - def forward(self, x, timesteps=None, context=None, y=None,**kwargs): - """ - Apply the model to an input batch. - :param x: an [N x C x ...] Tensor of inputs. - :param timesteps: a 1-D batch of timesteps. - :param context: conditioning plugged in via crossattn - :param y: an [N] Tensor of labels, if class-conditional. - :return: an [N x C x ...] Tensor of outputs. - """ - assert (y is not None) == ( - self.num_classes is not None - ), "must specify y if and only if the model is class-conditional" - hs = [] - t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) - emb = self.time_embed(t_emb) - - if self.num_classes is not None: - assert y.shape == (x.shape[0],) - emb = emb + self.label_emb(y) - - h = x.type(self.dtype) - for module in self.input_blocks: - h = module(h, emb, context) - hs.append(h) - h = self.middle_block(h, emb, context) - for module in self.output_blocks: - h = th.cat([h, hs.pop()], dim=1) - h = module(h, emb, context) - h = h.type(x.dtype) - if self.predict_codebook_ids: - return self.id_predictor(h) - else: - return self.out(h) - - -class EncoderUNetModel(nn.Module): - """ - The half UNet model with attention and timestep embedding. - For usage, see UNet. - """ - - def __init__( - self, - image_size, - in_channels, - model_channels, - out_channels, - num_res_blocks, - attention_resolutions, - dropout=0, - channel_mult=(1, 2, 4, 8), - conv_resample=True, - dims=2, - use_checkpoint=False, - use_fp16=False, - num_heads=1, - num_head_channels=-1, - num_heads_upsample=-1, - use_scale_shift_norm=False, - resblock_updown=False, - use_new_attention_order=False, - pool="adaptive", - *args, - **kwargs - ): - super().__init__() - - if num_heads_upsample == -1: - num_heads_upsample = num_heads - - self.in_channels = in_channels - self.model_channels = model_channels - self.out_channels = out_channels - self.num_res_blocks = num_res_blocks - self.attention_resolutions = attention_resolutions - self.dropout = dropout - self.channel_mult = channel_mult - self.conv_resample = conv_resample - self.use_checkpoint = use_checkpoint - self.dtype = th.float16 if use_fp16 else th.float32 - self.num_heads = num_heads - self.num_head_channels = num_head_channels - self.num_heads_upsample = num_heads_upsample - - time_embed_dim = model_channels * 4 - self.time_embed = nn.Sequential( - linear(model_channels, time_embed_dim), - nn.SiLU(), - linear(time_embed_dim, time_embed_dim), - ) - - self.input_blocks = nn.ModuleList( - [ - TimestepEmbedSequential( - conv_nd(dims, in_channels, model_channels, 3, padding=1) - ) - ] - ) - self._feature_size = model_channels - input_block_chans = [model_channels] - ch = model_channels - ds = 1 - for level, mult in enumerate(channel_mult): - for _ in range(num_res_blocks): - layers = [ - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=mult * model_channels, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ) - ] - ch = mult * model_channels - if ds in attention_resolutions: - layers.append( - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=num_head_channels, - use_new_attention_order=use_new_attention_order, - ) - ) - self.input_blocks.append(TimestepEmbedSequential(*layers)) - self._feature_size += ch - input_block_chans.append(ch) - if level != len(channel_mult) - 1: - out_ch = ch - self.input_blocks.append( - TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - down=True, - ) - if resblock_updown - else Downsample( - ch, conv_resample, dims=dims, out_channels=out_ch - ) - ) - ) - ch = out_ch - input_block_chans.append(ch) - ds *= 2 - self._feature_size += ch - - self.middle_block = TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=num_head_channels, - use_new_attention_order=use_new_attention_order, - ), - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - ) - self._feature_size += ch - self.pool = pool - if pool == "adaptive": - self.out = nn.Sequential( - normalization(ch), - nn.SiLU(), - nn.AdaptiveAvgPool2d((1, 1)), - zero_module(conv_nd(dims, ch, out_channels, 1)), - nn.Flatten(), - ) - elif pool == "attention": - assert num_head_channels != -1 - self.out = nn.Sequential( - normalization(ch), - nn.SiLU(), - AttentionPool2d( - (image_size // ds), ch, num_head_channels, out_channels - ), - ) - elif pool == "spatial": - self.out = nn.Sequential( - nn.Linear(self._feature_size, 2048), - nn.ReLU(), - nn.Linear(2048, self.out_channels), - ) - elif pool == "spatial_v2": - self.out = nn.Sequential( - nn.Linear(self._feature_size, 2048), - normalization(2048), - nn.SiLU(), - nn.Linear(2048, self.out_channels), - ) - else: - raise NotImplementedError(f"Unexpected {pool} pooling") - - def convert_to_fp16(self): - """ - Convert the torso of the model to float16. - """ - self.input_blocks.apply(convert_module_to_f16) - self.middle_block.apply(convert_module_to_f16) - - def convert_to_fp32(self): - """ - Convert the torso of the model to float32. - """ - self.input_blocks.apply(convert_module_to_f32) - self.middle_block.apply(convert_module_to_f32) - - def forward(self, x, timesteps): - """ - Apply the model to an input batch. - :param x: an [N x C x ...] Tensor of inputs. - :param timesteps: a 1-D batch of timesteps. - :return: an [N x K] Tensor of outputs. - """ - emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) - - results = [] - h = x.type(self.dtype) - for module in self.input_blocks: - h = module(h, emb) - if self.pool.startswith("spatial"): - results.append(h.type(x.dtype).mean(dim=(2, 3))) - h = self.middle_block(h, emb) - if self.pool.startswith("spatial"): - results.append(h.type(x.dtype).mean(dim=(2, 3))) - h = th.cat(results, axis=-1) - return self.out(h) - else: - h = h.type(x.dtype) - return self.out(h) - diff --git a/3DTopia/ldm/modules/diffusionmodules/triplane_crossattention_unet.py b/3DTopia/ldm/modules/diffusionmodules/triplane_crossattention_unet.py deleted file mode 100644 index e489ef26704b530453d0492429a260a3f13c4d9a..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/modules/diffusionmodules/triplane_crossattention_unet.py +++ /dev/null @@ -1,1058 +0,0 @@ -from abc import abstractmethod -from functools import partial -import math -from typing import Iterable - -import numpy as np -import torch as th -import torch.nn as nn -import torch.nn.functional as F -from torch import nn, einsum -from einops import rearrange, repeat -from inspect import isfunction - -from ldm.modules.diffusionmodules.util import ( - checkpoint, - conv_nd, - linear, - avg_pool_nd, - zero_module, - normalization, - timestep_embedding, -) -from ldm.modules.attention import SpatialTransformer - - -# dummy replace -def convert_module_to_f16(x): - pass - -def convert_module_to_f32(x): - pass - - -## go -class AttentionPool2d(nn.Module): - """ - Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py - """ - - def __init__( - self, - spacial_dim: int, - embed_dim: int, - num_heads_channels: int, - output_dim: int = None, - ): - super().__init__() - self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5) - self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) - self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) - self.num_heads = embed_dim // num_heads_channels - self.attention = QKVAttention(self.num_heads) - - def forward(self, x): - b, c, *_spatial = x.shape - x = x.reshape(b, c, -1) # NC(HW) - x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1) - x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1) - x = self.qkv_proj(x) - x = self.attention(x) - x = self.c_proj(x) - return x[:, :, 0] - - -class TimestepBlock(nn.Module): - """ - Any module where forward() takes timestep embeddings as a second argument. - """ - - @abstractmethod - def forward(self, x, emb): - """ - Apply the module to `x` given `emb` timestep embeddings. - """ - - -class TimestepEmbedSequential(nn.Sequential, TimestepBlock): - """ - A sequential module that passes timestep embeddings to the children that - support it as an extra input. - """ - - def forward(self, x, emb, context=None): - for layer in self: - if isinstance(layer, TimestepBlock): - x = layer(x, emb) - elif isinstance(layer, SpatialTransformer): - x = layer(x, context) - else: - x = layer(x) - return x - - -class Upsample(nn.Module): - """ - An upsampling layer with an optional convolution. - :param channels: channels in the inputs and outputs. - :param use_conv: a bool determining if a convolution is applied. - :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then - upsampling occurs in the inner-two dimensions. - """ - - def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.dims = dims - if use_conv: - self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) - - def forward(self, x): - assert x.shape[1] == self.channels - if self.dims == 3: - x = F.interpolate( - x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" - ) - else: - x = F.interpolate(x, scale_factor=2, mode="nearest") - if self.use_conv: - x = self.conv(x) - return x - -class TransposedUpsample(nn.Module): - 'Learned 2x upsampling without padding' - def __init__(self, channels, out_channels=None, ks=5): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - - self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2) - - def forward(self,x): - return self.up(x) - - -class Downsample(nn.Module): - """ - A downsampling layer with an optional convolution. - :param channels: channels in the inputs and outputs. - :param use_conv: a bool determining if a convolution is applied. - :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then - downsampling occurs in the inner-two dimensions. - """ - - def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.dims = dims - stride = 2 if dims != 3 else (1, 2, 2) - if use_conv: - self.op = conv_nd( - dims, self.channels, self.out_channels, 3, stride=stride, padding=padding - ) - else: - assert self.channels == self.out_channels - self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) - - def forward(self, x): - assert x.shape[1] == self.channels - return self.op(x) - - -class ResBlock(TimestepBlock): - """ - A residual block that can optionally change the number of channels. - :param channels: the number of input channels. - :param emb_channels: the number of timestep embedding channels. - :param dropout: the rate of dropout. - :param out_channels: if specified, the number of out channels. - :param use_conv: if True and out_channels is specified, use a spatial - convolution instead of a smaller 1x1 convolution to change the - channels in the skip connection. - :param dims: determines if the signal is 1D, 2D, or 3D. - :param use_checkpoint: if True, use gradient checkpointing on this module. - :param up: if True, use this block for upsampling. - :param down: if True, use this block for downsampling. - """ - - def __init__( - self, - channels, - emb_channels, - dropout, - out_channels=None, - use_conv=False, - use_scale_shift_norm=False, - dims=2, - use_checkpoint=False, - up=False, - down=False, - ): - super().__init__() - self.channels = channels - self.emb_channels = emb_channels - self.dropout = dropout - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.use_checkpoint = use_checkpoint - self.use_scale_shift_norm = use_scale_shift_norm - - self.in_layers = nn.Sequential( - normalization(channels), - nn.SiLU(), - conv_nd(dims, channels, self.out_channels, 3, padding=1), - ) - - self.updown = up or down - - if up: - self.h_upd = Upsample(channels, False, dims) - self.x_upd = Upsample(channels, False, dims) - elif down: - self.h_upd = Downsample(channels, False, dims) - self.x_upd = Downsample(channels, False, dims) - else: - self.h_upd = self.x_upd = nn.Identity() - - self.emb_layers = nn.Sequential( - nn.SiLU(), - linear( - emb_channels, - 2 * self.out_channels if use_scale_shift_norm else self.out_channels, - ), - ) - self.out_layers = nn.Sequential( - normalization(self.out_channels), - nn.SiLU(), - nn.Dropout(p=dropout), - zero_module( - conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) - ), - ) - - if self.out_channels == channels: - self.skip_connection = nn.Identity() - elif use_conv: - self.skip_connection = conv_nd( - dims, channels, self.out_channels, 3, padding=1 - ) - else: - self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) - - def forward(self, x, emb): - """ - Apply the block to a Tensor, conditioned on a timestep embedding. - :param x: an [N x C x ...] Tensor of features. - :param emb: an [N x emb_channels] Tensor of timestep embeddings. - :return: an [N x C x ...] Tensor of outputs. - """ - return checkpoint( - self._forward, (x, emb), self.parameters(), self.use_checkpoint - ) - - - def _forward(self, x, emb): - if self.updown: - in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] - h = in_rest(x) - h = self.h_upd(h) - x = self.x_upd(x) - h = in_conv(h) - else: - h = self.in_layers(x) - emb_out = self.emb_layers(emb).type(h.dtype) - while len(emb_out.shape) < len(h.shape): - emb_out = emb_out[..., None] - if self.use_scale_shift_norm: - out_norm, out_rest = self.out_layers[0], self.out_layers[1:] - scale, shift = th.chunk(emb_out, 2, dim=1) - h = out_norm(h) * (1 + scale) + shift - h = out_rest(h) - else: - h = h + emb_out - h = self.out_layers(h) - return self.skip_connection(x) + h - -def exists(val): - return val is not None - -def default(val, d): - if exists(val): - return val - return d() if isfunction(d) else d - -class CrossAttention(nn.Module): - def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): - super().__init__() - inner_dim = dim_head * heads - context_dim = default(context_dim, query_dim) - - self.scale = dim_head ** -0.5 - self.heads = heads - - self.to_q = nn.Linear(query_dim, inner_dim, bias=False) - self.to_k = nn.Linear(context_dim, inner_dim, bias=False) - self.to_v = nn.Linear(context_dim, inner_dim, bias=False) - - self.to_out = nn.Sequential( - nn.Linear(inner_dim, query_dim), - nn.Dropout(dropout) - ) - - def forward(self, x, context=None, mask=None): - h = self.heads - - x = x.permute(0, 2, 1) - context = context.permute(0, 2, 1) - - q = self.to_q(x) - context = default(context, x) - k = self.to_k(context) - v = self.to_v(context) - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) - - sim = einsum('b i d, b j d -> b i j', q, k) * self.scale - - if exists(mask): - mask = rearrange(mask, 'b ... -> b (...)') - max_neg_value = -th.finfo(sim.dtype).max - mask = repeat(mask, 'b j -> (b h) () j', h=h) - sim.masked_fill_(~mask, max_neg_value) - - # attention, what we cannot get enough of - attn = sim.softmax(dim=-1) - - out = einsum('b i j, b j d -> b i d', attn, v) - out = rearrange(out, '(b h) n d -> b n (h d)', h=h) - return self.to_out(out).permute(0, 2, 1) - - -class TriplaneAttentionBlock(nn.Module): - def __init__( - self, - channels, - num_heads=1, - num_head_channels=-1, - use_checkpoint=False, - use_new_attention_order=False, - ): - super().__init__() - self.channels = channels - if num_head_channels == -1: - self.num_heads = num_heads - else: - assert ( - channels % num_head_channels == 0 - ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" - self.num_heads = channels // num_head_channels - self.use_checkpoint = use_checkpoint - self.norm = normalization(channels) - - self.plane1_ca = CrossAttention(channels, channels, self.num_heads, num_head_channels) - self.plane2_ca = CrossAttention(channels, channels, self.num_heads, num_head_channels) - self.plane3_ca = CrossAttention(channels, channels, self.num_heads, num_head_channels) - - def forward(self, x): - return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!! - #return pt_checkpoint(self._forward, x) # pytorch - - def _forward(self, x): - b, c, *spatial = x.shape - res = x.shape[-2] - plane1 = x[..., :res].reshape(b, c, -1) - plane2 = x[..., res:res*2].reshape(b, c, -1) - plane3 = x[..., 2*res:3*res].reshape(b, c, -1) - x = x.reshape(b, c, -1) - - plane1_output = self.plane1_ca(self.norm(plane1), self.norm(x)) - plane2_output = self.plane2_ca(self.norm(plane2), self.norm(x)) - plane3_output = self.plane3_ca(self.norm(plane3), self.norm(x)) - - h = th.cat([plane1_output, plane2_output, plane3_output], -1) - - return (x + h).reshape(b, c, *spatial) - - -class AttentionBlock(nn.Module): - """ - An attention block that allows spatial positions to attend to each other. - Originally ported from here, but adapted to the N-d case. - https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. - """ - - def __init__( - self, - channels, - num_heads=1, - num_head_channels=-1, - use_checkpoint=False, - use_new_attention_order=False, - ): - super().__init__() - self.channels = channels - if num_head_channels == -1: - self.num_heads = num_heads - else: - assert ( - channels % num_head_channels == 0 - ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" - self.num_heads = channels // num_head_channels - self.use_checkpoint = use_checkpoint - self.norm = normalization(channels) - self.qkv = conv_nd(1, channels, channels * 3, 1) - if use_new_attention_order: - # split qkv before split heads - self.attention = QKVAttention(self.num_heads) - else: - # split heads before split qkv - self.attention = QKVAttentionLegacy(self.num_heads) - - self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) - - def forward(self, x): - return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!! - #return pt_checkpoint(self._forward, x) # pytorch - - def _forward(self, x): - b, c, *spatial = x.shape - x = x.reshape(b, c, -1) - qkv = self.qkv(self.norm(x)) - h = self.attention(qkv) - h = self.proj_out(h) - return (x + h).reshape(b, c, *spatial) - - -def count_flops_attn(model, _x, y): - """ - A counter for the `thop` package to count the operations in an - attention operation. - Meant to be used like: - macs, params = thop.profile( - model, - inputs=(inputs, timestamps), - custom_ops={QKVAttention: QKVAttention.count_flops}, - ) - """ - b, c, *spatial = y[0].shape - num_spatial = int(np.prod(spatial)) - # We perform two matmuls with the same number of ops. - # The first computes the weight matrix, the second computes - # the combination of the value vectors. - matmul_ops = 2 * b * (num_spatial ** 2) * c - model.total_ops += th.DoubleTensor([matmul_ops]) - - -class QKVAttentionLegacy(nn.Module): - """ - A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping - """ - - def __init__(self, n_heads): - super().__init__() - self.n_heads = n_heads - - def forward(self, qkv): - """ - Apply QKV attention. - :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. - :return: an [N x (H * C) x T] tensor after attention. - """ - bs, width, length = qkv.shape - assert width % (3 * self.n_heads) == 0 - ch = width // (3 * self.n_heads) - q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) - scale = 1 / math.sqrt(math.sqrt(ch)) - weight = th.einsum( - "bct,bcs->bts", q * scale, k * scale - ) # More stable with f16 than dividing afterwards - weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) - a = th.einsum("bts,bcs->bct", weight, v) - return a.reshape(bs, -1, length) - - @staticmethod - def count_flops(model, _x, y): - return count_flops_attn(model, _x, y) - - -class QKVAttention(nn.Module): - """ - A module which performs QKV attention and splits in a different order. - """ - - def __init__(self, n_heads): - super().__init__() - self.n_heads = n_heads - - def forward(self, qkv): - """ - Apply QKV attention. - :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. - :return: an [N x (H * C) x T] tensor after attention. - """ - bs, width, length = qkv.shape - assert width % (3 * self.n_heads) == 0 - ch = width // (3 * self.n_heads) - q, k, v = qkv.chunk(3, dim=1) - scale = 1 / math.sqrt(math.sqrt(ch)) - weight = th.einsum( - "bct,bcs->bts", - (q * scale).view(bs * self.n_heads, ch, length), - (k * scale).view(bs * self.n_heads, ch, length), - ) # More stable with f16 than dividing afterwards - weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) - a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) - return a.reshape(bs, -1, length) - - @staticmethod - def count_flops(model, _x, y): - return count_flops_attn(model, _x, y) - - -class UNetModel(nn.Module): - """ - The full UNet model with attention and timestep embedding. - :param in_channels: channels in the input Tensor. - :param model_channels: base channel count for the model. - :param out_channels: channels in the output Tensor. - :param num_res_blocks: number of residual blocks per downsample. - :param attention_resolutions: a collection of downsample rates at which - attention will take place. May be a set, list, or tuple. - For example, if this contains 4, then at 4x downsampling, attention - will be used. - :param dropout: the dropout probability. - :param channel_mult: channel multiplier for each level of the UNet. - :param conv_resample: if True, use learned convolutions for upsampling and - downsampling. - :param dims: determines if the signal is 1D, 2D, or 3D. - :param num_classes: if specified (as an int), then this model will be - class-conditional with `num_classes` classes. - :param use_checkpoint: use gradient checkpointing to reduce memory usage. - :param num_heads: the number of attention heads in each attention layer. - :param num_heads_channels: if specified, ignore num_heads and instead use - a fixed channel width per attention head. - :param num_heads_upsample: works with num_heads to set a different number - of heads for upsampling. Deprecated. - :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. - :param resblock_updown: use residual blocks for up/downsampling. - :param use_new_attention_order: use a different attention pattern for potentially - increased efficiency. - """ - - def __init__( - self, - image_size, - in_channels, - model_channels, - out_channels, - num_res_blocks, - attention_resolutions, - dropout=0, - channel_mult=(1, 2, 4, 8), - conv_resample=True, - dims=2, - num_classes=None, - use_checkpoint=False, - use_fp16=False, - num_heads=-1, - num_head_channels=-1, - num_heads_upsample=-1, - use_scale_shift_norm=False, - resblock_updown=False, - use_new_attention_order=False, - use_spatial_transformer=False, # custom transformer support - transformer_depth=1, # custom transformer support - context_dim=None, # custom transformer support - n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model - legacy=True, - ): - super().__init__() - if use_spatial_transformer: - assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' - - if context_dim is not None: - assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' - from omegaconf.listconfig import ListConfig - if type(context_dim) == ListConfig: - context_dim = list(context_dim) - - if num_heads_upsample == -1: - num_heads_upsample = num_heads - - if num_heads == -1: - assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' - - if num_head_channels == -1: - assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' - - self.image_size = image_size - self.in_channels = in_channels - self.model_channels = model_channels - self.out_channels = out_channels - self.num_res_blocks = num_res_blocks - self.attention_resolutions = attention_resolutions - self.dropout = dropout - self.channel_mult = channel_mult - self.conv_resample = conv_resample - self.num_classes = num_classes - self.use_checkpoint = use_checkpoint - self.dtype = th.float16 if use_fp16 else th.float32 - self.num_heads = num_heads - self.num_head_channels = num_head_channels - self.num_heads_upsample = num_heads_upsample - self.predict_codebook_ids = n_embed is not None - - time_embed_dim = model_channels * 4 - self.time_embed = nn.Sequential( - linear(model_channels, time_embed_dim), - nn.SiLU(), - linear(time_embed_dim, time_embed_dim), - ) - - if self.num_classes is not None: - self.label_emb = nn.Embedding(num_classes, time_embed_dim) - - self.input_blocks = nn.ModuleList( - [ - TimestepEmbedSequential( - conv_nd(dims, in_channels, model_channels, 3, padding=1) - ) - ] - ) - self._feature_size = model_channels - input_block_chans = [model_channels] - ch = model_channels - ds = 1 - for level, mult in enumerate(channel_mult): - for _ in range(num_res_blocks): - layers = [ - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=mult * model_channels, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ) - ] - ch = mult * model_channels - if ds in attention_resolutions: - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - layers.append( - TriplaneAttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=dim_head, - use_new_attention_order=use_new_attention_order, - ) - ) - self.input_blocks.append(TimestepEmbedSequential(*layers)) - self._feature_size += ch - input_block_chans.append(ch) - if level != len(channel_mult) - 1: - out_ch = ch - self.input_blocks.append( - TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - down=True, - ) - if resblock_updown - else Downsample( - ch, conv_resample, dims=dims, out_channels=out_ch - ) - ) - ) - ch = out_ch - input_block_chans.append(ch) - ds *= 2 - self._feature_size += ch - - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - self.middle_block = TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - TriplaneAttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=dim_head, - use_new_attention_order=use_new_attention_order, - ), - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - ) - self._feature_size += ch - - self.output_blocks = nn.ModuleList([]) - for level, mult in list(enumerate(channel_mult))[::-1]: - for i in range(num_res_blocks + 1): - ich = input_block_chans.pop() - layers = [ - ResBlock( - ch + ich, - time_embed_dim, - dropout, - out_channels=model_channels * mult, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ) - ] - ch = model_channels * mult - if ds in attention_resolutions: - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - #num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - layers.append( - TriplaneAttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads_upsample, - num_head_channels=dim_head, - use_new_attention_order=use_new_attention_order, - ) - ) - if level and i == num_res_blocks: - out_ch = ch - layers.append( - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - up=True, - ) - if resblock_updown - else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) - ) - ds //= 2 - self.output_blocks.append(TimestepEmbedSequential(*layers)) - self._feature_size += ch - - self.out = nn.Sequential( - normalization(ch), - nn.SiLU(), - zero_module(conv_nd(dims, ch, out_channels, 3, padding=1)), - ) - if self.predict_codebook_ids: - self.id_predictor = nn.Sequential( - normalization(ch), - conv_nd(dims, ch, n_embed, 1), - #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits - ) - - def convert_to_fp16(self): - """ - Convert the torso of the model to float16. - """ - self.input_blocks.apply(convert_module_to_f16) - self.middle_block.apply(convert_module_to_f16) - self.output_blocks.apply(convert_module_to_f16) - - def convert_to_fp32(self): - """ - Convert the torso of the model to float32. - """ - self.input_blocks.apply(convert_module_to_f32) - self.middle_block.apply(convert_module_to_f32) - self.output_blocks.apply(convert_module_to_f32) - - def forward(self, x, timesteps=None, context=None, y=None,**kwargs): - """ - Apply the model to an input batch. - :param x: an [N x C x ...] Tensor of inputs. - :param timesteps: a 1-D batch of timesteps. - :param context: conditioning plugged in via crossattn - :param y: an [N] Tensor of labels, if class-conditional. - :return: an [N x C x ...] Tensor of outputs. - """ - assert (y is not None) == ( - self.num_classes is not None - ), "must specify y if and only if the model is class-conditional" - hs = [] - t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) - emb = self.time_embed(t_emb) - - if self.num_classes is not None: - assert y.shape == (x.shape[0],) - emb = emb + self.label_emb(y) - - h = x.type(self.dtype) - for module in self.input_blocks: - h = module(h, emb, context) - hs.append(h) - h = self.middle_block(h, emb, context) - for module in self.output_blocks: - h = th.cat([h, hs.pop()], dim=1) - h = module(h, emb, context) - h = h.type(x.dtype) - if self.predict_codebook_ids: - return self.id_predictor(h) - else: - return self.out(h) - - -class EncoderUNetModel(nn.Module): - """ - The half UNet model with attention and timestep embedding. - For usage, see UNet. - """ - - def __init__( - self, - image_size, - in_channels, - model_channels, - out_channels, - num_res_blocks, - attention_resolutions, - dropout=0, - channel_mult=(1, 2, 4, 8), - conv_resample=True, - dims=2, - use_checkpoint=False, - use_fp16=False, - num_heads=1, - num_head_channels=-1, - num_heads_upsample=-1, - use_scale_shift_norm=False, - resblock_updown=False, - use_new_attention_order=False, - pool="adaptive", - *args, - **kwargs - ): - super().__init__() - - if num_heads_upsample == -1: - num_heads_upsample = num_heads - - self.in_channels = in_channels - self.model_channels = model_channels - self.out_channels = out_channels - self.num_res_blocks = num_res_blocks - self.attention_resolutions = attention_resolutions - self.dropout = dropout - self.channel_mult = channel_mult - self.conv_resample = conv_resample - self.use_checkpoint = use_checkpoint - self.dtype = th.float16 if use_fp16 else th.float32 - self.num_heads = num_heads - self.num_head_channels = num_head_channels - self.num_heads_upsample = num_heads_upsample - - time_embed_dim = model_channels * 4 - self.time_embed = nn.Sequential( - linear(model_channels, time_embed_dim), - nn.SiLU(), - linear(time_embed_dim, time_embed_dim), - ) - - self.input_blocks = nn.ModuleList( - [ - TimestepEmbedSequential( - conv_nd(dims, in_channels, model_channels, 3, padding=1) - ) - ] - ) - self._feature_size = model_channels - input_block_chans = [model_channels] - ch = model_channels - ds = 1 - for level, mult in enumerate(channel_mult): - for _ in range(num_res_blocks): - layers = [ - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=mult * model_channels, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ) - ] - ch = mult * model_channels - if ds in attention_resolutions: - layers.append( - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=num_head_channels, - use_new_attention_order=use_new_attention_order, - ) - ) - self.input_blocks.append(TimestepEmbedSequential(*layers)) - self._feature_size += ch - input_block_chans.append(ch) - if level != len(channel_mult) - 1: - out_ch = ch - self.input_blocks.append( - TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - down=True, - ) - if resblock_updown - else Downsample( - ch, conv_resample, dims=dims, out_channels=out_ch - ) - ) - ) - ch = out_ch - input_block_chans.append(ch) - ds *= 2 - self._feature_size += ch - - self.middle_block = TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=num_head_channels, - use_new_attention_order=use_new_attention_order, - ), - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - ) - self._feature_size += ch - self.pool = pool - if pool == "adaptive": - self.out = nn.Sequential( - normalization(ch), - nn.SiLU(), - nn.AdaptiveAvgPool2d((1, 1)), - zero_module(conv_nd(dims, ch, out_channels, 1)), - nn.Flatten(), - ) - elif pool == "attention": - assert num_head_channels != -1 - self.out = nn.Sequential( - normalization(ch), - nn.SiLU(), - AttentionPool2d( - (image_size // ds), ch, num_head_channels, out_channels - ), - ) - elif pool == "spatial": - self.out = nn.Sequential( - nn.Linear(self._feature_size, 2048), - nn.ReLU(), - nn.Linear(2048, self.out_channels), - ) - elif pool == "spatial_v2": - self.out = nn.Sequential( - nn.Linear(self._feature_size, 2048), - normalization(2048), - nn.SiLU(), - nn.Linear(2048, self.out_channels), - ) - else: - raise NotImplementedError(f"Unexpected {pool} pooling") - - def convert_to_fp16(self): - """ - Convert the torso of the model to float16. - """ - self.input_blocks.apply(convert_module_to_f16) - self.middle_block.apply(convert_module_to_f16) - - def convert_to_fp32(self): - """ - Convert the torso of the model to float32. - """ - self.input_blocks.apply(convert_module_to_f32) - self.middle_block.apply(convert_module_to_f32) - - def forward(self, x, timesteps): - """ - Apply the model to an input batch. - :param x: an [N x C x ...] Tensor of inputs. - :param timesteps: a 1-D batch of timesteps. - :return: an [N x K] Tensor of outputs. - """ - emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) - - results = [] - h = x.type(self.dtype) - for module in self.input_blocks: - h = module(h, emb) - if self.pool.startswith("spatial"): - results.append(h.type(x.dtype).mean(dim=(2, 3))) - h = self.middle_block(h, emb) - if self.pool.startswith("spatial"): - results.append(h.type(x.dtype).mean(dim=(2, 3))) - h = th.cat(results, axis=-1) - return self.out(h) - else: - h = h.type(x.dtype) - return self.out(h) - diff --git a/3DTopia/ldm/modules/diffusionmodules/util.py b/3DTopia/ldm/modules/diffusionmodules/util.py deleted file mode 100644 index 1fe3bb31158f0184505b044ba1cbffe1ede3375e..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/modules/diffusionmodules/util.py +++ /dev/null @@ -1,305 +0,0 @@ -# adopted from -# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py -# and -# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py -# and -# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py -# -# thanks! - - -import os -import math -import torch -import torch.nn as nn -import numpy as np -from einops import repeat - -from ldm.util import instantiate_from_config - -def force_zero_snr(betas): - alphas = 1 - betas - alphas_bar = torch.cumprod(alphas, dim=0) - alphas_bar_sqrt = alphas_bar ** (1/2) - alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() - alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() - 1e-6 - alphas_bar_sqrt -= alphas_bar_sqrt_T - alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) - alphas_bar = alphas_bar_sqrt ** 2 - alphas = alphas_bar[1:] / alphas_bar[:-1] - alphas = torch.cat([alphas_bar[0:1], alphas], 0) - betas = 1 - alphas - return betas - -def shift_schedule(base_betas, shift_scale): - alphas = 1 - base_betas - alphas_bar = torch.cumprod(alphas, dim=0) - snr = alphas_bar / (1 - alphas_bar) # snr(1-ab)=ab; snr-snr*ab=ab; snr=(1+snr)ab; ab=snr/(1+snr) - shifted_snr = snr * ((1 / shift_scale) ** 2) - shifted_alphas_bar = shifted_snr / (1 + shifted_snr) - shifted_alphas = shifted_alphas_bar[1:] / shifted_alphas_bar[:-1] - shifted_alphas = torch.cat([shifted_alphas_bar[0:1], shifted_alphas], 0) - shifted_betas = 1 - shifted_alphas - return shifted_betas - -def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3, shift_scale=None): - if schedule == "linear": - betas = ( - torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 - ) - - elif schedule == "cosine": - timesteps = ( - torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s - ) - alphas = timesteps / (1 + cosine_s) * np.pi / 2 - alphas = torch.cos(alphas).pow(2) - alphas = alphas / alphas[0] - betas = 1 - alphas[1:] / alphas[:-1] - betas = np.clip(betas, a_min=0, a_max=0.999) - - elif schedule == "sqrt_linear": - betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) - elif schedule == "sqrt": - betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5 - elif schedule == 'linear_force_zero_snr': - betas = ( - torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 - ) - betas = force_zero_snr(betas) - elif schedule == 'linear_100': - betas = ( - torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 - ) - betas = betas[:100] - else: - raise ValueError(f"schedule '{schedule}' unknown.") - - if shift_scale is not None: - betas = shift_schedule(betas, shift_scale) - - return betas.numpy() - - -def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True): - if ddim_discr_method == 'uniform': - c = num_ddpm_timesteps // num_ddim_timesteps - ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) - elif ddim_discr_method == 'quad': - ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int) - else: - raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"') - - # assert ddim_timesteps.shape[0] == num_ddim_timesteps - # add one to get the final alpha values right (the ones from first scale to data during sampling) - steps_out = ddim_timesteps + 1 - if verbose: - print(f'Selected timesteps for ddim sampler: {steps_out}') - return steps_out - - -def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): - # select alphas for computing the variance schedule - alphas = alphacums[ddim_timesteps] - alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) - - # according the the formula provided in https://arxiv.org/abs/2010.02502 - sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)) - if verbose: - print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}') - print(f'For the chosen value of eta, which is {eta}, ' - f'this results in the following sigma_t schedule for ddim sampler {sigmas}') - return sigmas, alphas, alphas_prev - - -def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): - """ - Create a beta schedule that discretizes the given alpha_t_bar function, - which defines the cumulative product of (1-beta) over time from t = [0,1]. - :param num_diffusion_timesteps: the number of betas to produce. - :param alpha_bar: a lambda that takes an argument t from 0 to 1 and - produces the cumulative product of (1-beta) up to that - part of the diffusion process. - :param max_beta: the maximum beta to use; use values lower than 1 to - prevent singularities. - """ - betas = [] - for i in range(num_diffusion_timesteps): - t1 = i / num_diffusion_timesteps - t2 = (i + 1) / num_diffusion_timesteps - betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) - return np.array(betas) - - -def extract_into_tensor(a, t, x_shape): - b, *_ = t.shape - out = a.gather(-1, t) - return out.reshape(b, *((1,) * (len(x_shape) - 1))) - - -def checkpoint(func, inputs, params, flag): - """ - Evaluate a function without caching intermediate activations, allowing for - reduced memory at the expense of extra compute in the backward pass. - :param func: the function to evaluate. - :param inputs: the argument sequence to pass to `func`. - :param params: a sequence of parameters `func` depends on but does not - explicitly take as arguments. - :param flag: if False, disable gradient checkpointing. - """ - if flag: - args = tuple(inputs) + tuple(params) - return CheckpointFunction.apply(func, len(inputs), *args) - else: - return func(*inputs) - - -class CheckpointFunction(torch.autograd.Function): - @staticmethod - def forward(ctx, run_function, length, *args): - ctx.run_function = run_function - ctx.input_tensors = list(args[:length]) - ctx.input_params = list(args[length:]) - - with torch.no_grad(): - output_tensors = ctx.run_function(*ctx.input_tensors) - return output_tensors - - @staticmethod - def backward(ctx, *output_grads): - ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] - with torch.enable_grad(): - # Fixes a bug where the first op in run_function modifies the - # Tensor storage in place, which is not allowed for detach()'d - # Tensors. - shallow_copies = [x.view_as(x) for x in ctx.input_tensors] - output_tensors = ctx.run_function(*shallow_copies) - input_grads = torch.autograd.grad( - output_tensors, - ctx.input_tensors + ctx.input_params, - output_grads, - allow_unused=True, - ) - del ctx.input_tensors - del ctx.input_params - del output_tensors - return (None, None) + input_grads - - -def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): - """ - Create sinusoidal timestep embeddings. - :param timesteps: a 1-D Tensor of N indices, one per batch element. - These may be fractional. - :param dim: the dimension of the output. - :param max_period: controls the minimum frequency of the embeddings. - :return: an [N x dim] Tensor of positional embeddings. - """ - if not repeat_only: - half = dim // 2 - freqs = torch.exp( - -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half - ).to(device=timesteps.device) - args = timesteps[:, None].float() * freqs[None] - embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) - if dim % 2: - embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) - else: - embedding = repeat(timesteps, 'b -> b d', d=dim) - return embedding - - -def zero_module(module): - """ - Zero out the parameters of a module and return it. - """ - for p in module.parameters(): - p.detach().zero_() - return module - - -def scale_module(module, scale): - """ - Scale the parameters of a module and return it. - """ - for p in module.parameters(): - p.detach().mul_(scale) - return module - - -def mean_flat(tensor): - """ - Take the mean over all non-batch dimensions. - """ - return tensor.mean(dim=list(range(1, len(tensor.shape)))) - - -def normalization(channels): - """ - Make a standard normalization layer. - :param channels: number of input channels. - :return: an nn.Module for normalization. - """ - return GroupNorm32(32, channels) - - -# PyTorch 1.7 has SiLU, but we support PyTorch 1.5. -class SiLU(nn.Module): - def forward(self, x): - return x * torch.sigmoid(x) - - -class GroupNorm32(nn.GroupNorm): - def forward(self, x): - return super().forward(x.float()).type(x.dtype) - -def conv_nd(dims, *args, **kwargs): - """ - Create a 1D, 2D, or 3D convolution module. - """ - if dims == 1: - return nn.Conv1d(*args, **kwargs) - elif dims == 2: - return nn.Conv2d(*args, **kwargs) - elif dims == 3: - return nn.Conv3d(*args, **kwargs) - raise ValueError(f"unsupported dimensions: {dims}") - - -def linear(*args, **kwargs): - """ - Create a linear module. - """ - return nn.Linear(*args, **kwargs) - - -def avg_pool_nd(dims, *args, **kwargs): - """ - Create a 1D, 2D, or 3D average pooling module. - """ - if dims == 1: - return nn.AvgPool1d(*args, **kwargs) - elif dims == 2: - return nn.AvgPool2d(*args, **kwargs) - elif dims == 3: - return nn.AvgPool3d(*args, **kwargs) - raise ValueError(f"unsupported dimensions: {dims}") - - -class HybridConditioner(nn.Module): - - def __init__(self, c_concat_config, c_crossattn_config): - super().__init__() - self.concat_conditioner = instantiate_from_config(c_concat_config) - self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) - - def forward(self, c_concat, c_crossattn): - c_concat = self.concat_conditioner(c_concat) - c_crossattn = self.crossattn_conditioner(c_crossattn) - return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]} - - -def noise_like(shape, device, repeat=False): - repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) - noise = lambda: torch.randn(shape, device=device) - return repeat_noise() if repeat else noise() \ No newline at end of file diff --git a/3DTopia/ldm/modules/distributions/__init__.py b/3DTopia/ldm/modules/distributions/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/3DTopia/ldm/modules/distributions/distributions.py b/3DTopia/ldm/modules/distributions/distributions.py deleted file mode 100644 index f2b8ef901130efc171aa69742ca0244d94d3f2e9..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/modules/distributions/distributions.py +++ /dev/null @@ -1,92 +0,0 @@ -import torch -import numpy as np - - -class AbstractDistribution: - def sample(self): - raise NotImplementedError() - - def mode(self): - raise NotImplementedError() - - -class DiracDistribution(AbstractDistribution): - def __init__(self, value): - self.value = value - - def sample(self): - return self.value - - def mode(self): - return self.value - - -class DiagonalGaussianDistribution(object): - def __init__(self, parameters, deterministic=False): - self.parameters = parameters - self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) - self.logvar = torch.clamp(self.logvar, -30.0, 20.0) - self.deterministic = deterministic - self.std = torch.exp(0.5 * self.logvar) - self.var = torch.exp(self.logvar) - if self.deterministic: - self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) - - def sample(self): - x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device) - return x - - def kl(self, other=None): - if self.deterministic: - return torch.Tensor([0.]) - else: - if other is None: - return 0.5 * torch.sum(torch.pow(self.mean, 2) - + self.var - 1.0 - self.logvar, - dim=[1, 2, 3]) - else: - return 0.5 * torch.sum( - torch.pow(self.mean - other.mean, 2) / other.var - + self.var / other.var - 1.0 - self.logvar + other.logvar, - dim=[1, 2, 3]) - - def nll(self, sample, dims=[1,2,3]): - if self.deterministic: - return torch.Tensor([0.]) - logtwopi = np.log(2.0 * np.pi) - return 0.5 * torch.sum( - logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, - dim=dims) - - def mode(self): - return self.mean - - -def normal_kl(mean1, logvar1, mean2, logvar2): - """ - source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12 - Compute the KL divergence between two gaussians. - Shapes are automatically broadcasted, so batches can be compared to - scalars, among other use cases. - """ - tensor = None - for obj in (mean1, logvar1, mean2, logvar2): - if isinstance(obj, torch.Tensor): - tensor = obj - break - assert tensor is not None, "at least one argument must be a Tensor" - - # Force variances to be Tensors. Broadcasting helps convert scalars to - # Tensors, but it does not work for torch.exp(). - logvar1, logvar2 = [ - x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor) - for x in (logvar1, logvar2) - ] - - return 0.5 * ( - -1.0 - + logvar2 - - logvar1 - + torch.exp(logvar1 - logvar2) - + ((mean1 - mean2) ** 2) * torch.exp(-logvar2) - ) diff --git a/3DTopia/ldm/modules/ema.py b/3DTopia/ldm/modules/ema.py deleted file mode 100644 index c8c75af43565f6e140287644aaaefa97dd6e67c5..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/modules/ema.py +++ /dev/null @@ -1,76 +0,0 @@ -import torch -from torch import nn - - -class LitEma(nn.Module): - def __init__(self, model, decay=0.9999, use_num_upates=True): - super().__init__() - if decay < 0.0 or decay > 1.0: - raise ValueError('Decay must be between 0 and 1') - - self.m_name2s_name = {} - self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32)) - self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates - else torch.tensor(-1,dtype=torch.int)) - - for name, p in model.named_parameters(): - if p.requires_grad: - #remove as '.'-character is not allowed in buffers - s_name = name.replace('.','') - self.m_name2s_name.update({name:s_name}) - self.register_buffer(s_name,p.clone().detach().data) - - self.collected_params = [] - - def forward(self,model): - decay = self.decay - - if self.num_updates >= 0: - self.num_updates += 1 - decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates)) - - one_minus_decay = 1.0 - decay - - with torch.no_grad(): - m_param = dict(model.named_parameters()) - shadow_params = dict(self.named_buffers()) - - for key in m_param: - if m_param[key].requires_grad: - sname = self.m_name2s_name[key] - shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) - shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) - else: - assert not key in self.m_name2s_name - - def copy_to(self, model): - m_param = dict(model.named_parameters()) - shadow_params = dict(self.named_buffers()) - for key in m_param: - if m_param[key].requires_grad: - m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) - else: - assert not key in self.m_name2s_name - - def store(self, parameters): - """ - Save the current parameters for restoring later. - Args: - parameters: Iterable of `torch.nn.Parameter`; the parameters to be - temporarily stored. - """ - self.collected_params = [param.clone() for param in parameters] - - def restore(self, parameters): - """ - Restore the parameters stored with the `store` method. - Useful to validate the model with EMA parameters without affecting the - original optimization process. Store the parameters before the - `copy_to` method. After validation (or model saving), use this to - restore the former parameters. - Args: - parameters: Iterable of `torch.nn.Parameter`; the parameters to be - updated with the stored parameters. - """ - for c_param, param in zip(self.collected_params, parameters): - param.data.copy_(c_param.data) diff --git a/3DTopia/ldm/modules/encoders/__init__.py b/3DTopia/ldm/modules/encoders/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/3DTopia/ldm/modules/encoders/modules.py b/3DTopia/ldm/modules/encoders/modules.py deleted file mode 100644 index 73508813bb3942f914553f4988606d4917f4aaf8..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/modules/encoders/modules.py +++ /dev/null @@ -1,386 +0,0 @@ -import torch -import torch.nn as nn -from functools import partial -import clip -from einops import rearrange, repeat -from transformers import CLIPTokenizer, CLIPTextModel -import kornia - -from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test - - -class AbstractEncoder(nn.Module): - def __init__(self): - super().__init__() - - def encode(self, *args, **kwargs): - raise NotImplementedError - - - -class ClassEmbedder(nn.Module): - def __init__(self, embed_dim, n_classes=1000, key='class'): - super().__init__() - self.key = key - self.embedding = nn.Embedding(n_classes, embed_dim) - - def forward(self, batch, key=None): - if key is None: - key = self.key - # this is for use in crossattn - c = batch[key][:, None] - c = self.embedding(c) - return c - - -class TransformerEmbedder(AbstractEncoder): - """Some transformer encoder layers""" - def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"): - super().__init__() - self.device = device - self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, - attn_layers=Encoder(dim=n_embed, depth=n_layer)) - - def forward(self, tokens): - tokens = tokens.to(self.device) # meh - z = self.transformer(tokens, return_embeddings=True) - return z - - def encode(self, x): - return self(x) - - -class BERTTokenizer(AbstractEncoder): - """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)""" - def __init__(self, device="cuda", vq_interface=True, max_length=77): - super().__init__() - from transformers import BertTokenizerFast # TODO: add to reuquirements - self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") - self.device = device - self.vq_interface = vq_interface - self.max_length = max_length - - def forward(self, text): - batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, - return_overflowing_tokens=False, padding="max_length", return_tensors="pt") - tokens = batch_encoding["input_ids"].to(self.device) - return tokens - - @torch.no_grad() - def encode(self, text): - tokens = self(text) - if not self.vq_interface: - return tokens - return None, None, [None, None, tokens] - - def decode(self, text): - return text - - -class BERTEmbedder(AbstractEncoder): - """Uses the BERT tokenizr model and add some transformer encoder layers""" - def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77, - device="cuda",use_tokenizer=True, embedding_dropout=0.0): - super().__init__() - self.use_tknz_fn = use_tokenizer - if self.use_tknz_fn: - self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len) - self.device = device - self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, - attn_layers=Encoder(dim=n_embed, depth=n_layer), - emb_dropout=embedding_dropout) - - def forward(self, text): - if self.use_tknz_fn: - tokens = self.tknz_fn(text)#.to(self.device) - else: - tokens = text - z = self.transformer(tokens, return_embeddings=True) - return z - - def encode(self, text): - # output of length 77 - return self(text) - - -class SpatialRescaler(nn.Module): - def __init__(self, - n_stages=1, - method='bilinear', - multiplier=0.5, - in_channels=3, - out_channels=None, - bias=False): - super().__init__() - self.n_stages = n_stages - assert self.n_stages >= 0 - assert method in ['nearest','linear','bilinear','trilinear','bicubic','area'] - self.multiplier = multiplier - self.interpolator = partial(torch.nn.functional.interpolate, mode=method) - self.remap_output = out_channels is not None - if self.remap_output: - print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.') - self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias) - - def forward(self,x): - for stage in range(self.n_stages): - x = self.interpolator(x, scale_factor=self.multiplier) - - - if self.remap_output: - x = self.channel_mapper(x) - return x - - def encode(self, x): - return self(x) - -class FrozenCLIPEmbedder(AbstractEncoder): - """Uses the CLIP transformer encoder for text (from Hugging Face)""" - def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): - super().__init__() - self.tokenizer = CLIPTokenizer.from_pretrained(version) - self.transformer = CLIPTextModel.from_pretrained(version) - self.device = device - self.max_length = max_length - self.freeze() - - def freeze(self): - self.transformer = self.transformer.eval() - for param in self.parameters(): - param.requires_grad = False - - def forward(self, text): - batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, - return_overflowing_tokens=False, padding="max_length", return_tensors="pt") - tokens = batch_encoding["input_ids"].to(self.device) - outputs = self.transformer(input_ids=tokens) - - z = outputs.last_hidden_state - return z - - def encode(self, text): - return self(text) - -import hashlib -import os -import urllib -import warnings -from typing import Any, Union, List -from pkg_resources import packaging - -import torch -from PIL import Image -from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize -from tqdm import tqdm - -from clip.simple_tokenizer import SimpleTokenizer as _Tokenizer - -try: - from torchvision.transforms import InterpolationMode - BICUBIC = InterpolationMode.BICUBIC -except ImportError: - BICUBIC = Image.BICUBIC - - -if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"): - warnings.warn("PyTorch version 1.7.1 or higher is recommended") - - -__all__ = ["available_models", "load", "tokenize"] -_tokenizer = _Tokenizer() - -def tokenize_with_truncation(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> torch.LongTensor: - """ - Returns the tokenized representation of given input string(s) - - Parameters - ---------- - texts : Union[str, List[str]] - An input string or a list of input strings to tokenize - - context_length : int - The context length to use; all CLIP models use 77 as the context length - - truncate: bool - Whether to truncate the text in case its encoding is longer than the context length - - Returns - ------- - A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] - """ - if isinstance(texts, str): - texts = [texts] - - sot_token = _tokenizer.encoder["<|startoftext|>"] - eot_token = _tokenizer.encoder["<|endoftext|>"] - all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] - result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) - - for i, tokens in enumerate(all_tokens): - if len(tokens) > context_length: - if truncate: - tokens = tokens[:context_length] - tokens[-1] = eot_token - else: - raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") - result[i, :len(tokens)] = torch.tensor(tokens) - - return result - -class FrozenCLIPTextEmbedder(nn.Module): - """ - Uses the CLIP transformer encoder for text. - """ - def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True): - super().__init__() - self.model, _ = clip.load(version, jit=False, device="cpu") - self.device = device - self.max_length = max_length - self.n_repeat = n_repeat - self.normalize = normalize - - def freeze(self): - self.model = self.model.eval() - for param in self.parameters(): - param.requires_grad = False - - def forward(self, text): - # tokens = clip.tokenize(text).to(self.device) - tokens = tokenize_with_truncation(text, truncate=True).to(self.device) - z = self.model.encode_text(tokens) - if self.normalize: - z = z / torch.linalg.norm(z, dim=1, keepdim=True) - return z - - def encode(self, text): - z = self(text) - if z.ndim==2: - z = z[:, None, :] - z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat) - return z - - -class FrozenClipImageEmbedder(nn.Module): - """ - Uses the CLIP image encoder. - """ - def __init__( - self, - model='ViT-L/14', - jit=False, - device='cuda' if torch.cuda.is_available() else 'cpu', - antialias=False, - ): - super().__init__() - # self.model, _ = clip.load(name=model, device=device, jit=jit) - self.model, _ = clip.load(name=model, device=device) - - self.antialias = antialias - - self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) - self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) - - def preprocess(self, x): - # normalize to [0,1] - x = kornia.geometry.resize(x, (224, 224), - interpolation='bicubic',align_corners=True, - antialias=self.antialias) - # x = (x + 1.) / 2. - # renormalize according to clip - x = kornia.enhance.normalize(x, self.mean, self.std) - - return x - - def forward(self, x): - # x is assumed to be in range [-1,1] - z = self.model.encode_image(self.preprocess(x)) - if z.ndim==2: - z = z[:, None, :] - return z - - -############### OPENCLIP ################# -import open_clip - -class OpenClipTextEmbedder(nn.Module): - def __init__( - self, - model='ViT-bigG-14', - pretrained='laion2b_s39b_b160k', - device='cuda' if torch.cuda.is_available() else 'cpu', - normalize=True,): - super().__init__() - self.model, _, _ = open_clip.create_model_and_transforms(model, pretrained=pretrained, device='cpu') - self.tokenizer = open_clip.get_tokenizer(model) - self.normalize = normalize - self.device = device - - def freeze(self): - self.model = self.model.eval() - for param in self.parameters(): - param.requires_grad = False - - def forward(self, text): - tok_text = self.tokenizer(text).to(self.device) - z = self.model.encode_text(tok_text) - if self.normalize: - z = z / torch.linalg.norm(z, dim=1, keepdim=True) - return z - - def encode(self, text): - z = self(text) - if z.ndim==2: - z = z[:, None, :] - z = repeat(z, 'b 1 d -> b k d', k=1) - return z - -class OpenClipImageEmbedder(nn.Module): - def __init__( - self, - model='ViT-bigG-14', - pretrained='laion2b_s39b_b160k', - device='cuda' if torch.cuda.is_available() else 'cpu', - ): - super().__init__() - self.model, _, _ = open_clip.create_model_and_transforms(model, pretrained=pretrained, device=device) - self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) - self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) - - def preprocess(self, x): - x = kornia.geometry.resize(x, (224, 224), - interpolation='bicubic',align_corners=True, - antialias=self.antialias) - x = kornia.enhance.normalize(x, self.mean, self.std) - return x - - def forward(self, x): - z = self.model.encode_image(self.preprocess(x)) - if z.ndim==2: - z = z[:, None, :] - return z - -class DinoV2(nn.Module): - def __init__(self, model='dinov2_vitb14', ckpt='dino_ckpt/dinov2_vitb14_pretrain.pth'): - super().__init__() - # device='cuda' if torch.cuda.is_available() else 'cpu' - # self.model = torch.hub.load('facebookresearch/dinov2', model) - self.model = torch.hub.load('dinov2', model, source='local', pretrained=False) - self.model.load_state_dict(torch.load(ckpt)) - # self.model = self.model.to(device) - self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]), persistent=False) - self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]), persistent=False) - - def preprocess(self, x): - x = kornia.geometry.resize(x, (224, 224), - interpolation='bicubic',align_corners=True, - antialias=False) - x = kornia.enhance.normalize(x, self.mean, self.std) - return x - - def forward(self, x): - return self.model.forward_features(self.preprocess(x))['x_norm_patchtokens'] - -if __name__ == "__main__": - from ldm.util import count_params - model = FrozenCLIPEmbedder() - count_params(model, verbose=True) \ No newline at end of file diff --git a/3DTopia/ldm/modules/image_degradation/__init__.py b/3DTopia/ldm/modules/image_degradation/__init__.py deleted file mode 100644 index 7836cada81f90ded99c58d5942eea4c3477f58fc..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/modules/image_degradation/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr -from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light diff --git a/3DTopia/ldm/modules/image_degradation/bsrgan.py b/3DTopia/ldm/modules/image_degradation/bsrgan.py deleted file mode 100644 index 32ef56169978e550090261cddbcf5eb611a6173b..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/modules/image_degradation/bsrgan.py +++ /dev/null @@ -1,730 +0,0 @@ -# -*- coding: utf-8 -*- -""" -# -------------------------------------------- -# Super-Resolution -# -------------------------------------------- -# -# Kai Zhang (cskaizhang@gmail.com) -# https://github.com/cszn -# From 2019/03--2021/08 -# -------------------------------------------- -""" - -import numpy as np -import cv2 -import torch - -from functools import partial -import random -from scipy import ndimage -import scipy -import scipy.stats as ss -from scipy.interpolate import interp2d -from scipy.linalg import orth -import albumentations - -import ldm.modules.image_degradation.utils_image as util - - -def modcrop_np(img, sf): - ''' - Args: - img: numpy image, WxH or WxHxC - sf: scale factor - Return: - cropped image - ''' - w, h = img.shape[:2] - im = np.copy(img) - return im[:w - w % sf, :h - h % sf, ...] - - -""" -# -------------------------------------------- -# anisotropic Gaussian kernels -# -------------------------------------------- -""" - - -def analytic_kernel(k): - """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)""" - k_size = k.shape[0] - # Calculate the big kernels size - big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2)) - # Loop over the small kernel to fill the big one - for r in range(k_size): - for c in range(k_size): - big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k - # Crop the edges of the big kernel to ignore very small values and increase run time of SR - crop = k_size // 2 - cropped_big_k = big_k[crop:-crop, crop:-crop] - # Normalize to 1 - return cropped_big_k / cropped_big_k.sum() - - -def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6): - """ generate an anisotropic Gaussian kernel - Args: - ksize : e.g., 15, kernel size - theta : [0, pi], rotation angle range - l1 : [0.1,50], scaling of eigenvalues - l2 : [0.1,l1], scaling of eigenvalues - If l1 = l2, will get an isotropic Gaussian kernel. - Returns: - k : kernel - """ - - v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.])) - V = np.array([[v[0], v[1]], [v[1], -v[0]]]) - D = np.array([[l1, 0], [0, l2]]) - Sigma = np.dot(np.dot(V, D), np.linalg.inv(V)) - k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize) - - return k - - -def gm_blur_kernel(mean, cov, size=15): - center = size / 2.0 + 0.5 - k = np.zeros([size, size]) - for y in range(size): - for x in range(size): - cy = y - center + 1 - cx = x - center + 1 - k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov) - - k = k / np.sum(k) - return k - - -def shift_pixel(x, sf, upper_left=True): - """shift pixel for super-resolution with different scale factors - Args: - x: WxHxC or WxH - sf: scale factor - upper_left: shift direction - """ - h, w = x.shape[:2] - shift = (sf - 1) * 0.5 - xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0) - if upper_left: - x1 = xv + shift - y1 = yv + shift - else: - x1 = xv - shift - y1 = yv - shift - - x1 = np.clip(x1, 0, w - 1) - y1 = np.clip(y1, 0, h - 1) - - if x.ndim == 2: - x = interp2d(xv, yv, x)(x1, y1) - if x.ndim == 3: - for i in range(x.shape[-1]): - x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1) - - return x - - -def blur(x, k): - ''' - x: image, NxcxHxW - k: kernel, Nx1xhxw - ''' - n, c = x.shape[:2] - p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2 - x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate') - k = k.repeat(1, c, 1, 1) - k = k.view(-1, 1, k.shape[2], k.shape[3]) - x = x.view(1, -1, x.shape[2], x.shape[3]) - x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c) - x = x.view(n, c, x.shape[2], x.shape[3]) - - return x - - -def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0): - """" - # modified version of https://github.com/assafshocher/BlindSR_dataset_generator - # Kai Zhang - # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var - # max_var = 2.5 * sf - """ - # Set random eigen-vals (lambdas) and angle (theta) for COV matrix - lambda_1 = min_var + np.random.rand() * (max_var - min_var) - lambda_2 = min_var + np.random.rand() * (max_var - min_var) - theta = np.random.rand() * np.pi # random theta - noise = -noise_level + np.random.rand(*k_size) * noise_level * 2 - - # Set COV matrix using Lambdas and Theta - LAMBDA = np.diag([lambda_1, lambda_2]) - Q = np.array([[np.cos(theta), -np.sin(theta)], - [np.sin(theta), np.cos(theta)]]) - SIGMA = Q @ LAMBDA @ Q.T - INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :] - - # Set expectation position (shifting kernel for aligned image) - MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2) - MU = MU[None, None, :, None] - - # Create meshgrid for Gaussian - [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1])) - Z = np.stack([X, Y], 2)[:, :, :, None] - - # Calcualte Gaussian for every pixel of the kernel - ZZ = Z - MU - ZZ_t = ZZ.transpose(0, 1, 3, 2) - raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise) - - # shift the kernel so it will be centered - # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor) - - # Normalize the kernel and return - # kernel = raw_kernel_centered / np.sum(raw_kernel_centered) - kernel = raw_kernel / np.sum(raw_kernel) - return kernel - - -def fspecial_gaussian(hsize, sigma): - hsize = [hsize, hsize] - siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0] - std = sigma - [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1)) - arg = -(x * x + y * y) / (2 * std * std) - h = np.exp(arg) - h[h < scipy.finfo(float).eps * h.max()] = 0 - sumh = h.sum() - if sumh != 0: - h = h / sumh - return h - - -def fspecial_laplacian(alpha): - alpha = max([0, min([alpha, 1])]) - h1 = alpha / (alpha + 1) - h2 = (1 - alpha) / (alpha + 1) - h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]] - h = np.array(h) - return h - - -def fspecial(filter_type, *args, **kwargs): - ''' - python code from: - https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py - ''' - if filter_type == 'gaussian': - return fspecial_gaussian(*args, **kwargs) - if filter_type == 'laplacian': - return fspecial_laplacian(*args, **kwargs) - - -""" -# -------------------------------------------- -# degradation models -# -------------------------------------------- -""" - - -def bicubic_degradation(x, sf=3): - ''' - Args: - x: HxWxC image, [0, 1] - sf: down-scale factor - Return: - bicubicly downsampled LR image - ''' - x = util.imresize_np(x, scale=1 / sf) - return x - - -def srmd_degradation(x, k, sf=3): - ''' blur + bicubic downsampling - Args: - x: HxWxC image, [0, 1] - k: hxw, double - sf: down-scale factor - Return: - downsampled LR image - Reference: - @inproceedings{zhang2018learning, - title={Learning a single convolutional super-resolution network for multiple degradations}, - author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, - booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, - pages={3262--3271}, - year={2018} - } - ''' - x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror' - x = bicubic_degradation(x, sf=sf) - return x - - -def dpsr_degradation(x, k, sf=3): - ''' bicubic downsampling + blur - Args: - x: HxWxC image, [0, 1] - k: hxw, double - sf: down-scale factor - Return: - downsampled LR image - Reference: - @inproceedings{zhang2019deep, - title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, - author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, - booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, - pages={1671--1681}, - year={2019} - } - ''' - x = bicubic_degradation(x, sf=sf) - x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') - return x - - -def classical_degradation(x, k, sf=3): - ''' blur + downsampling - Args: - x: HxWxC image, [0, 1]/[0, 255] - k: hxw, double - sf: down-scale factor - Return: - downsampled LR image - ''' - x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') - # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2)) - st = 0 - return x[st::sf, st::sf, ...] - - -def add_sharpening(img, weight=0.5, radius=50, threshold=10): - """USM sharpening. borrowed from real-ESRGAN - Input image: I; Blurry image: B. - 1. K = I + weight * (I - B) - 2. Mask = 1 if abs(I - B) > threshold, else: 0 - 3. Blur mask: - 4. Out = Mask * K + (1 - Mask) * I - Args: - img (Numpy array): Input image, HWC, BGR; float32, [0, 1]. - weight (float): Sharp weight. Default: 1. - radius (float): Kernel size of Gaussian blur. Default: 50. - threshold (int): - """ - if radius % 2 == 0: - radius += 1 - blur = cv2.GaussianBlur(img, (radius, radius), 0) - residual = img - blur - mask = np.abs(residual) * 255 > threshold - mask = mask.astype('float32') - soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0) - - K = img + weight * residual - K = np.clip(K, 0, 1) - return soft_mask * K + (1 - soft_mask) * img - - -def add_blur(img, sf=4): - wd2 = 4.0 + sf - wd = 2.0 + 0.2 * sf - if random.random() < 0.5: - l1 = wd2 * random.random() - l2 = wd2 * random.random() - k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2) - else: - k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random()) - img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror') - - return img - - -def add_resize(img, sf=4): - rnum = np.random.rand() - if rnum > 0.8: # up - sf1 = random.uniform(1, 2) - elif rnum < 0.7: # down - sf1 = random.uniform(0.5 / sf, 1) - else: - sf1 = 1.0 - img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3])) - img = np.clip(img, 0.0, 1.0) - - return img - - -# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): -# noise_level = random.randint(noise_level1, noise_level2) -# rnum = np.random.rand() -# if rnum > 0.6: # add color Gaussian noise -# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) -# elif rnum < 0.4: # add grayscale Gaussian noise -# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) -# else: # add noise -# L = noise_level2 / 255. -# D = np.diag(np.random.rand(3)) -# U = orth(np.random.rand(3, 3)) -# conv = np.dot(np.dot(np.transpose(U), D), U) -# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) -# img = np.clip(img, 0.0, 1.0) -# return img - -def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): - noise_level = random.randint(noise_level1, noise_level2) - rnum = np.random.rand() - if rnum > 0.6: # add color Gaussian noise - img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) - elif rnum < 0.4: # add grayscale Gaussian noise - img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) - else: # add noise - L = noise_level2 / 255. - D = np.diag(np.random.rand(3)) - U = orth(np.random.rand(3, 3)) - conv = np.dot(np.dot(np.transpose(U), D), U) - img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) - img = np.clip(img, 0.0, 1.0) - return img - - -def add_speckle_noise(img, noise_level1=2, noise_level2=25): - noise_level = random.randint(noise_level1, noise_level2) - img = np.clip(img, 0.0, 1.0) - rnum = random.random() - if rnum > 0.6: - img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) - elif rnum < 0.4: - img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) - else: - L = noise_level2 / 255. - D = np.diag(np.random.rand(3)) - U = orth(np.random.rand(3, 3)) - conv = np.dot(np.dot(np.transpose(U), D), U) - img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) - img = np.clip(img, 0.0, 1.0) - return img - - -def add_Poisson_noise(img): - img = np.clip((img * 255.0).round(), 0, 255) / 255. - vals = 10 ** (2 * random.random() + 2.0) # [2, 4] - if random.random() < 0.5: - img = np.random.poisson(img * vals).astype(np.float32) / vals - else: - img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114]) - img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255. - noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray - img += noise_gray[:, :, np.newaxis] - img = np.clip(img, 0.0, 1.0) - return img - - -def add_JPEG_noise(img): - quality_factor = random.randint(30, 95) - img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR) - result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]) - img = cv2.imdecode(encimg, 1) - img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB) - return img - - -def random_crop(lq, hq, sf=4, lq_patchsize=64): - h, w = lq.shape[:2] - rnd_h = random.randint(0, h - lq_patchsize) - rnd_w = random.randint(0, w - lq_patchsize) - lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :] - - rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf) - hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :] - return lq, hq - - -def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None): - """ - This is the degradation model of BSRGAN from the paper - "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" - ---------- - img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) - sf: scale factor - isp_model: camera ISP model - Returns - ------- - img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] - hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] - """ - isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 - sf_ori = sf - - h1, w1 = img.shape[:2] - img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop - h, w = img.shape[:2] - - if h < lq_patchsize * sf or w < lq_patchsize * sf: - raise ValueError(f'img size ({h1}X{w1}) is too small!') - - hq = img.copy() - - if sf == 4 and random.random() < scale2_prob: # downsample1 - if np.random.rand() < 0.5: - img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - img = util.imresize_np(img, 1 / 2, True) - img = np.clip(img, 0.0, 1.0) - sf = 2 - - shuffle_order = random.sample(range(7), 7) - idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) - if idx1 > idx2: # keep downsample3 last - shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] - - for i in shuffle_order: - - if i == 0: - img = add_blur(img, sf=sf) - - elif i == 1: - img = add_blur(img, sf=sf) - - elif i == 2: - a, b = img.shape[1], img.shape[0] - # downsample2 - if random.random() < 0.75: - sf1 = random.uniform(1, 2 * sf) - img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) - k_shifted = shift_pixel(k, sf) - k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel - img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror') - img = img[0::sf, 0::sf, ...] # nearest downsampling - img = np.clip(img, 0.0, 1.0) - - elif i == 3: - # downsample3 - img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) - img = np.clip(img, 0.0, 1.0) - - elif i == 4: - # add Gaussian noise - img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) - - elif i == 5: - # add JPEG noise - if random.random() < jpeg_prob: - img = add_JPEG_noise(img) - - elif i == 6: - # add processed camera sensor noise - if random.random() < isp_prob and isp_model is not None: - with torch.no_grad(): - img, hq = isp_model.forward(img.copy(), hq) - - # add final JPEG compression noise - img = add_JPEG_noise(img) - - # random crop - img, hq = random_crop(img, hq, sf_ori, lq_patchsize) - - return img, hq - - -# todo no isp_model? -def degradation_bsrgan_variant(image, sf=4, isp_model=None): - """ - This is the degradation model of BSRGAN from the paper - "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" - ---------- - sf: scale factor - isp_model: camera ISP model - Returns - ------- - img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] - hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] - """ - image = util.uint2single(image) - isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 - sf_ori = sf - - h1, w1 = image.shape[:2] - image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop - h, w = image.shape[:2] - - hq = image.copy() - - if sf == 4 and random.random() < scale2_prob: # downsample1 - if np.random.rand() < 0.5: - image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - image = util.imresize_np(image, 1 / 2, True) - image = np.clip(image, 0.0, 1.0) - sf = 2 - - shuffle_order = random.sample(range(7), 7) - idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) - if idx1 > idx2: # keep downsample3 last - shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] - - for i in shuffle_order: - - if i == 0: - image = add_blur(image, sf=sf) - - elif i == 1: - image = add_blur(image, sf=sf) - - elif i == 2: - a, b = image.shape[1], image.shape[0] - # downsample2 - if random.random() < 0.75: - sf1 = random.uniform(1, 2 * sf) - image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) - k_shifted = shift_pixel(k, sf) - k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel - image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror') - image = image[0::sf, 0::sf, ...] # nearest downsampling - image = np.clip(image, 0.0, 1.0) - - elif i == 3: - # downsample3 - image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) - image = np.clip(image, 0.0, 1.0) - - elif i == 4: - # add Gaussian noise - image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25) - - elif i == 5: - # add JPEG noise - if random.random() < jpeg_prob: - image = add_JPEG_noise(image) - - # elif i == 6: - # # add processed camera sensor noise - # if random.random() < isp_prob and isp_model is not None: - # with torch.no_grad(): - # img, hq = isp_model.forward(img.copy(), hq) - - # add final JPEG compression noise - image = add_JPEG_noise(image) - image = util.single2uint(image) - example = {"image":image} - return example - - -# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc... -def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None): - """ - This is an extended degradation model by combining - the degradation models of BSRGAN and Real-ESRGAN - ---------- - img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) - sf: scale factor - use_shuffle: the degradation shuffle - use_sharp: sharpening the img - Returns - ------- - img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] - hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] - """ - - h1, w1 = img.shape[:2] - img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop - h, w = img.shape[:2] - - if h < lq_patchsize * sf or w < lq_patchsize * sf: - raise ValueError(f'img size ({h1}X{w1}) is too small!') - - if use_sharp: - img = add_sharpening(img) - hq = img.copy() - - if random.random() < shuffle_prob: - shuffle_order = random.sample(range(13), 13) - else: - shuffle_order = list(range(13)) - # local shuffle for noise, JPEG is always the last one - shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6))) - shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13))) - - poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1 - - for i in shuffle_order: - if i == 0: - img = add_blur(img, sf=sf) - elif i == 1: - img = add_resize(img, sf=sf) - elif i == 2: - img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) - elif i == 3: - if random.random() < poisson_prob: - img = add_Poisson_noise(img) - elif i == 4: - if random.random() < speckle_prob: - img = add_speckle_noise(img) - elif i == 5: - if random.random() < isp_prob and isp_model is not None: - with torch.no_grad(): - img, hq = isp_model.forward(img.copy(), hq) - elif i == 6: - img = add_JPEG_noise(img) - elif i == 7: - img = add_blur(img, sf=sf) - elif i == 8: - img = add_resize(img, sf=sf) - elif i == 9: - img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) - elif i == 10: - if random.random() < poisson_prob: - img = add_Poisson_noise(img) - elif i == 11: - if random.random() < speckle_prob: - img = add_speckle_noise(img) - elif i == 12: - if random.random() < isp_prob and isp_model is not None: - with torch.no_grad(): - img, hq = isp_model.forward(img.copy(), hq) - else: - print('check the shuffle!') - - # resize to desired size - img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])), - interpolation=random.choice([1, 2, 3])) - - # add final JPEG compression noise - img = add_JPEG_noise(img) - - # random crop - img, hq = random_crop(img, hq, sf, lq_patchsize) - - return img, hq - - -if __name__ == '__main__': - print("hey") - img = util.imread_uint('utils/test.png', 3) - print(img) - img = util.uint2single(img) - print(img) - img = img[:448, :448] - h = img.shape[0] // 4 - print("resizing to", h) - sf = 4 - deg_fn = partial(degradation_bsrgan_variant, sf=sf) - for i in range(20): - print(i) - img_lq = deg_fn(img) - print(img_lq) - img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"] - print(img_lq.shape) - print("bicubic", img_lq_bicubic.shape) - print(img_hq.shape) - lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), - interpolation=0) - lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), - interpolation=0) - img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1) - util.imsave(img_concat, str(i) + '.png') - - diff --git a/3DTopia/ldm/modules/image_degradation/bsrgan_light.py b/3DTopia/ldm/modules/image_degradation/bsrgan_light.py deleted file mode 100644 index 9e1f823996bf559e9b015ea9aa2b3cd38dd13af1..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/modules/image_degradation/bsrgan_light.py +++ /dev/null @@ -1,650 +0,0 @@ -# -*- coding: utf-8 -*- -import numpy as np -import cv2 -import torch - -from functools import partial -import random -from scipy import ndimage -import scipy -import scipy.stats as ss -from scipy.interpolate import interp2d -from scipy.linalg import orth -import albumentations - -import ldm.modules.image_degradation.utils_image as util - -""" -# -------------------------------------------- -# Super-Resolution -# -------------------------------------------- -# -# Kai Zhang (cskaizhang@gmail.com) -# https://github.com/cszn -# From 2019/03--2021/08 -# -------------------------------------------- -""" - - -def modcrop_np(img, sf): - ''' - Args: - img: numpy image, WxH or WxHxC - sf: scale factor - Return: - cropped image - ''' - w, h = img.shape[:2] - im = np.copy(img) - return im[:w - w % sf, :h - h % sf, ...] - - -""" -# -------------------------------------------- -# anisotropic Gaussian kernels -# -------------------------------------------- -""" - - -def analytic_kernel(k): - """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)""" - k_size = k.shape[0] - # Calculate the big kernels size - big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2)) - # Loop over the small kernel to fill the big one - for r in range(k_size): - for c in range(k_size): - big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k - # Crop the edges of the big kernel to ignore very small values and increase run time of SR - crop = k_size // 2 - cropped_big_k = big_k[crop:-crop, crop:-crop] - # Normalize to 1 - return cropped_big_k / cropped_big_k.sum() - - -def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6): - """ generate an anisotropic Gaussian kernel - Args: - ksize : e.g., 15, kernel size - theta : [0, pi], rotation angle range - l1 : [0.1,50], scaling of eigenvalues - l2 : [0.1,l1], scaling of eigenvalues - If l1 = l2, will get an isotropic Gaussian kernel. - Returns: - k : kernel - """ - - v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.])) - V = np.array([[v[0], v[1]], [v[1], -v[0]]]) - D = np.array([[l1, 0], [0, l2]]) - Sigma = np.dot(np.dot(V, D), np.linalg.inv(V)) - k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize) - - return k - - -def gm_blur_kernel(mean, cov, size=15): - center = size / 2.0 + 0.5 - k = np.zeros([size, size]) - for y in range(size): - for x in range(size): - cy = y - center + 1 - cx = x - center + 1 - k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov) - - k = k / np.sum(k) - return k - - -def shift_pixel(x, sf, upper_left=True): - """shift pixel for super-resolution with different scale factors - Args: - x: WxHxC or WxH - sf: scale factor - upper_left: shift direction - """ - h, w = x.shape[:2] - shift = (sf - 1) * 0.5 - xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0) - if upper_left: - x1 = xv + shift - y1 = yv + shift - else: - x1 = xv - shift - y1 = yv - shift - - x1 = np.clip(x1, 0, w - 1) - y1 = np.clip(y1, 0, h - 1) - - if x.ndim == 2: - x = interp2d(xv, yv, x)(x1, y1) - if x.ndim == 3: - for i in range(x.shape[-1]): - x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1) - - return x - - -def blur(x, k): - ''' - x: image, NxcxHxW - k: kernel, Nx1xhxw - ''' - n, c = x.shape[:2] - p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2 - x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate') - k = k.repeat(1, c, 1, 1) - k = k.view(-1, 1, k.shape[2], k.shape[3]) - x = x.view(1, -1, x.shape[2], x.shape[3]) - x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c) - x = x.view(n, c, x.shape[2], x.shape[3]) - - return x - - -def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0): - """" - # modified version of https://github.com/assafshocher/BlindSR_dataset_generator - # Kai Zhang - # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var - # max_var = 2.5 * sf - """ - # Set random eigen-vals (lambdas) and angle (theta) for COV matrix - lambda_1 = min_var + np.random.rand() * (max_var - min_var) - lambda_2 = min_var + np.random.rand() * (max_var - min_var) - theta = np.random.rand() * np.pi # random theta - noise = -noise_level + np.random.rand(*k_size) * noise_level * 2 - - # Set COV matrix using Lambdas and Theta - LAMBDA = np.diag([lambda_1, lambda_2]) - Q = np.array([[np.cos(theta), -np.sin(theta)], - [np.sin(theta), np.cos(theta)]]) - SIGMA = Q @ LAMBDA @ Q.T - INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :] - - # Set expectation position (shifting kernel for aligned image) - MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2) - MU = MU[None, None, :, None] - - # Create meshgrid for Gaussian - [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1])) - Z = np.stack([X, Y], 2)[:, :, :, None] - - # Calcualte Gaussian for every pixel of the kernel - ZZ = Z - MU - ZZ_t = ZZ.transpose(0, 1, 3, 2) - raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise) - - # shift the kernel so it will be centered - # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor) - - # Normalize the kernel and return - # kernel = raw_kernel_centered / np.sum(raw_kernel_centered) - kernel = raw_kernel / np.sum(raw_kernel) - return kernel - - -def fspecial_gaussian(hsize, sigma): - hsize = [hsize, hsize] - siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0] - std = sigma - [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1)) - arg = -(x * x + y * y) / (2 * std * std) - h = np.exp(arg) - h[h < scipy.finfo(float).eps * h.max()] = 0 - sumh = h.sum() - if sumh != 0: - h = h / sumh - return h - - -def fspecial_laplacian(alpha): - alpha = max([0, min([alpha, 1])]) - h1 = alpha / (alpha + 1) - h2 = (1 - alpha) / (alpha + 1) - h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]] - h = np.array(h) - return h - - -def fspecial(filter_type, *args, **kwargs): - ''' - python code from: - https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py - ''' - if filter_type == 'gaussian': - return fspecial_gaussian(*args, **kwargs) - if filter_type == 'laplacian': - return fspecial_laplacian(*args, **kwargs) - - -""" -# -------------------------------------------- -# degradation models -# -------------------------------------------- -""" - - -def bicubic_degradation(x, sf=3): - ''' - Args: - x: HxWxC image, [0, 1] - sf: down-scale factor - Return: - bicubicly downsampled LR image - ''' - x = util.imresize_np(x, scale=1 / sf) - return x - - -def srmd_degradation(x, k, sf=3): - ''' blur + bicubic downsampling - Args: - x: HxWxC image, [0, 1] - k: hxw, double - sf: down-scale factor - Return: - downsampled LR image - Reference: - @inproceedings{zhang2018learning, - title={Learning a single convolutional super-resolution network for multiple degradations}, - author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, - booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, - pages={3262--3271}, - year={2018} - } - ''' - x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror' - x = bicubic_degradation(x, sf=sf) - return x - - -def dpsr_degradation(x, k, sf=3): - ''' bicubic downsampling + blur - Args: - x: HxWxC image, [0, 1] - k: hxw, double - sf: down-scale factor - Return: - downsampled LR image - Reference: - @inproceedings{zhang2019deep, - title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, - author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, - booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, - pages={1671--1681}, - year={2019} - } - ''' - x = bicubic_degradation(x, sf=sf) - x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') - return x - - -def classical_degradation(x, k, sf=3): - ''' blur + downsampling - Args: - x: HxWxC image, [0, 1]/[0, 255] - k: hxw, double - sf: down-scale factor - Return: - downsampled LR image - ''' - x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') - # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2)) - st = 0 - return x[st::sf, st::sf, ...] - - -def add_sharpening(img, weight=0.5, radius=50, threshold=10): - """USM sharpening. borrowed from real-ESRGAN - Input image: I; Blurry image: B. - 1. K = I + weight * (I - B) - 2. Mask = 1 if abs(I - B) > threshold, else: 0 - 3. Blur mask: - 4. Out = Mask * K + (1 - Mask) * I - Args: - img (Numpy array): Input image, HWC, BGR; float32, [0, 1]. - weight (float): Sharp weight. Default: 1. - radius (float): Kernel size of Gaussian blur. Default: 50. - threshold (int): - """ - if radius % 2 == 0: - radius += 1 - blur = cv2.GaussianBlur(img, (radius, radius), 0) - residual = img - blur - mask = np.abs(residual) * 255 > threshold - mask = mask.astype('float32') - soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0) - - K = img + weight * residual - K = np.clip(K, 0, 1) - return soft_mask * K + (1 - soft_mask) * img - - -def add_blur(img, sf=4): - wd2 = 4.0 + sf - wd = 2.0 + 0.2 * sf - - wd2 = wd2/4 - wd = wd/4 - - if random.random() < 0.5: - l1 = wd2 * random.random() - l2 = wd2 * random.random() - k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2) - else: - k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random()) - img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror') - - return img - - -def add_resize(img, sf=4): - rnum = np.random.rand() - if rnum > 0.8: # up - sf1 = random.uniform(1, 2) - elif rnum < 0.7: # down - sf1 = random.uniform(0.5 / sf, 1) - else: - sf1 = 1.0 - img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3])) - img = np.clip(img, 0.0, 1.0) - - return img - - -# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): -# noise_level = random.randint(noise_level1, noise_level2) -# rnum = np.random.rand() -# if rnum > 0.6: # add color Gaussian noise -# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) -# elif rnum < 0.4: # add grayscale Gaussian noise -# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) -# else: # add noise -# L = noise_level2 / 255. -# D = np.diag(np.random.rand(3)) -# U = orth(np.random.rand(3, 3)) -# conv = np.dot(np.dot(np.transpose(U), D), U) -# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) -# img = np.clip(img, 0.0, 1.0) -# return img - -def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): - noise_level = random.randint(noise_level1, noise_level2) - rnum = np.random.rand() - if rnum > 0.6: # add color Gaussian noise - img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) - elif rnum < 0.4: # add grayscale Gaussian noise - img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) - else: # add noise - L = noise_level2 / 255. - D = np.diag(np.random.rand(3)) - U = orth(np.random.rand(3, 3)) - conv = np.dot(np.dot(np.transpose(U), D), U) - img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) - img = np.clip(img, 0.0, 1.0) - return img - - -def add_speckle_noise(img, noise_level1=2, noise_level2=25): - noise_level = random.randint(noise_level1, noise_level2) - img = np.clip(img, 0.0, 1.0) - rnum = random.random() - if rnum > 0.6: - img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) - elif rnum < 0.4: - img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) - else: - L = noise_level2 / 255. - D = np.diag(np.random.rand(3)) - U = orth(np.random.rand(3, 3)) - conv = np.dot(np.dot(np.transpose(U), D), U) - img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) - img = np.clip(img, 0.0, 1.0) - return img - - -def add_Poisson_noise(img): - img = np.clip((img * 255.0).round(), 0, 255) / 255. - vals = 10 ** (2 * random.random() + 2.0) # [2, 4] - if random.random() < 0.5: - img = np.random.poisson(img * vals).astype(np.float32) / vals - else: - img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114]) - img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255. - noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray - img += noise_gray[:, :, np.newaxis] - img = np.clip(img, 0.0, 1.0) - return img - - -def add_JPEG_noise(img): - quality_factor = random.randint(80, 95) - img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR) - result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]) - img = cv2.imdecode(encimg, 1) - img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB) - return img - - -def random_crop(lq, hq, sf=4, lq_patchsize=64): - h, w = lq.shape[:2] - rnd_h = random.randint(0, h - lq_patchsize) - rnd_w = random.randint(0, w - lq_patchsize) - lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :] - - rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf) - hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :] - return lq, hq - - -def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None): - """ - This is the degradation model of BSRGAN from the paper - "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" - ---------- - img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) - sf: scale factor - isp_model: camera ISP model - Returns - ------- - img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] - hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] - """ - isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 - sf_ori = sf - - h1, w1 = img.shape[:2] - img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop - h, w = img.shape[:2] - - if h < lq_patchsize * sf or w < lq_patchsize * sf: - raise ValueError(f'img size ({h1}X{w1}) is too small!') - - hq = img.copy() - - if sf == 4 and random.random() < scale2_prob: # downsample1 - if np.random.rand() < 0.5: - img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - img = util.imresize_np(img, 1 / 2, True) - img = np.clip(img, 0.0, 1.0) - sf = 2 - - shuffle_order = random.sample(range(7), 7) - idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) - if idx1 > idx2: # keep downsample3 last - shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] - - for i in shuffle_order: - - if i == 0: - img = add_blur(img, sf=sf) - - elif i == 1: - img = add_blur(img, sf=sf) - - elif i == 2: - a, b = img.shape[1], img.shape[0] - # downsample2 - if random.random() < 0.75: - sf1 = random.uniform(1, 2 * sf) - img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) - k_shifted = shift_pixel(k, sf) - k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel - img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror') - img = img[0::sf, 0::sf, ...] # nearest downsampling - img = np.clip(img, 0.0, 1.0) - - elif i == 3: - # downsample3 - img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) - img = np.clip(img, 0.0, 1.0) - - elif i == 4: - # add Gaussian noise - img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8) - - elif i == 5: - # add JPEG noise - if random.random() < jpeg_prob: - img = add_JPEG_noise(img) - - elif i == 6: - # add processed camera sensor noise - if random.random() < isp_prob and isp_model is not None: - with torch.no_grad(): - img, hq = isp_model.forward(img.copy(), hq) - - # add final JPEG compression noise - img = add_JPEG_noise(img) - - # random crop - img, hq = random_crop(img, hq, sf_ori, lq_patchsize) - - return img, hq - - -# todo no isp_model? -def degradation_bsrgan_variant(image, sf=4, isp_model=None): - """ - This is the degradation model of BSRGAN from the paper - "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" - ---------- - sf: scale factor - isp_model: camera ISP model - Returns - ------- - img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] - hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] - """ - image = util.uint2single(image) - isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 - sf_ori = sf - - h1, w1 = image.shape[:2] - image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop - h, w = image.shape[:2] - - hq = image.copy() - - if sf == 4 and random.random() < scale2_prob: # downsample1 - if np.random.rand() < 0.5: - image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - image = util.imresize_np(image, 1 / 2, True) - image = np.clip(image, 0.0, 1.0) - sf = 2 - - shuffle_order = random.sample(range(7), 7) - idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) - if idx1 > idx2: # keep downsample3 last - shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] - - for i in shuffle_order: - - if i == 0: - image = add_blur(image, sf=sf) - - # elif i == 1: - # image = add_blur(image, sf=sf) - - if i == 0: - pass - - elif i == 2: - a, b = image.shape[1], image.shape[0] - # downsample2 - if random.random() < 0.8: - sf1 = random.uniform(1, 2 * sf) - image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) - k_shifted = shift_pixel(k, sf) - k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel - image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror') - image = image[0::sf, 0::sf, ...] # nearest downsampling - - image = np.clip(image, 0.0, 1.0) - - elif i == 3: - # downsample3 - image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) - image = np.clip(image, 0.0, 1.0) - - elif i == 4: - # add Gaussian noise - image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2) - - elif i == 5: - # add JPEG noise - if random.random() < jpeg_prob: - image = add_JPEG_noise(image) - # - # elif i == 6: - # # add processed camera sensor noise - # if random.random() < isp_prob and isp_model is not None: - # with torch.no_grad(): - # img, hq = isp_model.forward(img.copy(), hq) - - # add final JPEG compression noise - image = add_JPEG_noise(image) - image = util.single2uint(image) - example = {"image": image} - return example - - - - -if __name__ == '__main__': - print("hey") - img = util.imread_uint('utils/test.png', 3) - img = img[:448, :448] - h = img.shape[0] // 4 - print("resizing to", h) - sf = 4 - deg_fn = partial(degradation_bsrgan_variant, sf=sf) - for i in range(20): - print(i) - img_hq = img - img_lq = deg_fn(img)["image"] - img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq) - print(img_lq) - img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"] - print(img_lq.shape) - print("bicubic", img_lq_bicubic.shape) - print(img_hq.shape) - lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), - interpolation=0) - lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), - (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), - interpolation=0) - img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1) - util.imsave(img_concat, str(i) + '.png') diff --git a/3DTopia/ldm/modules/image_degradation/utils/test.png b/3DTopia/ldm/modules/image_degradation/utils/test.png deleted file mode 100644 index 4249b43de0f22707758d13c240268a401642f6e6..0000000000000000000000000000000000000000 Binary files a/3DTopia/ldm/modules/image_degradation/utils/test.png and /dev/null differ diff --git a/3DTopia/ldm/modules/image_degradation/utils_image.py b/3DTopia/ldm/modules/image_degradation/utils_image.py deleted file mode 100644 index 0175f155ad900ae33c3c46ed87f49b352e3faf98..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/modules/image_degradation/utils_image.py +++ /dev/null @@ -1,916 +0,0 @@ -import os -import math -import random -import numpy as np -import torch -import cv2 -from torchvision.utils import make_grid -from datetime import datetime -#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py - - -os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" - - -''' -# -------------------------------------------- -# Kai Zhang (github: https://github.com/cszn) -# 03/Mar/2019 -# -------------------------------------------- -# https://github.com/twhui/SRGAN-pyTorch -# https://github.com/xinntao/BasicSR -# -------------------------------------------- -''' - - -IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif'] - - -def is_image_file(filename): - return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) - - -def get_timestamp(): - return datetime.now().strftime('%y%m%d-%H%M%S') - - -def imshow(x, title=None, cbar=False, figsize=None): - plt.figure(figsize=figsize) - plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray') - if title: - plt.title(title) - if cbar: - plt.colorbar() - plt.show() - - -def surf(Z, cmap='rainbow', figsize=None): - plt.figure(figsize=figsize) - ax3 = plt.axes(projection='3d') - - w, h = Z.shape[:2] - xx = np.arange(0,w,1) - yy = np.arange(0,h,1) - X, Y = np.meshgrid(xx, yy) - ax3.plot_surface(X,Y,Z,cmap=cmap) - #ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap) - plt.show() - - -''' -# -------------------------------------------- -# get image pathes -# -------------------------------------------- -''' - - -def get_image_paths(dataroot): - paths = None # return None if dataroot is None - if dataroot is not None: - paths = sorted(_get_paths_from_images(dataroot)) - return paths - - -def _get_paths_from_images(path): - assert os.path.isdir(path), '{:s} is not a valid directory'.format(path) - images = [] - for dirpath, _, fnames in sorted(os.walk(path)): - for fname in sorted(fnames): - if is_image_file(fname): - img_path = os.path.join(dirpath, fname) - images.append(img_path) - assert images, '{:s} has no valid image file'.format(path) - return images - - -''' -# -------------------------------------------- -# split large images into small images -# -------------------------------------------- -''' - - -def patches_from_image(img, p_size=512, p_overlap=64, p_max=800): - w, h = img.shape[:2] - patches = [] - if w > p_max and h > p_max: - w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int)) - h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int)) - w1.append(w-p_size) - h1.append(h-p_size) -# print(w1) -# print(h1) - for i in w1: - for j in h1: - patches.append(img[i:i+p_size, j:j+p_size,:]) - else: - patches.append(img) - - return patches - - -def imssave(imgs, img_path): - """ - imgs: list, N images of size WxHxC - """ - img_name, ext = os.path.splitext(os.path.basename(img_path)) - - for i, img in enumerate(imgs): - if img.ndim == 3: - img = img[:, :, [2, 1, 0]] - new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png') - cv2.imwrite(new_path, img) - - -def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000): - """ - split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size), - and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max) - will be splitted. - Args: - original_dataroot: - taget_dataroot: - p_size: size of small images - p_overlap: patch size in training is a good choice - p_max: images with smaller size than (p_max)x(p_max) keep unchanged. - """ - paths = get_image_paths(original_dataroot) - for img_path in paths: - # img_name, ext = os.path.splitext(os.path.basename(img_path)) - img = imread_uint(img_path, n_channels=n_channels) - patches = patches_from_image(img, p_size, p_overlap, p_max) - imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path))) - #if original_dataroot == taget_dataroot: - #del img_path - -''' -# -------------------------------------------- -# makedir -# -------------------------------------------- -''' - - -def mkdir(path): - if not os.path.exists(path): - os.makedirs(path) - - -def mkdirs(paths): - if isinstance(paths, str): - mkdir(paths) - else: - for path in paths: - mkdir(path) - - -def mkdir_and_rename(path): - if os.path.exists(path): - new_name = path + '_archived_' + get_timestamp() - print('Path already exists. Rename it to [{:s}]'.format(new_name)) - os.rename(path, new_name) - os.makedirs(path) - - -''' -# -------------------------------------------- -# read image from path -# opencv is fast, but read BGR numpy image -# -------------------------------------------- -''' - - -# -------------------------------------------- -# get uint8 image of size HxWxn_channles (RGB) -# -------------------------------------------- -def imread_uint(path, n_channels=3): - # input: path - # output: HxWx3(RGB or GGG), or HxWx1 (G) - if n_channels == 1: - img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE - img = np.expand_dims(img, axis=2) # HxWx1 - elif n_channels == 3: - img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G - if img.ndim == 2: - img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG - else: - img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB - return img - - -# -------------------------------------------- -# matlab's imwrite -# -------------------------------------------- -def imsave(img, img_path): - img = np.squeeze(img) - if img.ndim == 3: - img = img[:, :, [2, 1, 0]] - cv2.imwrite(img_path, img) - -def imwrite(img, img_path): - img = np.squeeze(img) - if img.ndim == 3: - img = img[:, :, [2, 1, 0]] - cv2.imwrite(img_path, img) - - - -# -------------------------------------------- -# get single image of size HxWxn_channles (BGR) -# -------------------------------------------- -def read_img(path): - # read image by cv2 - # return: Numpy float32, HWC, BGR, [0,1] - img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE - img = img.astype(np.float32) / 255. - if img.ndim == 2: - img = np.expand_dims(img, axis=2) - # some images have 4 channels - if img.shape[2] > 3: - img = img[:, :, :3] - return img - - -''' -# -------------------------------------------- -# image format conversion -# -------------------------------------------- -# numpy(single) <---> numpy(unit) -# numpy(single) <---> tensor -# numpy(unit) <---> tensor -# -------------------------------------------- -''' - - -# -------------------------------------------- -# numpy(single) [0, 1] <---> numpy(unit) -# -------------------------------------------- - - -def uint2single(img): - - return np.float32(img/255.) - - -def single2uint(img): - - return np.uint8((img.clip(0, 1)*255.).round()) - - -def uint162single(img): - - return np.float32(img/65535.) - - -def single2uint16(img): - - return np.uint16((img.clip(0, 1)*65535.).round()) - - -# -------------------------------------------- -# numpy(unit) (HxWxC or HxW) <---> tensor -# -------------------------------------------- - - -# convert uint to 4-dimensional torch tensor -def uint2tensor4(img): - if img.ndim == 2: - img = np.expand_dims(img, axis=2) - return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0) - - -# convert uint to 3-dimensional torch tensor -def uint2tensor3(img): - if img.ndim == 2: - img = np.expand_dims(img, axis=2) - return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.) - - -# convert 2/3/4-dimensional torch tensor to uint -def tensor2uint(img): - img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy() - if img.ndim == 3: - img = np.transpose(img, (1, 2, 0)) - return np.uint8((img*255.0).round()) - - -# -------------------------------------------- -# numpy(single) (HxWxC) <---> tensor -# -------------------------------------------- - - -# convert single (HxWxC) to 3-dimensional torch tensor -def single2tensor3(img): - return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float() - - -# convert single (HxWxC) to 4-dimensional torch tensor -def single2tensor4(img): - return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0) - - -# convert torch tensor to single -def tensor2single(img): - img = img.data.squeeze().float().cpu().numpy() - if img.ndim == 3: - img = np.transpose(img, (1, 2, 0)) - - return img - -# convert torch tensor to single -def tensor2single3(img): - img = img.data.squeeze().float().cpu().numpy() - if img.ndim == 3: - img = np.transpose(img, (1, 2, 0)) - elif img.ndim == 2: - img = np.expand_dims(img, axis=2) - return img - - -def single2tensor5(img): - return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0) - - -def single32tensor5(img): - return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0) - - -def single42tensor4(img): - return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float() - - -# from skimage.io import imread, imsave -def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)): - ''' - Converts a torch Tensor into an image Numpy array of BGR channel order - Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order - Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) - ''' - tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp - tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1] - n_dim = tensor.dim() - if n_dim == 4: - n_img = len(tensor) - img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy() - img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR - elif n_dim == 3: - img_np = tensor.numpy() - img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR - elif n_dim == 2: - img_np = tensor.numpy() - else: - raise TypeError( - 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) - if out_type == np.uint8: - img_np = (img_np * 255.0).round() - # Important. Unlike matlab, numpy.unit8() WILL NOT round by default. - return img_np.astype(out_type) - - -''' -# -------------------------------------------- -# Augmentation, flipe and/or rotate -# -------------------------------------------- -# The following two are enough. -# (1) augmet_img: numpy image of WxHxC or WxH -# (2) augment_img_tensor4: tensor image 1xCxWxH -# -------------------------------------------- -''' - - -def augment_img(img, mode=0): - '''Kai Zhang (github: https://github.com/cszn) - ''' - if mode == 0: - return img - elif mode == 1: - return np.flipud(np.rot90(img)) - elif mode == 2: - return np.flipud(img) - elif mode == 3: - return np.rot90(img, k=3) - elif mode == 4: - return np.flipud(np.rot90(img, k=2)) - elif mode == 5: - return np.rot90(img) - elif mode == 6: - return np.rot90(img, k=2) - elif mode == 7: - return np.flipud(np.rot90(img, k=3)) - - -def augment_img_tensor4(img, mode=0): - '''Kai Zhang (github: https://github.com/cszn) - ''' - if mode == 0: - return img - elif mode == 1: - return img.rot90(1, [2, 3]).flip([2]) - elif mode == 2: - return img.flip([2]) - elif mode == 3: - return img.rot90(3, [2, 3]) - elif mode == 4: - return img.rot90(2, [2, 3]).flip([2]) - elif mode == 5: - return img.rot90(1, [2, 3]) - elif mode == 6: - return img.rot90(2, [2, 3]) - elif mode == 7: - return img.rot90(3, [2, 3]).flip([2]) - - -def augment_img_tensor(img, mode=0): - '''Kai Zhang (github: https://github.com/cszn) - ''' - img_size = img.size() - img_np = img.data.cpu().numpy() - if len(img_size) == 3: - img_np = np.transpose(img_np, (1, 2, 0)) - elif len(img_size) == 4: - img_np = np.transpose(img_np, (2, 3, 1, 0)) - img_np = augment_img(img_np, mode=mode) - img_tensor = torch.from_numpy(np.ascontiguousarray(img_np)) - if len(img_size) == 3: - img_tensor = img_tensor.permute(2, 0, 1) - elif len(img_size) == 4: - img_tensor = img_tensor.permute(3, 2, 0, 1) - - return img_tensor.type_as(img) - - -def augment_img_np3(img, mode=0): - if mode == 0: - return img - elif mode == 1: - return img.transpose(1, 0, 2) - elif mode == 2: - return img[::-1, :, :] - elif mode == 3: - img = img[::-1, :, :] - img = img.transpose(1, 0, 2) - return img - elif mode == 4: - return img[:, ::-1, :] - elif mode == 5: - img = img[:, ::-1, :] - img = img.transpose(1, 0, 2) - return img - elif mode == 6: - img = img[:, ::-1, :] - img = img[::-1, :, :] - return img - elif mode == 7: - img = img[:, ::-1, :] - img = img[::-1, :, :] - img = img.transpose(1, 0, 2) - return img - - -def augment_imgs(img_list, hflip=True, rot=True): - # horizontal flip OR rotate - hflip = hflip and random.random() < 0.5 - vflip = rot and random.random() < 0.5 - rot90 = rot and random.random() < 0.5 - - def _augment(img): - if hflip: - img = img[:, ::-1, :] - if vflip: - img = img[::-1, :, :] - if rot90: - img = img.transpose(1, 0, 2) - return img - - return [_augment(img) for img in img_list] - - -''' -# -------------------------------------------- -# modcrop and shave -# -------------------------------------------- -''' - - -def modcrop(img_in, scale): - # img_in: Numpy, HWC or HW - img = np.copy(img_in) - if img.ndim == 2: - H, W = img.shape - H_r, W_r = H % scale, W % scale - img = img[:H - H_r, :W - W_r] - elif img.ndim == 3: - H, W, C = img.shape - H_r, W_r = H % scale, W % scale - img = img[:H - H_r, :W - W_r, :] - else: - raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim)) - return img - - -def shave(img_in, border=0): - # img_in: Numpy, HWC or HW - img = np.copy(img_in) - h, w = img.shape[:2] - img = img[border:h-border, border:w-border] - return img - - -''' -# -------------------------------------------- -# image processing process on numpy image -# channel_convert(in_c, tar_type, img_list): -# rgb2ycbcr(img, only_y=True): -# bgr2ycbcr(img, only_y=True): -# ycbcr2rgb(img): -# -------------------------------------------- -''' - - -def rgb2ycbcr(img, only_y=True): - '''same as matlab rgb2ycbcr - only_y: only return Y channel - Input: - uint8, [0, 255] - float, [0, 1] - ''' - in_img_type = img.dtype - img.astype(np.float32) - if in_img_type != np.uint8: - img *= 255. - # convert - if only_y: - rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0 - else: - rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], - [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128] - if in_img_type == np.uint8: - rlt = rlt.round() - else: - rlt /= 255. - return rlt.astype(in_img_type) - - -def ycbcr2rgb(img): - '''same as matlab ycbcr2rgb - Input: - uint8, [0, 255] - float, [0, 1] - ''' - in_img_type = img.dtype - img.astype(np.float32) - if in_img_type != np.uint8: - img *= 255. - # convert - rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071], - [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] - if in_img_type == np.uint8: - rlt = rlt.round() - else: - rlt /= 255. - return rlt.astype(in_img_type) - - -def bgr2ycbcr(img, only_y=True): - '''bgr version of rgb2ycbcr - only_y: only return Y channel - Input: - uint8, [0, 255] - float, [0, 1] - ''' - in_img_type = img.dtype - img.astype(np.float32) - if in_img_type != np.uint8: - img *= 255. - # convert - if only_y: - rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0 - else: - rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], - [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128] - if in_img_type == np.uint8: - rlt = rlt.round() - else: - rlt /= 255. - return rlt.astype(in_img_type) - - -def channel_convert(in_c, tar_type, img_list): - # conversion among BGR, gray and y - if in_c == 3 and tar_type == 'gray': # BGR to gray - gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list] - return [np.expand_dims(img, axis=2) for img in gray_list] - elif in_c == 3 and tar_type == 'y': # BGR to y - y_list = [bgr2ycbcr(img, only_y=True) for img in img_list] - return [np.expand_dims(img, axis=2) for img in y_list] - elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR - return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list] - else: - return img_list - - -''' -# -------------------------------------------- -# metric, PSNR and SSIM -# -------------------------------------------- -''' - - -# -------------------------------------------- -# PSNR -# -------------------------------------------- -def calculate_psnr(img1, img2, border=0): - # img1 and img2 have range [0, 255] - #img1 = img1.squeeze() - #img2 = img2.squeeze() - if not img1.shape == img2.shape: - raise ValueError('Input images must have the same dimensions.') - h, w = img1.shape[:2] - img1 = img1[border:h-border, border:w-border] - img2 = img2[border:h-border, border:w-border] - - img1 = img1.astype(np.float64) - img2 = img2.astype(np.float64) - mse = np.mean((img1 - img2)**2) - if mse == 0: - return float('inf') - return 20 * math.log10(255.0 / math.sqrt(mse)) - - -# -------------------------------------------- -# SSIM -# -------------------------------------------- -def calculate_ssim(img1, img2, border=0): - '''calculate SSIM - the same outputs as MATLAB's - img1, img2: [0, 255] - ''' - #img1 = img1.squeeze() - #img2 = img2.squeeze() - if not img1.shape == img2.shape: - raise ValueError('Input images must have the same dimensions.') - h, w = img1.shape[:2] - img1 = img1[border:h-border, border:w-border] - img2 = img2[border:h-border, border:w-border] - - if img1.ndim == 2: - return ssim(img1, img2) - elif img1.ndim == 3: - if img1.shape[2] == 3: - ssims = [] - for i in range(3): - ssims.append(ssim(img1[:,:,i], img2[:,:,i])) - return np.array(ssims).mean() - elif img1.shape[2] == 1: - return ssim(np.squeeze(img1), np.squeeze(img2)) - else: - raise ValueError('Wrong input image dimensions.') - - -def ssim(img1, img2): - C1 = (0.01 * 255)**2 - C2 = (0.03 * 255)**2 - - img1 = img1.astype(np.float64) - img2 = img2.astype(np.float64) - kernel = cv2.getGaussianKernel(11, 1.5) - window = np.outer(kernel, kernel.transpose()) - - mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid - mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] - mu1_sq = mu1**2 - mu2_sq = mu2**2 - mu1_mu2 = mu1 * mu2 - sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq - sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq - sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 - - ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * - (sigma1_sq + sigma2_sq + C2)) - return ssim_map.mean() - - -''' -# -------------------------------------------- -# matlab's bicubic imresize (numpy and torch) [0, 1] -# -------------------------------------------- -''' - - -# matlab 'imresize' function, now only support 'bicubic' -def cubic(x): - absx = torch.abs(x) - absx2 = absx**2 - absx3 = absx**3 - return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \ - (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx)) - - -def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): - if (scale < 1) and (antialiasing): - # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width - kernel_width = kernel_width / scale - - # Output-space coordinates - x = torch.linspace(1, out_length, out_length) - - # Input-space coordinates. Calculate the inverse mapping such that 0.5 - # in output space maps to 0.5 in input space, and 0.5+scale in output - # space maps to 1.5 in input space. - u = x / scale + 0.5 * (1 - 1 / scale) - - # What is the left-most pixel that can be involved in the computation? - left = torch.floor(u - kernel_width / 2) - - # What is the maximum number of pixels that can be involved in the - # computation? Note: it's OK to use an extra pixel here; if the - # corresponding weights are all zero, it will be eliminated at the end - # of this function. - P = math.ceil(kernel_width) + 2 - - # The indices of the input pixels involved in computing the k-th output - # pixel are in row k of the indices matrix. - indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view( - 1, P).expand(out_length, P) - - # The weights used to compute the k-th output pixel are in row k of the - # weights matrix. - distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices - # apply cubic kernel - if (scale < 1) and (antialiasing): - weights = scale * cubic(distance_to_center * scale) - else: - weights = cubic(distance_to_center) - # Normalize the weights matrix so that each row sums to 1. - weights_sum = torch.sum(weights, 1).view(out_length, 1) - weights = weights / weights_sum.expand(out_length, P) - - # If a column in weights is all zero, get rid of it. only consider the first and last column. - weights_zero_tmp = torch.sum((weights == 0), 0) - if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): - indices = indices.narrow(1, 1, P - 2) - weights = weights.narrow(1, 1, P - 2) - if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): - indices = indices.narrow(1, 0, P - 2) - weights = weights.narrow(1, 0, P - 2) - weights = weights.contiguous() - indices = indices.contiguous() - sym_len_s = -indices.min() + 1 - sym_len_e = indices.max() - in_length - indices = indices + sym_len_s - 1 - return weights, indices, int(sym_len_s), int(sym_len_e) - - -# -------------------------------------------- -# imresize for tensor image [0, 1] -# -------------------------------------------- -def imresize(img, scale, antialiasing=True): - # Now the scale should be the same for H and W - # input: img: pytorch tensor, CHW or HW [0,1] - # output: CHW or HW [0,1] w/o round - need_squeeze = True if img.dim() == 2 else False - if need_squeeze: - img.unsqueeze_(0) - in_C, in_H, in_W = img.size() - out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) - kernel_width = 4 - kernel = 'cubic' - - # Return the desired dimension order for performing the resize. The - # strategy is to perform the resize first along the dimension with the - # smallest scale factor. - # Now we do not support this. - - # get weights and indices - weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( - in_H, out_H, scale, kernel, kernel_width, antialiasing) - weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( - in_W, out_W, scale, kernel, kernel_width, antialiasing) - # process H dimension - # symmetric copying - img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W) - img_aug.narrow(1, sym_len_Hs, in_H).copy_(img) - - sym_patch = img[:, :sym_len_Hs, :] - inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(1, inv_idx) - img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv) - - sym_patch = img[:, -sym_len_He:, :] - inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(1, inv_idx) - img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) - - out_1 = torch.FloatTensor(in_C, out_H, in_W) - kernel_width = weights_H.size(1) - for i in range(out_H): - idx = int(indices_H[i][0]) - for j in range(out_C): - out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) - - # process W dimension - # symmetric copying - out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We) - out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1) - - sym_patch = out_1[:, :, :sym_len_Ws] - inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(2, inv_idx) - out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv) - - sym_patch = out_1[:, :, -sym_len_We:] - inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(2, inv_idx) - out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) - - out_2 = torch.FloatTensor(in_C, out_H, out_W) - kernel_width = weights_W.size(1) - for i in range(out_W): - idx = int(indices_W[i][0]) - for j in range(out_C): - out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i]) - if need_squeeze: - out_2.squeeze_() - return out_2 - - -# -------------------------------------------- -# imresize for numpy image [0, 1] -# -------------------------------------------- -def imresize_np(img, scale, antialiasing=True): - # Now the scale should be the same for H and W - # input: img: Numpy, HWC or HW [0,1] - # output: HWC or HW [0,1] w/o round - img = torch.from_numpy(img) - need_squeeze = True if img.dim() == 2 else False - if need_squeeze: - img.unsqueeze_(2) - - in_H, in_W, in_C = img.size() - out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) - kernel_width = 4 - kernel = 'cubic' - - # Return the desired dimension order for performing the resize. The - # strategy is to perform the resize first along the dimension with the - # smallest scale factor. - # Now we do not support this. - - # get weights and indices - weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( - in_H, out_H, scale, kernel, kernel_width, antialiasing) - weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( - in_W, out_W, scale, kernel, kernel_width, antialiasing) - # process H dimension - # symmetric copying - img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C) - img_aug.narrow(0, sym_len_Hs, in_H).copy_(img) - - sym_patch = img[:sym_len_Hs, :, :] - inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(0, inv_idx) - img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv) - - sym_patch = img[-sym_len_He:, :, :] - inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(0, inv_idx) - img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) - - out_1 = torch.FloatTensor(out_H, in_W, in_C) - kernel_width = weights_H.size(1) - for i in range(out_H): - idx = int(indices_H[i][0]) - for j in range(out_C): - out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i]) - - # process W dimension - # symmetric copying - out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C) - out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1) - - sym_patch = out_1[:, :sym_len_Ws, :] - inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(1, inv_idx) - out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv) - - sym_patch = out_1[:, -sym_len_We:, :] - inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() - sym_patch_inv = sym_patch.index_select(1, inv_idx) - out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) - - out_2 = torch.FloatTensor(out_H, out_W, in_C) - kernel_width = weights_W.size(1) - for i in range(out_W): - idx = int(indices_W[i][0]) - for j in range(out_C): - out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i]) - if need_squeeze: - out_2.squeeze_() - - return out_2.numpy() - - -if __name__ == '__main__': - print('---') -# img = imread_uint('test.bmp', 3) -# img = uint2single(img) -# img_bicubic = imresize_np(img, 1/4) \ No newline at end of file diff --git a/3DTopia/ldm/modules/losses/__init__.py b/3DTopia/ldm/modules/losses/__init__.py deleted file mode 100644 index 876d7c5bd6e3245ee77feb4c482b7a8143604ad5..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/modules/losses/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from ldm.modules.losses.contperceptual import LPIPSWithDiscriminator \ No newline at end of file diff --git a/3DTopia/ldm/modules/losses/contperceptual.py b/3DTopia/ldm/modules/losses/contperceptual.py deleted file mode 100644 index 672c1e32a1389def02461c0781339681060c540e..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/modules/losses/contperceptual.py +++ /dev/null @@ -1,111 +0,0 @@ -import torch -import torch.nn as nn - -from taming.modules.losses.vqperceptual import * # TODO: taming dependency yes/no? - - -class LPIPSWithDiscriminator(nn.Module): - def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0, - disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, - perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, - disc_loss="hinge"): - - super().__init__() - assert disc_loss in ["hinge", "vanilla"] - self.kl_weight = kl_weight - self.pixel_weight = pixelloss_weight - self.perceptual_loss = LPIPS().eval() - self.perceptual_weight = perceptual_weight - # output log variance - self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) - - self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels, - n_layers=disc_num_layers, - use_actnorm=use_actnorm - ).apply(weights_init) - self.discriminator_iter_start = disc_start - self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss - self.disc_factor = disc_factor - self.discriminator_weight = disc_weight - self.disc_conditional = disc_conditional - - def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): - if last_layer is not None: - nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] - g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] - else: - nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] - g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] - - d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) - d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() - d_weight = d_weight * self.discriminator_weight - return d_weight - - def forward(self, inputs, reconstructions, posteriors, optimizer_idx, - global_step, last_layer=None, cond=None, split="train", - weights=None): - rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) - if self.perceptual_weight > 0: - p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous()) - rec_loss = rec_loss + self.perceptual_weight * p_loss - - nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar - weighted_nll_loss = nll_loss - if weights is not None: - weighted_nll_loss = weights*nll_loss - weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] - nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] - kl_loss = posteriors.kl() - kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] - - # now the GAN part - if optimizer_idx == 0: - # generator update - if cond is None: - assert not self.disc_conditional - logits_fake = self.discriminator(reconstructions.contiguous()) - else: - assert self.disc_conditional - logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1)) - g_loss = -torch.mean(logits_fake) - - if self.disc_factor > 0.0: - try: - d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) - except RuntimeError: - assert not self.training - d_weight = torch.tensor(0.0) - else: - d_weight = torch.tensor(0.0) - - disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) - loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss - - log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(), - "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(), - "{}/rec_loss".format(split): rec_loss.detach().mean(), - "{}/d_weight".format(split): d_weight.detach(), - "{}/disc_factor".format(split): torch.tensor(disc_factor), - "{}/g_loss".format(split): g_loss.detach().mean(), - } - return loss, log - - if optimizer_idx == 1: - # second pass for discriminator update - if cond is None: - logits_real = self.discriminator(inputs.contiguous().detach()) - logits_fake = self.discriminator(reconstructions.contiguous().detach()) - else: - logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1)) - logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1)) - - disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) - d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) - - log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(), - "{}/logits_real".format(split): logits_real.detach().mean(), - "{}/logits_fake".format(split): logits_fake.detach().mean() - } - return d_loss, log - diff --git a/3DTopia/ldm/modules/losses/vqperceptual.py b/3DTopia/ldm/modules/losses/vqperceptual.py deleted file mode 100644 index f69981769e4bd5462600458c4fcf26620f7e4306..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/modules/losses/vqperceptual.py +++ /dev/null @@ -1,167 +0,0 @@ -import torch -from torch import nn -import torch.nn.functional as F -from einops import repeat - -from taming.modules.discriminator.model import NLayerDiscriminator, weights_init -from taming.modules.losses.lpips import LPIPS -from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss - - -def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights): - assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0] - loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3]) - loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3]) - loss_real = (weights * loss_real).sum() / weights.sum() - loss_fake = (weights * loss_fake).sum() / weights.sum() - d_loss = 0.5 * (loss_real + loss_fake) - return d_loss - -def adopt_weight(weight, global_step, threshold=0, value=0.): - if global_step < threshold: - weight = value - return weight - - -def measure_perplexity(predicted_indices, n_embed): - # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py - # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally - encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed) - avg_probs = encodings.mean(0) - perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp() - cluster_use = torch.sum(avg_probs > 0) - return perplexity, cluster_use - -def l1(x, y): - return torch.abs(x-y) - - -def l2(x, y): - return torch.pow((x-y), 2) - - -class VQLPIPSWithDiscriminator(nn.Module): - def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0, - disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, - perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, - disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips", - pixel_loss="l1"): - super().__init__() - assert disc_loss in ["hinge", "vanilla"] - assert perceptual_loss in ["lpips", "clips", "dists"] - assert pixel_loss in ["l1", "l2"] - self.codebook_weight = codebook_weight - self.pixel_weight = pixelloss_weight - if perceptual_loss == "lpips": - print(f"{self.__class__.__name__}: Running with LPIPS.") - self.perceptual_loss = LPIPS().eval() - else: - raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<") - self.perceptual_weight = perceptual_weight - - if pixel_loss == "l1": - self.pixel_loss = l1 - else: - self.pixel_loss = l2 - - self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels, - n_layers=disc_num_layers, - use_actnorm=use_actnorm, - ndf=disc_ndf - ).apply(weights_init) - self.discriminator_iter_start = disc_start - if disc_loss == "hinge": - self.disc_loss = hinge_d_loss - elif disc_loss == "vanilla": - self.disc_loss = vanilla_d_loss - else: - raise ValueError(f"Unknown GAN loss '{disc_loss}'.") - print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.") - self.disc_factor = disc_factor - self.discriminator_weight = disc_weight - self.disc_conditional = disc_conditional - self.n_classes = n_classes - - def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): - if last_layer is not None: - nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] - g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] - else: - nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] - g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] - - d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) - d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() - d_weight = d_weight * self.discriminator_weight - return d_weight - - def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx, - global_step, last_layer=None, cond=None, split="train", predicted_indices=None): - if not exists(codebook_loss): - codebook_loss = torch.tensor([0.]).to(inputs.device) - #rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) - rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous()) - if self.perceptual_weight > 0: - p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous()) - rec_loss = rec_loss + self.perceptual_weight * p_loss - else: - p_loss = torch.tensor([0.0]) - - nll_loss = rec_loss - #nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] - nll_loss = torch.mean(nll_loss) - - # now the GAN part - if optimizer_idx == 0: - # generator update - if cond is None: - assert not self.disc_conditional - logits_fake = self.discriminator(reconstructions.contiguous()) - else: - assert self.disc_conditional - logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1)) - g_loss = -torch.mean(logits_fake) - - try: - d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) - except RuntimeError: - assert not self.training - d_weight = torch.tensor(0.0) - - disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) - loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean() - - log = {"{}/total_loss".format(split): loss.clone().detach().mean(), - "{}/quant_loss".format(split): codebook_loss.detach().mean(), - "{}/nll_loss".format(split): nll_loss.detach().mean(), - "{}/rec_loss".format(split): rec_loss.detach().mean(), - "{}/p_loss".format(split): p_loss.detach().mean(), - "{}/d_weight".format(split): d_weight.detach(), - "{}/disc_factor".format(split): torch.tensor(disc_factor), - "{}/g_loss".format(split): g_loss.detach().mean(), - } - if predicted_indices is not None: - assert self.n_classes is not None - with torch.no_grad(): - perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes) - log[f"{split}/perplexity"] = perplexity - log[f"{split}/cluster_usage"] = cluster_usage - return loss, log - - if optimizer_idx == 1: - # second pass for discriminator update - if cond is None: - logits_real = self.discriminator(inputs.contiguous().detach()) - logits_fake = self.discriminator(reconstructions.contiguous().detach()) - else: - logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1)) - logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1)) - - disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) - d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) - - log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(), - "{}/logits_real".format(split): logits_real.detach().mean(), - "{}/logits_fake".format(split): logits_fake.detach().mean() - } - return d_loss, log diff --git a/3DTopia/ldm/modules/x_transformer.py b/3DTopia/ldm/modules/x_transformer.py deleted file mode 100644 index 5fc15bf9cfe0111a910e7de33d04ffdec3877576..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/modules/x_transformer.py +++ /dev/null @@ -1,641 +0,0 @@ -"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers""" -import torch -from torch import nn, einsum -import torch.nn.functional as F -from functools import partial -from inspect import isfunction -from collections import namedtuple -from einops import rearrange, repeat, reduce - -# constants - -DEFAULT_DIM_HEAD = 64 - -Intermediates = namedtuple('Intermediates', [ - 'pre_softmax_attn', - 'post_softmax_attn' -]) - -LayerIntermediates = namedtuple('Intermediates', [ - 'hiddens', - 'attn_intermediates' -]) - - -class AbsolutePositionalEmbedding(nn.Module): - def __init__(self, dim, max_seq_len): - super().__init__() - self.emb = nn.Embedding(max_seq_len, dim) - self.init_() - - def init_(self): - nn.init.normal_(self.emb.weight, std=0.02) - - def forward(self, x): - n = torch.arange(x.shape[1], device=x.device) - return self.emb(n)[None, :, :] - - -class FixedPositionalEmbedding(nn.Module): - def __init__(self, dim): - super().__init__() - inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) - self.register_buffer('inv_freq', inv_freq) - - def forward(self, x, seq_dim=1, offset=0): - t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset - sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq) - emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) - return emb[None, :, :] - - -# helpers - -def exists(val): - return val is not None - - -def default(val, d): - if exists(val): - return val - return d() if isfunction(d) else d - - -def always(val): - def inner(*args, **kwargs): - return val - return inner - - -def not_equals(val): - def inner(x): - return x != val - return inner - - -def equals(val): - def inner(x): - return x == val - return inner - - -def max_neg_value(tensor): - return -torch.finfo(tensor.dtype).max - - -# keyword argument helpers - -def pick_and_pop(keys, d): - values = list(map(lambda key: d.pop(key), keys)) - return dict(zip(keys, values)) - - -def group_dict_by_key(cond, d): - return_val = [dict(), dict()] - for key in d.keys(): - match = bool(cond(key)) - ind = int(not match) - return_val[ind][key] = d[key] - return (*return_val,) - - -def string_begins_with(prefix, str): - return str.startswith(prefix) - - -def group_by_key_prefix(prefix, d): - return group_dict_by_key(partial(string_begins_with, prefix), d) - - -def groupby_prefix_and_trim(prefix, d): - kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) - kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) - return kwargs_without_prefix, kwargs - - -# classes -class Scale(nn.Module): - def __init__(self, value, fn): - super().__init__() - self.value = value - self.fn = fn - - def forward(self, x, **kwargs): - x, *rest = self.fn(x, **kwargs) - return (x * self.value, *rest) - - -class Rezero(nn.Module): - def __init__(self, fn): - super().__init__() - self.fn = fn - self.g = nn.Parameter(torch.zeros(1)) - - def forward(self, x, **kwargs): - x, *rest = self.fn(x, **kwargs) - return (x * self.g, *rest) - - -class ScaleNorm(nn.Module): - def __init__(self, dim, eps=1e-5): - super().__init__() - self.scale = dim ** -0.5 - self.eps = eps - self.g = nn.Parameter(torch.ones(1)) - - def forward(self, x): - norm = torch.norm(x, dim=-1, keepdim=True) * self.scale - return x / norm.clamp(min=self.eps) * self.g - - -class RMSNorm(nn.Module): - def __init__(self, dim, eps=1e-8): - super().__init__() - self.scale = dim ** -0.5 - self.eps = eps - self.g = nn.Parameter(torch.ones(dim)) - - def forward(self, x): - norm = torch.norm(x, dim=-1, keepdim=True) * self.scale - return x / norm.clamp(min=self.eps) * self.g - - -class Residual(nn.Module): - def forward(self, x, residual): - return x + residual - - -class GRUGating(nn.Module): - def __init__(self, dim): - super().__init__() - self.gru = nn.GRUCell(dim, dim) - - def forward(self, x, residual): - gated_output = self.gru( - rearrange(x, 'b n d -> (b n) d'), - rearrange(residual, 'b n d -> (b n) d') - ) - - return gated_output.reshape_as(x) - - -# feedforward - -class GEGLU(nn.Module): - def __init__(self, dim_in, dim_out): - super().__init__() - self.proj = nn.Linear(dim_in, dim_out * 2) - - def forward(self, x): - x, gate = self.proj(x).chunk(2, dim=-1) - return x * F.gelu(gate) - - -class FeedForward(nn.Module): - def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): - super().__init__() - inner_dim = int(dim * mult) - dim_out = default(dim_out, dim) - project_in = nn.Sequential( - nn.Linear(dim, inner_dim), - nn.GELU() - ) if not glu else GEGLU(dim, inner_dim) - - self.net = nn.Sequential( - project_in, - nn.Dropout(dropout), - nn.Linear(inner_dim, dim_out) - ) - - def forward(self, x): - return self.net(x) - - -# attention. -class Attention(nn.Module): - def __init__( - self, - dim, - dim_head=DEFAULT_DIM_HEAD, - heads=8, - causal=False, - mask=None, - talking_heads=False, - sparse_topk=None, - use_entmax15=False, - num_mem_kv=0, - dropout=0., - on_attn=False - ): - super().__init__() - if use_entmax15: - raise NotImplementedError("Check out entmax activation instead of softmax activation!") - self.scale = dim_head ** -0.5 - self.heads = heads - self.causal = causal - self.mask = mask - - inner_dim = dim_head * heads - - self.to_q = nn.Linear(dim, inner_dim, bias=False) - self.to_k = nn.Linear(dim, inner_dim, bias=False) - self.to_v = nn.Linear(dim, inner_dim, bias=False) - self.dropout = nn.Dropout(dropout) - - # talking heads - self.talking_heads = talking_heads - if talking_heads: - self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads)) - self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads)) - - # explicit topk sparse attention - self.sparse_topk = sparse_topk - - # entmax - #self.attn_fn = entmax15 if use_entmax15 else F.softmax - self.attn_fn = F.softmax - - # add memory key / values - self.num_mem_kv = num_mem_kv - if num_mem_kv > 0: - self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) - self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) - - # attention on attention - self.attn_on_attn = on_attn - self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim) - - def forward( - self, - x, - context=None, - mask=None, - context_mask=None, - rel_pos=None, - sinusoidal_emb=None, - prev_attn=None, - mem=None - ): - b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device - kv_input = default(context, x) - - q_input = x - k_input = kv_input - v_input = kv_input - - if exists(mem): - k_input = torch.cat((mem, k_input), dim=-2) - v_input = torch.cat((mem, v_input), dim=-2) - - if exists(sinusoidal_emb): - # in shortformer, the query would start at a position offset depending on the past cached memory - offset = k_input.shape[-2] - q_input.shape[-2] - q_input = q_input + sinusoidal_emb(q_input, offset=offset) - k_input = k_input + sinusoidal_emb(k_input) - - q = self.to_q(q_input) - k = self.to_k(k_input) - v = self.to_v(v_input) - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) - - input_mask = None - if any(map(exists, (mask, context_mask))): - q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool()) - k_mask = q_mask if not exists(context) else context_mask - k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool()) - q_mask = rearrange(q_mask, 'b i -> b () i ()') - k_mask = rearrange(k_mask, 'b j -> b () () j') - input_mask = q_mask * k_mask - - if self.num_mem_kv > 0: - mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v)) - k = torch.cat((mem_k, k), dim=-2) - v = torch.cat((mem_v, v), dim=-2) - if exists(input_mask): - input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True) - - dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale - mask_value = max_neg_value(dots) - - if exists(prev_attn): - dots = dots + prev_attn - - pre_softmax_attn = dots - - if talking_heads: - dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous() - - if exists(rel_pos): - dots = rel_pos(dots) - - if exists(input_mask): - dots.masked_fill_(~input_mask, mask_value) - del input_mask - - if self.causal: - i, j = dots.shape[-2:] - r = torch.arange(i, device=device) - mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j') - mask = F.pad(mask, (j - i, 0), value=False) - dots.masked_fill_(mask, mask_value) - del mask - - if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]: - top, _ = dots.topk(self.sparse_topk, dim=-1) - vk = top[..., -1].unsqueeze(-1).expand_as(dots) - mask = dots < vk - dots.masked_fill_(mask, mask_value) - del mask - - attn = self.attn_fn(dots, dim=-1) - post_softmax_attn = attn - - attn = self.dropout(attn) - - if talking_heads: - attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous() - - out = einsum('b h i j, b h j d -> b h i d', attn, v) - out = rearrange(out, 'b h n d -> b n (h d)') - - intermediates = Intermediates( - pre_softmax_attn=pre_softmax_attn, - post_softmax_attn=post_softmax_attn - ) - - return self.to_out(out), intermediates - - -class AttentionLayers(nn.Module): - def __init__( - self, - dim, - depth, - heads=8, - causal=False, - cross_attend=False, - only_cross=False, - use_scalenorm=False, - use_rmsnorm=False, - use_rezero=False, - rel_pos_num_buckets=32, - rel_pos_max_distance=128, - position_infused_attn=False, - custom_layers=None, - sandwich_coef=None, - par_ratio=None, - residual_attn=False, - cross_residual_attn=False, - macaron=False, - pre_norm=True, - gate_residual=False, - **kwargs - ): - super().__init__() - ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs) - attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs) - - dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD) - - self.dim = dim - self.depth = depth - self.layers = nn.ModuleList([]) - - self.has_pos_emb = position_infused_attn - self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None - self.rotary_pos_emb = always(None) - - assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance' - self.rel_pos = None - - self.pre_norm = pre_norm - - self.residual_attn = residual_attn - self.cross_residual_attn = cross_residual_attn - - norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm - norm_class = RMSNorm if use_rmsnorm else norm_class - norm_fn = partial(norm_class, dim) - - norm_fn = nn.Identity if use_rezero else norm_fn - branch_fn = Rezero if use_rezero else None - - if cross_attend and not only_cross: - default_block = ('a', 'c', 'f') - elif cross_attend and only_cross: - default_block = ('c', 'f') - else: - default_block = ('a', 'f') - - if macaron: - default_block = ('f',) + default_block - - if exists(custom_layers): - layer_types = custom_layers - elif exists(par_ratio): - par_depth = depth * len(default_block) - assert 1 < par_ratio <= par_depth, 'par ratio out of range' - default_block = tuple(filter(not_equals('f'), default_block)) - par_attn = par_depth // par_ratio - depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper - par_width = (depth_cut + depth_cut // par_attn) // par_attn - assert len(default_block) <= par_width, 'default block is too large for par_ratio' - par_block = default_block + ('f',) * (par_width - len(default_block)) - par_head = par_block * par_attn - layer_types = par_head + ('f',) * (par_depth - len(par_head)) - elif exists(sandwich_coef): - assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth' - layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef - else: - layer_types = default_block * depth - - self.layer_types = layer_types - self.num_attn_layers = len(list(filter(equals('a'), layer_types))) - - for layer_type in self.layer_types: - if layer_type == 'a': - layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs) - elif layer_type == 'c': - layer = Attention(dim, heads=heads, **attn_kwargs) - elif layer_type == 'f': - layer = FeedForward(dim, **ff_kwargs) - layer = layer if not macaron else Scale(0.5, layer) - else: - raise Exception(f'invalid layer type {layer_type}') - - if isinstance(layer, Attention) and exists(branch_fn): - layer = branch_fn(layer) - - if gate_residual: - residual_fn = GRUGating(dim) - else: - residual_fn = Residual() - - self.layers.append(nn.ModuleList([ - norm_fn(), - layer, - residual_fn - ])) - - def forward( - self, - x, - context=None, - mask=None, - context_mask=None, - mems=None, - return_hiddens=False - ): - hiddens = [] - intermediates = [] - prev_attn = None - prev_cross_attn = None - - mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers - - for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)): - is_last = ind == (len(self.layers) - 1) - - if layer_type == 'a': - hiddens.append(x) - layer_mem = mems.pop(0) - - residual = x - - if self.pre_norm: - x = norm(x) - - if layer_type == 'a': - out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos, - prev_attn=prev_attn, mem=layer_mem) - elif layer_type == 'c': - out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn) - elif layer_type == 'f': - out = block(x) - - x = residual_fn(out, residual) - - if layer_type in ('a', 'c'): - intermediates.append(inter) - - if layer_type == 'a' and self.residual_attn: - prev_attn = inter.pre_softmax_attn - elif layer_type == 'c' and self.cross_residual_attn: - prev_cross_attn = inter.pre_softmax_attn - - if not self.pre_norm and not is_last: - x = norm(x) - - if return_hiddens: - intermediates = LayerIntermediates( - hiddens=hiddens, - attn_intermediates=intermediates - ) - - return x, intermediates - - return x - - -class Encoder(AttentionLayers): - def __init__(self, **kwargs): - assert 'causal' not in kwargs, 'cannot set causality on encoder' - super().__init__(causal=False, **kwargs) - - - -class TransformerWrapper(nn.Module): - def __init__( - self, - *, - num_tokens, - max_seq_len, - attn_layers, - emb_dim=None, - max_mem_len=0., - emb_dropout=0., - num_memory_tokens=None, - tie_embedding=False, - use_pos_emb=True - ): - super().__init__() - assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' - - dim = attn_layers.dim - emb_dim = default(emb_dim, dim) - - self.max_seq_len = max_seq_len - self.max_mem_len = max_mem_len - self.num_tokens = num_tokens - - self.token_emb = nn.Embedding(num_tokens, emb_dim) - self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if ( - use_pos_emb and not attn_layers.has_pos_emb) else always(0) - self.emb_dropout = nn.Dropout(emb_dropout) - - self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() - self.attn_layers = attn_layers - self.norm = nn.LayerNorm(dim) - - self.init_() - - self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t() - - # memory tokens (like [cls]) from Memory Transformers paper - num_memory_tokens = default(num_memory_tokens, 0) - self.num_memory_tokens = num_memory_tokens - if num_memory_tokens > 0: - self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) - - # let funnel encoder know number of memory tokens, if specified - if hasattr(attn_layers, 'num_memory_tokens'): - attn_layers.num_memory_tokens = num_memory_tokens - - def init_(self): - nn.init.normal_(self.token_emb.weight, std=0.02) - - def forward( - self, - x, - return_embeddings=False, - mask=None, - return_mems=False, - return_attn=False, - mems=None, - **kwargs - ): - b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens - x = self.token_emb(x) - x += self.pos_emb(x) - x = self.emb_dropout(x) - - x = self.project_emb(x) - - if num_mem > 0: - mem = repeat(self.memory_tokens, 'n d -> b n d', b=b) - x = torch.cat((mem, x), dim=1) - - # auto-handle masking after appending memory tokens - if exists(mask): - mask = F.pad(mask, (num_mem, 0), value=True) - - x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs) - x = self.norm(x) - - mem, x = x[:, :num_mem], x[:, num_mem:] - - out = self.to_logits(x) if not return_embeddings else x - - if return_mems: - hiddens = intermediates.hiddens - new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens - new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems)) - return out, new_mems - - if return_attn: - attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) - return out, attn_maps - - return out - diff --git a/3DTopia/ldm/util.py b/3DTopia/ldm/util.py deleted file mode 100644 index 8ba38853e7a07228cc2c187742b5c45d7359b3f9..0000000000000000000000000000000000000000 --- a/3DTopia/ldm/util.py +++ /dev/null @@ -1,203 +0,0 @@ -import importlib - -import torch -import numpy as np -from collections import abc -from einops import rearrange -from functools import partial - -import multiprocessing as mp -from threading import Thread -from queue import Queue - -from inspect import isfunction -from PIL import Image, ImageDraw, ImageFont - - -def log_txt_as_img(wh, xc, size=10): - # wh a tuple of (width, height) - # xc a list of captions to plot - b = len(xc) - txts = list() - for bi in range(b): - txt = Image.new("RGB", wh, color="white") - draw = ImageDraw.Draw(txt) - font = ImageFont.truetype('data/DejaVuSans.ttf', size=size) - nc = int(40 * (wh[0] / 256)) - lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc)) - - try: - draw.text((0, 0), lines, fill="black", font=font) - except UnicodeEncodeError: - print("Cant encode string for logging. Skipping.") - - txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 - txts.append(txt) - txts = np.stack(txts) - txts = torch.tensor(txts) - return txts - - -def ismap(x): - if not isinstance(x, torch.Tensor): - return False - return (len(x.shape) == 4) and (x.shape[1] > 3) - - -def isimage(x): - if not isinstance(x, torch.Tensor): - return False - return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) - - -def exists(x): - return x is not None - - -def default(val, d): - if exists(val): - return val - return d() if isfunction(d) else d - - -def mean_flat(tensor): - """ - https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 - Take the mean over all non-batch dimensions. - """ - return tensor.mean(dim=list(range(1, len(tensor.shape)))) - - -def count_params(model, verbose=False): - total_params = sum(p.numel() for p in model.parameters()) - if verbose: - print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.") - return total_params - - -def instantiate_from_config(config): - if not "target" in config: - if config == '__is_first_stage__': - return None - elif config == "__is_unconditional__": - return None - raise KeyError("Expected key `target` to instantiate.") - return get_obj_from_str(config["target"])(**config.get("params", dict())) - - -def get_obj_from_str(string, reload=False): - module, cls = string.rsplit(".", 1) - if reload: - module_imp = importlib.import_module(module) - importlib.reload(module_imp) - return getattr(importlib.import_module(module, package=None), cls) - - -def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False): - # create dummy dataset instance - - # run prefetching - if idx_to_fn: - res = func(data, worker_id=idx) - else: - res = func(data) - Q.put([idx, res]) - Q.put("Done") - - -def parallel_data_prefetch( - func: callable, data, n_proc, target_data_type="ndarray", cpu_intensive=True, use_worker_id=False -): - # if target_data_type not in ["ndarray", "list"]: - # raise ValueError( - # "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray." - # ) - if isinstance(data, np.ndarray) and target_data_type == "list": - raise ValueError("list expected but function got ndarray.") - elif isinstance(data, abc.Iterable): - if isinstance(data, dict): - print( - f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.' - ) - data = list(data.values()) - if target_data_type == "ndarray": - data = np.asarray(data) - else: - data = list(data) - else: - raise TypeError( - f"The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}." - ) - - if cpu_intensive: - Q = mp.Queue(1000) - proc = mp.Process - else: - Q = Queue(1000) - proc = Thread - # spawn processes - if target_data_type == "ndarray": - arguments = [ - [func, Q, part, i, use_worker_id] - for i, part in enumerate(np.array_split(data, n_proc)) - ] - else: - step = ( - int(len(data) / n_proc + 1) - if len(data) % n_proc != 0 - else int(len(data) / n_proc) - ) - arguments = [ - [func, Q, part, i, use_worker_id] - for i, part in enumerate( - [data[i: i + step] for i in range(0, len(data), step)] - ) - ] - processes = [] - for i in range(n_proc): - p = proc(target=_do_parallel_data_prefetch, args=arguments[i]) - processes += [p] - - # start processes - print(f"Start prefetching...") - import time - - start = time.time() - gather_res = [[] for _ in range(n_proc)] - try: - for p in processes: - p.start() - - k = 0 - while k < n_proc: - # get result - res = Q.get() - if res == "Done": - k += 1 - else: - gather_res[res[0]] = res[1] - - except Exception as e: - print("Exception: ", e) - for p in processes: - p.terminate() - - raise e - finally: - for p in processes: - p.join() - print(f"Prefetching complete. [{time.time() - start} sec.]") - - if target_data_type == 'ndarray': - if not isinstance(gather_res[0], np.ndarray): - return np.concatenate([np.asarray(r) for r in gather_res], axis=0) - - # order outputs - return np.concatenate(gather_res, axis=0) - elif target_data_type == 'list': - out = [] - for r in gather_res: - out.extend(r) - return out - else: - return gather_res diff --git a/3DTopia/model/auto_regressive.py b/3DTopia/model/auto_regressive.py deleted file mode 100644 index e9de51a3596cf5d226c4bf5bf3745d784c977510..0000000000000000000000000000000000000000 --- a/3DTopia/model/auto_regressive.py +++ /dev/null @@ -1,412 +0,0 @@ -import imageio -import os, math -import wandb -import torch -import torch.nn.functional as F -import pytorch_lightning as pl - -from utility.initialize import instantiate_from_config -from taming.modules.util import SOSProvider -from utility.triplane_renderer.renderer import get_embedder, NeRF, run_network, render_path1, to8b, img2mse, mse2psnr -import numpy as np - -from tqdm import tqdm - - -def disabled_train(self, mode=True): - """Overwrite model.train with this function to make sure train/eval mode - does not change anymore.""" - return self - - -class Net2NetTransformer(pl.LightningModule): - def __init__(self, - transformer_config, - first_stage_config, - cond_stage_config, - permuter_config=None, - ckpt_path=None, - ignore_keys=[], - first_stage_key="triplane", - cond_stage_key="depth", - downsample_cond_size=-1, - pkeep=1.0, - sos_token=0, - unconditional=True, - learning_rate=1e-4, - ): - super().__init__() - self.be_unconditional = unconditional - self.sos_token = sos_token - self.first_stage_key = first_stage_key - # self.cond_stage_key = cond_stage_key - self.init_first_stage_from_ckpt(first_stage_config) - # self.init_cond_stage_from_ckpt(cond_stage_config) - if permuter_config is None: - permuter_config = {"target": "taming.modules.transformer.permuter.Identity"} - self.permuter = instantiate_from_config(config=permuter_config) - self.transformer = instantiate_from_config(config=transformer_config) - - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) - self.downsample_cond_size = downsample_cond_size - self.pkeep = pkeep - self.learning_rate = learning_rate - - def init_from_ckpt(self, path, ignore_keys=list()): - sd = torch.load(path, map_location="cpu")["state_dict"] - for k in sd.keys(): - for ik in ignore_keys: - if k.startswith(ik): - self.print("Deleting key {} from state_dict.".format(k)) - del sd[k] - self.load_state_dict(sd, strict=False) - print(f"Restored from {path}") - - def init_first_stage_from_ckpt(self, config): - model = instantiate_from_config(config) - # model = model.eval() - # model.train = disabled_train - - self.first_stage_model = model - - for param in self.first_stage_model.parameters(): - param.requires_grad = False - - self.first_stage_model.vector_quantizer.training = False - self.first_stage_model.vector_quantizer.embedding.update = False - - def init_cond_stage_from_ckpt(self, config): - if config == "__is_first_stage__": - print("Using first stage also as cond stage.") - self.cond_stage_model = self.first_stage_model - elif config == "__is_unconditional__" or self.be_unconditional: - print(f"Using no cond stage. Assuming the training is intended to be unconditional. " - f"Prepending {self.sos_token} as a sos token.") - self.be_unconditional = True - self.cond_stage_key = self.first_stage_key - self.cond_stage_model = SOSProvider(self.sos_token) - else: - model = instantiate_from_config(config) - model = model.eval() - model.train = disabled_train - self.cond_stage_model = model - - def forward(self, x, c): - # one step to produce the logits - _, z_indices = self.encode_to_z(x) - # _, c_indices = self.encode_to_c(c) - - if self.training and self.pkeep < 1.0: - mask = torch.bernoulli(self.pkeep*torch.ones(z_indices.shape, - device=z_indices.device)) - mask = mask.round().to(dtype=torch.int64) - r_indices = torch.randint_like(z_indices, self.transformer.config.vocab_size) - a_indices = mask*z_indices+(1-mask)*r_indices - else: - a_indices = z_indices - - c_indices = torch.zeros_like(z_indices[:, 0:1]) + self.transformer.config.vocab_size - 1 - cz_indices = torch.cat((c_indices, a_indices), dim=1) - - # target includes all sequence elements (no need to handle first one - # differently because we are conditioning) - target = z_indices - # make the prediction - logits, _ = self.transformer(cz_indices[:, :-1]) - # cut off conditioning outputs - output i corresponds to p(z_i | z_{ -1: - c = F.interpolate(c, size=(self.downsample_cond_size, self.downsample_cond_size)) - quant_c, _, [_,_,indices] = self.cond_stage_model.encode(c) - if len(indices.shape) > 2: - indices = indices.view(c.shape[0], -1) - return quant_c, indices - - # @torch.no_grad() - # def decode_to_img(self, index, zshape): - # index = self.permuter(index, reverse=True) - # bhwc = (zshape[0],zshape[2],zshape[3],zshape[1]) - # quant_z = self.first_stage_model.quantize.get_codebook_entry( - # index.reshape(-1), shape=bhwc) - # x = self.first_stage_model.decode(quant_z) - # return x - - @torch.no_grad() - def decode_to_triplane(self, index, zshape): - quant_z = self.first_stage_model.vector_quantizer.dequantize(index) - quant_z = quant_z.reshape(zshape[0], zshape[2], zshape[3], zshape[1]) - quant_z = quant_z.permute(0, 3, 1, 2) - z = self.first_stage_model.decode(quant_z) - return z - - @torch.no_grad() - def log_images(self, batch, temperature=None, top_k=None, callback=None, lr_interface=False, **kwargs): - log = dict() - - N = 2 - if lr_interface: - x, c = self.get_xc(batch, N, diffuse=False, upsample_factor=8) - else: - x, c = self.get_xc(batch, N) - x = x.to(device=self.device) - # c = c.to(device=self.device) - log["inputs"] = self.render_triplane(x, batch) - - quant_z, z_indices = self.encode_to_z(x) - # quant_c, c_indices = self.encode_to_c(c) - c_indices = torch.zeros_like(z_indices[:, 0:1]) + self.transformer.config.vocab_size - 1 - - # create a "half"" sample - z_start_indices = z_indices[:,:z_indices.shape[1]//2] - index_sample = self.sample(z_start_indices, c_indices, - steps=z_indices.shape[1]-z_start_indices.shape[1], - temperature=temperature if temperature is not None else 1.0, - sample=True, - top_k=top_k if top_k is not None else 100, - callback=callback if callback is not None else lambda k: None) - x_sample = self.first_stage_model.unrollout(self.decode_to_triplane(index_sample, quant_z.shape)) - log["samples_half"] = self.render_triplane(x_sample, batch) - - # sample - z_start_indices = z_indices[:, :0] - index_sample = self.sample(z_start_indices, c_indices, - steps=z_indices.shape[1], - temperature=temperature if temperature is not None else 1.0, - sample=True, - top_k=top_k if top_k is not None else 100, - callback=callback if callback is not None else lambda k: None) - x_sample_nopix = self.first_stage_model.unrollout(self.decode_to_triplane(index_sample, quant_z.shape)) - log["samples_nopix"] = self.render_triplane(x_sample_nopix, batch) - - # # det sample - # z_start_indices = z_indices[:, :0] - # index_sample = self.sample(z_start_indices, c_indices, - # steps=z_indices.shape[1], - # sample=False, - # callback=callback if callback is not None else lambda k: None) - # x_sample_det = self.first_stage_model.unrollout(self.decode_to_triplane(index_sample, quant_z.shape)) - # log["samples_det"] = self.render_triplane(x_sample_det, batch) - - # reconstruction - x_rec = self.first_stage_model.unrollout(self.decode_to_triplane(z_indices, quant_z.shape)) - # x_rec = self.first_stage_model.unrollout(self.first_stage_model(self.first_stage_model.rollout(x))[0]) - log["reconstructions"] = self.render_triplane(x_rec, batch) - - # if self.cond_stage_key in ["objects_bbox", "objects_center_points"]: - # figure_size = (x_rec.shape[2], x_rec.shape[3]) - # dataset = kwargs["pl_module"].trainer.datamodule.datasets["validation"] - # label_for_category_no = dataset.get_textual_label_for_category_no - # plotter = dataset.conditional_builders[self.cond_stage_key].plot - # log["conditioning"] = torch.zeros_like(log["reconstructions"]) - # for i in range(quant_c.shape[0]): - # log["conditioning"][i] = plotter(quant_c[i], label_for_category_no, figure_size) - # log["conditioning_rec"] = log["conditioning"] - # elif self.cond_stage_key != "image": - # cond_rec = self.cond_stage_model.decode(quant_c) - # if self.cond_stage_key == "segmentation": - # # get image from segmentation mask - # num_classes = cond_rec.shape[1] - - # c = torch.argmax(c, dim=1, keepdim=True) - # c = F.one_hot(c, num_classes=num_classes) - # c = c.squeeze(1).permute(0, 3, 1, 2).float() - # c = self.cond_stage_model.to_rgb(c) - - # cond_rec = torch.argmax(cond_rec, dim=1, keepdim=True) - # cond_rec = F.one_hot(cond_rec, num_classes=num_classes) - # cond_rec = cond_rec.squeeze(1).permute(0, 3, 1, 2).float() - # cond_rec = self.cond_stage_model.to_rgb(cond_rec) - # log["conditioning_rec"] = cond_rec - # log["conditioning"] = c - - return log - - def render_triplane(self, triplane, batch): - batch_size = triplane.shape[0] - rgb_list = [] - for b in range(batch_size): - rgb, cur_psnr_list = self.first_stage_model.render_triplane_eg3d_decoder( - triplane[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb = to8b(rgb.detach().cpu().numpy()) - rgb_list.append(rgb[1]) - - return np.stack(rgb_list, 0) - - def get_input(self, key, batch): - x = batch[key] - # if len(x.shape) == 3: - # x = x[..., None] - # if len(x.shape) == 4: - # x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format) - # if x.dtype == torch.double: - # x = x.float() - return x - - def get_xc(self, batch, N=None): - x = self.get_input(self.first_stage_key, batch) - # c = self.get_input(self.cond_stage_key, batch) - if N is not None: - x = x[:N] - # c = c[:N] - return x, None - - def shared_step(self, batch, batch_idx): - x, c = self.get_xc(batch) - logits, target = self(x, c) - loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), target.reshape(-1)) - return loss - - def training_step(self, batch, batch_idx): - loss = self.shared_step(batch, batch_idx) - self.log("train/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True) - return loss - - def validation_step(self, batch, batch_idx): - loss = self.shared_step(batch, batch_idx) - self.log("val/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True) - if batch_idx == 0: - imgs = self.log_images(batch) - for i in range(imgs['inputs'].shape[0]): - self.logger.experiment.log({ - "val/vis/inputs": [wandb.Image(imgs['inputs'][i])], - "val/vis/reconstructions": [wandb.Image(imgs['reconstructions'][i])], - "val/vis/samples_half": [wandb.Image(imgs['samples_half'][i])], - "val/vis/samples_nopix": [wandb.Image(imgs['samples_nopix'][i])], - # "val/vis/samples_det": [wandb.Image(imgs['samples_det'][i])], - }) - return loss - - def test_step(self, batch, batch_idx): - loss = self.shared_step(batch, batch_idx) - self.log("test/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True) - imgs = self.log_images(batch, temperature=1.8) - print("Saved to {}".format(self.logger.log_dir)) - for i in range(imgs['inputs'].shape[0]): - imageio.imwrite(os.path.join(self.logger.log_dir, "inputs_{}_{}.png".format(batch_idx, i)), imgs['inputs'][i]) - imageio.imwrite(os.path.join(self.logger.log_dir, "reconstructions_{}_{}.png".format(batch_idx, i)), imgs['reconstructions'][i]) - imageio.imwrite(os.path.join(self.logger.log_dir, "samples_half_{}_{}.png".format(batch_idx, i)), imgs['samples_half'][i]) - imageio.imwrite(os.path.join(self.logger.log_dir, "samples_nopix_{}_{}.png".format(batch_idx, i)), imgs['samples_nopix'][i]) - # imageio.imwrite(os.path.join(self.logger.log_dir, "samples_det_{}_{}.png".format(batch_idx, i)), imgs['samples_det'][i]) - return loss - - def configure_optimizers(self): - """ - Following minGPT: - This long function is unfortunately doing something very simple and is being very defensive: - We are separating out all parameters of the model into two buckets: those that will experience - weight decay for regularization and those that won't (biases, and layernorm/embedding weights). - We are then returning the PyTorch optimizer object. - """ - # separate out all parameters to those that will and won't experience regularizing weight decay - decay = set() - no_decay = set() - whitelist_weight_modules = (torch.nn.Linear, ) - blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding) - for mn, m in self.transformer.named_modules(): - for pn, p in m.named_parameters(): - fpn = '%s.%s' % (mn, pn) if mn else pn # full param name - - if pn.endswith('bias'): - # all biases will not be decayed - no_decay.add(fpn) - elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules): - # weights of whitelist modules will be weight decayed - decay.add(fpn) - elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules): - # weights of blacklist modules will NOT be weight decayed - no_decay.add(fpn) - - # special case the position embedding parameter in the root GPT module as not decayed - no_decay.add('pos_emb') - - # validate that we considered every parameter - param_dict = {pn: p for pn, p in self.transformer.named_parameters()} - inter_params = decay & no_decay - union_params = decay | no_decay - assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), ) - assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \ - % (str(param_dict.keys() - union_params), ) - - # create the pytorch optimizer object - optim_groups = [ - {"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": 0.01}, - {"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0}, - ] - optimizer = torch.optim.AdamW(optim_groups, lr=self.learning_rate, betas=(0.9, 0.95)) - return optimizer diff --git a/3DTopia/model/sv_vae_triplane.py b/3DTopia/model/sv_vae_triplane.py deleted file mode 100644 index 60f9e51edc84df596d3477c25f3aeeb5b8e7150b..0000000000000000000000000000000000000000 --- a/3DTopia/model/sv_vae_triplane.py +++ /dev/null @@ -1,111 +0,0 @@ -import os -import imageio -import numpy as np -import torch -import torchvision -import torch.nn as nn -import pytorch_lightning as pl -import wandb - -import lpips -from pytorch_msssim import SSIM - -from utility.initialize import instantiate_from_config - -class VAE(pl.LightningModule): - def __init__(self, vae_configs, renderer_configs, lr=1e-3, weight_decay=1e-2, - kld_weight=1, mse_weight=1, lpips_weight=0.1, ssim_weight=0.1, - log_image_freq=50): - super().__init__() - self.save_hyperparameters() - - self.lr = lr - self.weight_decay = weight_decay - self.kld_weight = kld_weight - self.mse_weight = mse_weight - self.lpips_weight = lpips_weight - self.ssim_weight = ssim_weight - self.log_image_freq = log_image_freq - - self.vae = instantiate_from_config(vae_configs) - self.renderer = instantiate_from_config(renderer_configs) - - self.lpips_fn = lpips.LPIPS(net='alex') - self.ssim_fn = SSIM(data_range=1, size_average=True, channel=3) - - self.triplane_render_kwargs = { - 'depth_resolution': 64, - 'disparity_space_sampling': False, - 'box_warp': 2.4, - 'depth_resolution_importance': 64, - 'clamp_mode': 'softplus', - 'white_back': True, - } - - def forward(self, batch, is_train): - encoder_img, input_img, input_ray_o, input_ray_d, \ - target_img, target_ray_o, target_ray_d = batch - grid, mu, logvar = self.vae(encoder_img, is_train) - - cat_ray_o = torch.cat([input_ray_o, target_ray_o], 0) - cat_ray_d = torch.cat([input_ray_d, target_ray_d], 0) - render_out = self.renderer(torch.cat([grid, grid], 0), cat_ray_o, cat_ray_d, self.triplane_render_kwargs) - render_gt = torch.cat([input_img, target_img], 0) - - return render_out['rgb_marched'], render_out['depth_final'], \ - render_out['weights'], mu, logvar, render_gt - - def calc_loss(self, render, mu, logvar, render_gt): - mse = torch.mean((render - render_gt) ** 2) - ssim_loss = 1 - self.ssim_fn(render, render_gt) - lpips_loss = self.lpips_fn((render * 2) - 1, (render_gt * 2) - 1).mean() - kld_loss = -0.5 * torch.mean(torch.mean(1 + logvar - mu.pow(2) - logvar.exp(), 1)) - - loss = self.mse_weight * mse + self.ssim_weight * ssim_loss + \ - self.lpips_weight * lpips_loss + self.kld_weight * kld_loss - - return { - 'loss': loss, - 'mse': mse, - 'ssim': ssim_loss, - 'lpips': lpips_loss, - 'kld': kld_loss, - } - - def log_dict(self, loss_dict, prefix): - for k, v in loss_dict.items(): - self.log(prefix + k, v, on_step=True, logger=True) - - def make_grid(self, render, depth, render_gt): - bs = render.shape[0] // 2 - grid = torchvision.utils.make_grid( - torch.stack([render_gt[0], render_gt[bs], render[0], depth[0], render[bs], depth[bs]], 0)) - grid = (grid.detach().cpu().permute(1, 2, 0) * 255.).numpy().astype(np.uint8) - return grid - - def training_step(self, batch, batch_idx): - render, depth, weights, mu, logvar, render_gt = self.forward(batch, True) - loss_dict = self.calc_loss(render, mu, logvar, render_gt) - self.log_dict(loss_dict, 'train/') - if batch_idx % self.log_image_freq == 0: - self.logger.experiment.log({ - 'train/vis': [wandb.Image(self.make_grid( - render, depth, render_gt - ))] - }) - return loss_dict['loss'] - - def validation_step(self, batch, batch_idx): - render, depth, _, mu, logvar, render_gt = self.forward(batch, False) - loss_dict = self.calc_loss(render, mu, logvar, render_gt) - self.log_dict(loss_dict, 'val/') - if batch_idx % self.log_image_freq == 0: - self.logger.experiment.log({ - 'val/vis': [wandb.Image(self.make_grid( - render, depth, render_gt - ))] - }) - - def configure_optimizers(self): - optimizer = torch.optim.AdamW(self.parameters(), lr=self.lr, weight_decay=self.weight_decay) - return optimizer diff --git a/3DTopia/model/triplane_vae.py b/3DTopia/model/triplane_vae.py deleted file mode 100644 index 43ff1973d3ed49fa3bd07c9527a6650cb3b4b393..0000000000000000000000000000000000000000 --- a/3DTopia/model/triplane_vae.py +++ /dev/null @@ -1,2656 +0,0 @@ -import os -import imageio -import torch -import wandb -import numpy as np -import pytorch_lightning as pl -import torch.nn.functional as F - -from module.model_2d import Encoder, Decoder, DiagonalGaussianDistribution, Encoder_GroupConv, Decoder_GroupConv, Encoder_GroupConv_LateFusion, Decoder_GroupConv_LateFusion -from utility.initialize import instantiate_from_config -from utility.triplane_renderer.renderer import get_embedder, NeRF, run_network, render_path1, to8b, img2mse, mse2psnr -from utility.triplane_renderer.eg3d_renderer import Renderer_TriPlane - -class AutoencoderKL(pl.LightningModule): - def __init__(self, - ddconfig, - lossconfig, - embed_dim, - learning_rate=1e-3, - ckpt_path=None, - ignore_keys=[], - colorize_nlabels=None, - monitor=None, - decoder_ckpt=None, - norm=False, - renderer_type='nerf', - renderer_config=dict( - rgbnet_dim=18, - rgbnet_width=128, - viewpe=0, - feape=0 - ), - ): - super().__init__() - self.save_hyperparameters() - self.norm = norm - self.renderer_config = renderer_config - self.learning_rate = learning_rate - self.encoder = Encoder(**ddconfig) - self.decoder = Decoder(**ddconfig) - # self.loss = instantiate_from_config(lossconfig) - self.lossconfig = lossconfig - assert ddconfig["double_z"] - self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) - self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) - - self.embed_dim = embed_dim - if colorize_nlabels is not None: - assert type(colorize_nlabels)==int - self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) - if monitor is not None: - self.monitor = monitor - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) - - self.decoder_ckpt = decoder_ckpt - self.renderer_type = renderer_type - # if decoder_ckpt is not None: - assert self.renderer_type in ['nerf', 'eg3d'] - if self.renderer_type == 'nerf': - self.triplane_decoder, self.triplane_render_kwargs = self.create_nerf(decoder_ckpt) - elif self.renderer_type == 'eg3d': - self.triplane_decoder, self.triplane_render_kwargs = self.create_eg3d_decoder(decoder_ckpt) - else: - raise NotImplementedError - - self.psum = torch.zeros([1]) - self.psum_sq = torch.zeros([1]) - self.psum_min = torch.zeros([1]) - self.psum_max = torch.zeros([1]) - self.count = 0 - self.len_dset = 0 - self.latent_list = [] - - def init_from_ckpt(self, path, ignore_keys=list()): - sd = torch.load(path, map_location="cpu")["state_dict"] - keys = list(sd.keys()) - for k in keys: - for ik in ignore_keys: - if k.startswith(ik): - print("Deleting key {} from state_dict.".format(k)) - del sd[k] - self.load_state_dict(sd, strict=False) - print(f"Restored from {path}") - - def encode(self, x, rollout=False): - h = self.encoder(x) - moments = self.quant_conv(h) - posterior = DiagonalGaussianDistribution(moments) - return posterior - - def decode(self, z, unrollout=False): - z = self.post_quant_conv(z) - dec = self.decoder(z) - return dec - - def forward(self, input, sample_posterior=True): - posterior = self.encode(input) - if sample_posterior: - z = posterior.sample() - else: - z = posterior.mode() - dec = self.decode(z) - return dec, posterior - - def unrollout(self, *args, **kwargs): - pass - - def loss(self, inputs, reconstructions, posteriors, prefix, batch=None): - reconstructions = reconstructions.contiguous() - rec_loss = torch.abs(inputs.contiguous() - reconstructions) - rec_loss = torch.sum(rec_loss) / rec_loss.shape[0] - kl_loss = posteriors.kl() - kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] - loss = self.lossconfig.rec_weight * rec_loss + self.lossconfig.kl_weight * kl_loss - - ret_dict = { - prefix+'mean_rec_loss': torch.abs(inputs.contiguous() - reconstructions.contiguous()).mean().detach(), - prefix+'rec_loss': rec_loss, - prefix+'kl_loss': kl_loss, - prefix+'loss': loss, - prefix+'mean': posteriors.mean.mean(), - prefix+'logvar': posteriors.logvar.mean(), - } - - render_weight = self.lossconfig.get("render_weight", 0) - tv_weight = self.lossconfig.get("tv_weight", 0) - l1_weight = self.lossconfig.get("l1_weight", 0) - latent_tv_weight = self.lossconfig.get("latent_tv_weight", 0) - latent_l1_weight = self.lossconfig.get("latent_l1_weight", 0) - - triplane_rec = self.unrollout(reconstructions) - if render_weight > 0 and batch is not None: - rgb_rendered, target = self.render_triplane_eg3d_decoder_sample_pixel(triplane_rec, batch['batch_rays'], batch['img']) - render_loss = ((rgb_rendered - target) ** 2).sum() / rgb_rendered.shape[0] * 256 - loss += render_weight * render_loss - ret_dict[prefix + 'render_loss'] = render_loss - if tv_weight > 0: - tvloss_y = torch.abs(triplane_rec[:, :, :-1] - triplane_rec[:, :, 1:]).sum() / triplane_rec.shape[0] - tvloss_x = torch.abs(triplane_rec[:, :, :, :-1] - triplane_rec[:, :, :, 1:]).sum() / triplane_rec.shape[0] - tvloss = tvloss_y + tvloss_x - loss += tv_weight * tvloss - ret_dict[prefix + 'tv_loss'] = tvloss - if l1_weight > 0: - l1 = (triplane_rec ** 2).sum() / triplane_rec.shape[0] - loss += l1_weight * l1 - ret_dict[prefix + 'l1_loss'] = l1 - if latent_tv_weight > 0: - latent = posteriors.mean - latent_tv_y = torch.abs(latent[:, :, :-1] - latent[:, :, 1:]).sum() / latent.shape[0] - latent_tv_x = torch.abs(latent[:, :, :, :-1] - latent[:, :, :, 1:]).sum() / latent.shape[0] - latent_tv_loss = latent_tv_y + latent_tv_x - loss += latent_tv_loss * latent_tv_weight - ret_dict[prefix + 'latent_tv_loss'] = latent_tv_loss - ret_dict[prefix + 'latent_max'] = latent.max() - ret_dict[prefix + 'latent_min'] = latent.min() - if latent_l1_weight > 0: - latent = posteriors.mean - latent_l1_loss = (latent ** 2).sum() / latent.shape[0] - loss += latent_l1_loss * latent_l1_weight - ret_dict[prefix + 'latent_l1_loss'] = latent_l1_loss - - return loss, ret_dict - - def training_step(self, batch, batch_idx): - # inputs = self.get_input(batch, self.image_key) - inputs = batch['triplane'] - reconstructions, posterior = self(inputs) - - # if optimizer_idx == 0: - # train encoder+decoder+logvar - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='train/') - # self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) - self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) - return aeloss - - # if optimizer_idx == 1: - # # train the discriminator - # discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, - # last_layer=self.get_last_layer(), split="train") - - # self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) - # self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False) - # return discloss - - def validation_step(self, batch, batch_idx): - # # inputs = self.get_input(batch, self.image_key) - # inputs = batch['triplane'] - # reconstructions, posterior = self(inputs, sample_posterior=False) - # aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='val/') - - # # discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step, - # # last_layer=self.get_last_layer(), split="val") - - # # self.log("val/rec_loss", log_dict_ae["val/rec_loss"]) - # self.log_dict(log_dict_ae) - # # self.log_dict(log_dict_disc) - # return self.log_dict - - inputs = batch['triplane'] - reconstructions, posterior = self(inputs, sample_posterior=False) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='val/') - self.log_dict(log_dict_ae) - - assert not self.norm - psnr_list = [] # between rec and gt - psnr_input_list = [] # between input and gt - psnr_rec_list = [] # between input and rec - batch_size = inputs.shape[0] - for b in range(batch_size): - if self.renderer_type == 'nerf': - rgb_input, cur_psnr_list_input = self.render_triplane( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - rgb, cur_psnr_list = self.render_triplane( - reconstructions[b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - elif self.renderer_type == 'eg3d': - rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - reconstructions[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - else: - raise NotImplementedError - - cur_psnr_list_rec = [] - for i in range(rgb.shape[0]): - cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - rgb = to8b(rgb.detach().cpu().numpy()) - - if b % 4 == 0 and batch_idx < 10: - rgb_all = np.concatenate([rgb_gt[1], rgb_input[1], rgb[1]], 1) - self.logger.experiment.log({ - "val/vis": [wandb.Image(rgb_all)] - }) - - psnr_list += cur_psnr_list - psnr_input_list += cur_psnr_list_input - psnr_rec_list += cur_psnr_list_rec - - self.log("val/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - self.log("val/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - self.log("val/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - return self.log_dict - - def create_eg3d_decoder(self, decoder_ckpt): - triplane_decoder = Renderer_TriPlane(**self.renderer_config) - if decoder_ckpt is not None: - pretrain_pth = torch.load(decoder_ckpt, map_location='cpu') - pretrain_pth = { - '.'.join(k.split('.')[1:]): v for k, v in pretrain_pth.items() - } - triplane_decoder.load_state_dict(pretrain_pth) - render_kwargs = { - 'depth_resolution': 128, - 'disparity_space_sampling': False, - 'box_warp': 2.4, - 'depth_resolution_importance': 128, - 'clamp_mode': 'softplus', - 'white_back': True, - 'det': True - } - return triplane_decoder, render_kwargs - - def render_triplane_eg3d_decoder(self, triplane, batch_rays, target): - ray_o = batch_rays[:, 0] - ray_d = batch_rays[:, 1] - psnr_list = [] - rec_img_list = [] - res = triplane.shape[-2] - for i in range(ray_o.shape[0]): - with torch.no_grad(): - render_out = self.triplane_decoder(triplane.reshape(1, 3, -1, res, res), - ray_o[i:i+1], ray_d[i:i+1], self.triplane_render_kwargs, whole_img=True, tvloss=False) - rec_img = render_out['rgb_marched'].permute(0, 2, 3, 1) - psnr = mse2psnr(img2mse(rec_img[0], target[i])) - psnr_list.append(psnr) - rec_img_list.append(rec_img) - return torch.cat(rec_img_list, 0), psnr_list - - def render_triplane_eg3d_decoder_sample_pixel(self, triplane, batch_rays, target, sample_num=1024): - assert batch_rays.shape[1] == 1 - sel = torch.randint(batch_rays.shape[-2], [sample_num]) - ray_o = batch_rays[:, 0, 0, sel] - ray_d = batch_rays[:, 0, 1, sel] - res = triplane.shape[-2] - render_out = self.triplane_decoder(triplane.reshape(triplane.shape[0], 3, -1, res, res), - ray_o, ray_d, self.triplane_render_kwargs, whole_img=False, tvloss=False) - rec_img = render_out['rgb_marched'] - target = target.reshape(triplane.shape[0], -1, 3)[:, sel, :] - return rec_img, target - - def create_nerf(self, decoder_ckpt): - # decoder_ckpt = '/mnt/petrelfs/share_data/caoziang/shapenet_triplane_car/003000.tar' - - multires = 10 - netchunk = 1024*64 - i_embed = 0 - perturb = 0 - raw_noise_std = 0 - - triplanechannel=18 - triplanesize=256 - chunk=4096 - num_instance=1 - batch_size=1 - use_viewdirs = True - white_bkgd = False - lrate_decay = 6 - netdepth=1 - netwidth=64 - N_samples = 512 - N_importance = 0 - N_rand = 8192 - multires_views=10 - precrop_iters = 0 - precrop_frac = 0.5 - i_weights=3000 - - embed_fn, input_ch = get_embedder(multires, i_embed) - embeddirs_fn, input_ch_views = get_embedder(multires_views, i_embed) - output_ch = 4 - skips = [4] - model = NeRF(D=netdepth, W=netwidth, - input_ch=triplanechannel, size=triplanesize,output_ch=output_ch, skips=skips, - input_ch_views=input_ch_views, use_viewdirs=use_viewdirs, num_instance=num_instance) - - network_query_fn = lambda inputs, viewdirs, label,network_fn : \ - run_network(inputs, viewdirs, network_fn, - embed_fn=embed_fn, - embeddirs_fn=embeddirs_fn,label=label, - netchunk=netchunk) - - ckpt = torch.load(decoder_ckpt) - model.load_state_dict(ckpt['network_fn_state_dict']) - - render_kwargs_test = { - 'network_query_fn' : network_query_fn, - 'perturb' : perturb, - 'N_samples' : N_samples, - # 'network_fn' : model, - 'use_viewdirs' : use_viewdirs, - 'white_bkgd' : white_bkgd, - 'raw_noise_std' : raw_noise_std, - } - render_kwargs_test['ndc'] = False - render_kwargs_test['lindisp'] = False - render_kwargs_test['perturb'] = False - render_kwargs_test['raw_noise_std'] = 0. - - return model, render_kwargs_test - - def render_triplane(self, triplane, batch_rays, target, near, far, chunk=4096): - self.triplane_decoder.tri_planes.copy_(triplane.detach()) - self.triplane_render_kwargs['network_fn'] = self.triplane_decoder - # print(triplane.device) - # print(batch_rays.device) - # print(target.device) - # print(near.device) - # print(far.device) - with torch.no_grad(): - rgb, _, _, psnr_list = \ - render_path1(batch_rays, chunk, self.triplane_render_kwargs, gt_imgs=target, - near=near, far=far, label=torch.Tensor([0]).long().to(triplane.device)) - return rgb, psnr_list - - def to_rgb(self, plane): - x = plane.float() - if not hasattr(self, "colorize"): - self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def to_rgb_triplane(self, plane): - x = plane.float() - if not hasattr(self, "colorize_triplane"): - self.colorize_triplane = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize_triplane) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def test_step(self, batch, batch_idx): - # inputs = batch['triplane'] - # reconstructions, posterior = self(inputs, sample_posterior=False) - # aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='test/') - # self.log_dict(log_dict_ae) - - # batch_size = inputs.shape[0] - # psnr_list = [] # between rec and gt - # psnr_input_list = [] # between input and gt - # psnr_rec_list = [] # between input and rec - - # mean = torch.Tensor([ - # 0.2820, 0.4103, -0.2988, 0.1491, 0.4429, -0.3117, 0.2830, 0.4115, - # -0.3032, 0.1530, 0.4466, -0.3165, 0.2617, 0.3837, -0.2692, 0.1098, - # 0.4101, -0.2922 - # ]).reshape(1, 18, 1, 1).to(inputs.device) - # std = torch.Tensor([ - # 1.1696, 1.1287, 1.1733, 1.1583, 1.1238, 1.1675, 1.1978, 1.1585, 1.1949, - # 1.1660, 1.1576, 1.1998, 1.1987, 1.1546, 1.1930, 1.1724, 1.1450, 1.2027 - # ]).reshape(1, 18, 1, 1).to(inputs.device) - - # if self.norm: - # reconstructions_unnormalize = reconstructions * std + mean - # else: - # reconstructions_unnormalize = reconstructions - - # for b in range(batch_size): - # # rgb_input, cur_psnr_list_input = self.render_triplane( - # # batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - # # batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - # # ) - # # rgb, cur_psnr_list = self.render_triplane( - # # reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - # # batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - # # ) - - # if self.renderer_type == 'nerf': - # rgb_input, cur_psnr_list_input = self.render_triplane( - # batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - # batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - # ) - # rgb, cur_psnr_list = self.render_triplane( - # reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - # batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - # ) - # elif self.renderer_type == 'eg3d': - # rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - # batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - # ) - # rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - # reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img'][b], - # ) - # else: - # raise NotImplementedError - - # cur_psnr_list_rec = [] - # for i in range(rgb.shape[0]): - # cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - # rgb_input = to8b(rgb_input.detach().cpu().numpy()) - # rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - # rgb = to8b(rgb.detach().cpu().numpy()) - - # if batch_idx < 1: - # imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_input.png".format(batch_idx, b)), rgb_input[1]) - # imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_rec.png".format(batch_idx, b)), rgb[1]) - # imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_gt.png".format(batch_idx, b)), rgb_gt[1]) - - # psnr_list += cur_psnr_list - # psnr_input_list += cur_psnr_list_input - # psnr_rec_list += cur_psnr_list_rec - - # self.log("test/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - # self.log("test/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - # self.log("test/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - inputs = batch['triplane'] - reconstructions, posterior = self(inputs, sample_posterior=False) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='test/', batch=None) - self.log_dict(log_dict_ae) - - batch_size = inputs.shape[0] - psnr_list = [] # between rec and gt - psnr_input_list = [] # between input and gt - psnr_rec_list = [] # between input and rec - - z = posterior.mode() - colorize_z = self.to_rgb(z)[0] - colorize_triplane_input = self.to_rgb_triplane(inputs)[0] - colorize_triplane_output = self.to_rgb_triplane(reconstructions)[0] - # colorize_triplane_rollout_3daware = self.to_rgb_3daware(self.to3daware(inputs))[0] - # res = inputs.shape[1] - # colorize_triplane_rollout_3daware_1 = self.to_rgb_triplane(self.to3daware(inputs)[:,res:2*res])[0] - # colorize_triplane_rollout_3daware_2 = self.to_rgb_triplane(self.to3daware(inputs)[:,2*res:3*res])[0] - if batch_idx < 10: - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_z_{}.png".format(batch_idx)), colorize_z) - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_{}.png".format(batch_idx)), colorize_triplane_input) - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_output_{}.png".format(batch_idx)), colorize_triplane_output) - # imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_3daware_{}.png".format(batch_idx)), colorize_triplane_rollout_3daware) - # imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_3daware_{}_1.png".format(batch_idx)), colorize_triplane_rollout_3daware_1) - # imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_3daware_{}_2.png".format(batch_idx)), colorize_triplane_rollout_3daware_2) - - np_z = z.detach().cpu().numpy() - # with open(os.path.join(self.logger.log_dir, "latent_{}.npz".format(batch_idx)), 'wb') as f: - # np.save(f, np_z) - - self.latent_list.append(np_z) - - if self.psum.device != z.device: - self.psum = self.psum.to(z.device) - self.psum_sq = self.psum_sq.to(z.device) - self.psum_min = self.psum_min.to(z.device) - self.psum_max = self.psum_max.to(z.device) - self.psum += z.sum() - self.psum_sq += (z ** 2).sum() - self.psum_min += z.reshape(-1).min(-1)[0] - self.psum_max += z.reshape(-1).max(-1)[0] - assert len(z.shape) == 4 - self.count += z.shape[0] * z.shape[1] * z.shape[2] * z.shape[3] - self.len_dset += 1 - - if self.norm: - assert NotImplementedError - else: - reconstructions_unnormalize = reconstructions - - for b in range(batch_size): - if self.renderer_type == 'nerf': - rgb_input, cur_psnr_list_input = self.render_triplane( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - rgb, cur_psnr_list = self.render_triplane( - reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - elif self.renderer_type == 'eg3d': - rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - else: - raise NotImplementedError - - cur_psnr_list_rec = [] - for i in range(rgb.shape[0]): - cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - rgb = to8b(rgb.detach().cpu().numpy()) - - if batch_idx < 10: - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_input.png".format(batch_idx, b)), rgb_input[1]) - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_rec.png".format(batch_idx, b)), rgb[1]) - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_gt.png".format(batch_idx, b)), rgb_gt[1]) - - psnr_list += cur_psnr_list - psnr_input_list += cur_psnr_list_input - psnr_rec_list += cur_psnr_list_rec - - self.log("test/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - self.log("test/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - self.log("test/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - def configure_optimizers(self): - lr = self.learning_rate - opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ - list(self.decoder.parameters())+ - list(self.quant_conv.parameters())+ - list(self.post_quant_conv.parameters()), - lr=lr, betas=(0.5, 0.9)) - # opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), - # lr=lr, betas=(0.5, 0.9)) - # return [opt_ae, opt_disc], [] - return opt_ae - - def on_test_epoch_end(self): - mean = self.psum / self.count - mean_min = self.psum_min / self.len_dset - mean_max = self.psum_max / self.len_dset - var = (self.psum_sq / self.count) - (mean ** 2) - std = torch.sqrt(var) - - print("mean min: {}".format(mean_min)) - print("mean max: {}".format(mean_max)) - print("mean: {}".format(mean)) - print("std: {}".format(std)) - - latent = np.concatenate(self.latent_list) - q75, q25 = np.percentile(latent.reshape(-1), [75 ,25]) - median = np.median(latent.reshape(-1)) - iqr = q75 - q25 - norm_iqr = iqr * 0.7413 - print("Norm IQR: {}".format(norm_iqr)) - print("Inverse Norm IQR: {}".format(1/norm_iqr)) - print("Median: {}".format(median)) - - -class AutoencoderKLRollOut(AutoencoderKL): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - self.psum = torch.zeros([1]) - self.psum_sq = torch.zeros([1]) - self.psum_min = torch.zeros([1]) - self.psum_max = torch.zeros([1]) - self.count = 0 - self.len_dset = 0 - - def rollout(self, triplane): - res = triplane.shape[-1] - ch = triplane.shape[1] - triplane = triplane.reshape(-1, 3, ch//3, res, res).permute(0, 2, 3, 1, 4).reshape(-1, ch//3, res, 3 * res) - return triplane - - def unrollout(self, triplane): - res = triplane.shape[-2] - ch = 3 * triplane.shape[1] - triplane = triplane.reshape(-1, ch//3, res, 3, res).permute(0, 3, 1, 2, 4).reshape(-1, ch, res, res) - return triplane - - def encode(self, x, rollout=False): - if rollout: - x = self.rollout(x) - h = self.encoder(x) - moments = self.quant_conv(h) - posterior = DiagonalGaussianDistribution(moments) - return posterior - - def decode(self, z, unrollout=False): - z = self.post_quant_conv(z) - dec = self.decoder(z) - if unrollout: - dec = self.unrollout(dec) - return dec - - def forward(self, input, sample_posterior=True): - posterior = self.encode(input) - if sample_posterior: - z = posterior.sample() - else: - z = posterior.mode() - dec = self.decode(z) - return dec, posterior - - def training_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(inputs) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='train/') - self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) - return aeloss - - def validation_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(inputs, sample_posterior=False) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='val/') - self.log_dict(log_dict_ae) - - assert not self.norm - reconstructions = self.unrollout(reconstructions) - psnr_list = [] # between rec and gt - psnr_input_list = [] # between input and gt - psnr_rec_list = [] # between input and rec - batch_size = inputs.shape[0] - for b in range(batch_size): - if self.renderer_type == 'nerf': - rgb_input, cur_psnr_list_input = self.render_triplane( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - rgb, cur_psnr_list = self.render_triplane( - reconstructions[b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - elif self.renderer_type == 'eg3d': - rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - reconstructions[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - else: - raise NotImplementedError - - cur_psnr_list_rec = [] - for i in range(rgb.shape[0]): - cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - rgb = to8b(rgb.detach().cpu().numpy()) - - if b % 4 == 0 and batch_idx < 10: - rgb_all = np.concatenate([rgb_gt[1], rgb_input[1], rgb[1]], 1) - self.logger.experiment.log({ - "val/vis": [wandb.Image(rgb_all)] - }) - - psnr_list += cur_psnr_list - psnr_input_list += cur_psnr_list_input - psnr_rec_list += cur_psnr_list_rec - - self.log("val/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - self.log("val/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - self.log("val/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - return self.log_dict - - def to_rgb(self, plane): - x = plane.float() - if not hasattr(self, "colorize"): - self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def to_rgb_triplane(self, plane): - x = plane.float() - if not hasattr(self, "colorize_triplane"): - self.colorize_triplane = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize_triplane) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def test_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(inputs, sample_posterior=False) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='test/') - self.log_dict(log_dict_ae) - - batch_size = inputs.shape[0] - psnr_list = [] # between rec and gt - psnr_input_list = [] # between input and gt - psnr_rec_list = [] # between input and rec - - z = posterior.mode() - colorize_z = self.to_rgb(z)[0] - colorize_triplane_input = self.to_rgb_triplane(inputs)[0] - colorize_triplane_output = self.to_rgb_triplane(reconstructions)[0] - # if batch_idx < 1: - # imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_z_{}.png".format(batch_idx)), colorize_z) - # imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_{}.png".format(batch_idx)), colorize_triplane_input) - # imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_output_{}.png".format(batch_idx)), colorize_triplane_output) - - reconstructions = self.unrollout(reconstructions) - - if self.psum.device != z.device: - self.psum = self.psum.to(z.device) - self.psum_sq = self.psum_sq.to(z.device) - self.psum_min = self.psum_min.to(z.device) - self.psum_max = self.psum_max.to(z.device) - self.psum += z.sum() - self.psum_sq += (z ** 2).sum() - self.psum_min += z.reshape(-1).min(-1)[0] - self.psum_max += z.reshape(-1).max(-1)[0] - assert len(z.shape) == 4 - self.count += z.shape[0] * z.shape[1] * z.shape[2] * z.shape[3] - self.len_dset += 1 - - # mean = torch.Tensor([ - # 0.2820, 0.4103, -0.2988, 0.1491, 0.4429, -0.3117, 0.2830, 0.4115, - # -0.3032, 0.1530, 0.4466, -0.3165, 0.2617, 0.3837, -0.2692, 0.1098, - # 0.4101, -0.2922 - # ]).reshape(1, 18, 1, 1).to(inputs.device) - # std = torch.Tensor([ - # 1.1696, 1.1287, 1.1733, 1.1583, 1.1238, 1.1675, 1.1978, 1.1585, 1.1949, - # 1.1660, 1.1576, 1.1998, 1.1987, 1.1546, 1.1930, 1.1724, 1.1450, 1.2027 - # ]).reshape(1, 18, 1, 1).to(inputs.device) - - mean = torch.Tensor([ - -1.8449, -1.8242, 0.9667, -1.0187, 1.0647, -0.5422, -1.8632, -1.8435, - 0.9314, -1.0261, 1.0356, -0.5484, -1.8543, -1.8348, 0.9109, -1.0169, - 1.0160, -0.5467 - ]).reshape(1, 18, 1, 1).to(inputs.device) - std = torch.Tensor([ - 1.7593, 1.6127, 2.7132, 1.5500, 2.7893, 0.7707, 2.1114, 1.9198, 2.6586, - 1.8021, 2.5473, 1.0305, 1.7042, 1.7507, 2.4270, 1.4365, 2.2511, 0.8792 - ]).reshape(1, 18, 1, 1).to(inputs.device) - - if self.norm: - reconstructions_unnormalize = reconstructions * std + mean - else: - reconstructions_unnormalize = reconstructions - - # for b in range(batch_size): - # if self.renderer_type == 'nerf': - # rgb_input, cur_psnr_list_input = self.render_triplane( - # batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - # batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - # ) - # rgb, cur_psnr_list = self.render_triplane( - # reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - # batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - # ) - # elif self.renderer_type == 'eg3d': - # rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - # batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - # ) - # rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - # reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img'][b], - # ) - # else: - # raise NotImplementedError - - # cur_psnr_list_rec = [] - # for i in range(rgb.shape[0]): - # cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - # rgb_input = to8b(rgb_input.detach().cpu().numpy()) - # rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - # rgb = to8b(rgb.detach().cpu().numpy()) - - # # if batch_idx < 1: - # imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_input.png".format(batch_idx, b)), rgb_input[1]) - # imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_rec.png".format(batch_idx, b)), rgb[1]) - # imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_gt.png".format(batch_idx, b)), rgb_gt[1]) - - # psnr_list += cur_psnr_list - # psnr_input_list += cur_psnr_list_input - # psnr_rec_list += cur_psnr_list_rec - - # self.log("test/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - # self.log("test/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - # self.log("test/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - def on_test_epoch_end(self): - mean = self.psum / self.count - mean_min = self.psum_min / self.len_dset - mean_max = self.psum_max / self.len_dset - var = (self.psum_sq / self.count) - (mean ** 2) - std = torch.sqrt(var) - - print("mean min: {}".format(mean_min)) - print("mean max: {}".format(mean_max)) - print("mean: {}".format(mean)) - print("std: {}".format(std)) - - -class AutoencoderKLRollOut3DAware(AutoencoderKL): - def __init__(self, *args, **kwargs): - try: - ckpt_path = kwargs['ckpt_path'] - kwargs['ckpt_path'] = None - except: - ckpt_path = None - - super().__init__(*args, **kwargs) - self.psum = torch.zeros([1]) - self.psum_sq = torch.zeros([1]) - self.psum_min = torch.zeros([1]) - self.psum_max = torch.zeros([1]) - self.count = 0 - self.len_dset = 0 - - ddconfig = kwargs['ddconfig'] - ddconfig['z_channels'] *= 3 - del self.decoder - del self.post_quant_conv - self.decoder = Decoder(**ddconfig) - self.post_quant_conv = torch.nn.Conv2d(kwargs['embed_dim'] * 3, ddconfig["z_channels"], 1) - - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path) - - def rollout(self, triplane): - res = triplane.shape[-1] - ch = triplane.shape[1] - triplane = triplane.reshape(-1, 3, ch//3, res, res).permute(0, 2, 3, 1, 4).reshape(-1, ch//3, res, 3 * res) - return triplane - - def to3daware(self, triplane): - res = triplane.shape[-2] - plane1 = triplane[..., :res] - plane2 = triplane[..., res:2*res] - plane3 = triplane[..., 2*res:3*res] - - x_mp = torch.nn.MaxPool2d((res, 1)) - y_mp = torch.nn.MaxPool2d((1, res)) - x_mp_rep = lambda i: x_mp(i).repeat(1, 1, res, 1).permute(0, 1, 3, 2) - y_mp_rep = lambda i: y_mp(i).repeat(1, 1, 1, res).permute(0, 1, 3, 2) - # for plane1 - plane21 = x_mp_rep(plane2) - plane31 = torch.flip(y_mp_rep(plane3), (3,)) - new_plane1 = torch.cat([plane1, plane21, plane31], 1) - # for plane2 - plane12 = y_mp_rep(plane1) - plane32 = x_mp_rep(plane3) - new_plane2 = torch.cat([plane2, plane12, plane32], 1) - # for plane3 - plane13 = torch.flip(x_mp_rep(plane1), (2,)) - plane23 = y_mp_rep(plane2) - new_plane3 = torch.cat([plane3, plane13, plane23], 1) - - new_plane = torch.cat([new_plane1, new_plane2, new_plane3], -1).contiguous() - return new_plane - - def unrollout(self, triplane): - res = triplane.shape[-2] - ch = 3 * triplane.shape[1] - triplane = triplane.reshape(-1, ch//3, res, 3, res).permute(0, 3, 1, 2, 4).reshape(-1, ch, res, res) - return triplane - - def encode(self, x, rollout=False): - if rollout: - x = self.to3daware(self.rollout(x)) - h = self.encoder(x) - moments = self.quant_conv(h) - posterior = DiagonalGaussianDistribution(moments) - return posterior - - def decode(self, z, unrollout=False): - z = self.to3daware(z) - z = self.post_quant_conv(z) - dec = self.decoder(z) - if unrollout: - dec = self.unrollout(dec) - return dec - - def forward(self, input, sample_posterior=True): - posterior = self.encode(input) - if sample_posterior: - z = posterior.sample() - else: - z = posterior.mode() - dec = self.decode(z) - return dec, posterior - - def training_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(self.to3daware(inputs)) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='train/', batch=batch) - self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) - return aeloss - - def validation_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(self.to3daware(inputs), sample_posterior=False) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='val/', batch=None) - self.log_dict(log_dict_ae) - - assert not self.norm - reconstructions = self.unrollout(reconstructions) - psnr_list = [] # between rec and gt - psnr_input_list = [] # between input and gt - psnr_rec_list = [] # between input and rec - batch_size = inputs.shape[0] - for b in range(batch_size): - if self.renderer_type == 'nerf': - rgb_input, cur_psnr_list_input = self.render_triplane( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - rgb, cur_psnr_list = self.render_triplane( - reconstructions[b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - elif self.renderer_type == 'eg3d': - rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - reconstructions[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - else: - raise NotImplementedError - - cur_psnr_list_rec = [] - for i in range(rgb.shape[0]): - cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - rgb = to8b(rgb.detach().cpu().numpy()) - - if b % 4 == 0 and batch_idx < 10: - rgb_all = np.concatenate([rgb_gt[1], rgb_input[1], rgb[1]], 1) - self.logger.experiment.log({ - "val/vis": [wandb.Image(rgb_all)] - }) - - psnr_list += cur_psnr_list - psnr_input_list += cur_psnr_list_input - psnr_rec_list += cur_psnr_list_rec - - self.log("val/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - self.log("val/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - self.log("val/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - return self.log_dict - - def to_rgb(self, plane): - x = plane.float() - if not hasattr(self, "colorize"): - self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def to_rgb_triplane(self, plane): - x = plane.float() - if not hasattr(self, "colorize_triplane"): - self.colorize_triplane = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize_triplane) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def to_rgb_3daware(self, plane): - x = plane.float() - if not hasattr(self, "colorize_3daware"): - self.colorize_3daware = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize_3daware) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def test_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(self.to3daware(inputs), sample_posterior=False) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='test/', batch=None) - self.log_dict(log_dict_ae) - - batch_size = inputs.shape[0] - psnr_list = [] # between rec and gt - psnr_input_list = [] # between input and gt - psnr_rec_list = [] # between input and rec - - z = posterior.mode() - colorize_z = self.to_rgb(z)[0] - colorize_triplane_input = self.to_rgb_triplane(inputs)[0] - colorize_triplane_output = self.to_rgb_triplane(reconstructions)[0] - colorize_triplane_rollout_3daware = self.to_rgb_3daware(self.to3daware(inputs))[0] - res = inputs.shape[1] - colorize_triplane_rollout_3daware_1 = self.to_rgb_triplane(self.to3daware(inputs)[:,res:2*res])[0] - colorize_triplane_rollout_3daware_2 = self.to_rgb_triplane(self.to3daware(inputs)[:,2*res:3*res])[0] - if batch_idx < 10: - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_z_{}.png".format(batch_idx)), colorize_z) - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_{}.png".format(batch_idx)), colorize_triplane_input) - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_output_{}.png".format(batch_idx)), colorize_triplane_output) - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_3daware_{}.png".format(batch_idx)), colorize_triplane_rollout_3daware) - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_3daware_{}_1.png".format(batch_idx)), colorize_triplane_rollout_3daware_1) - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_3daware_{}_2.png".format(batch_idx)), colorize_triplane_rollout_3daware_2) - - reconstructions = self.unrollout(reconstructions) - - if self.psum.device != z.device: - self.psum = self.psum.to(z.device) - self.psum_sq = self.psum_sq.to(z.device) - self.psum_min = self.psum_min.to(z.device) - self.psum_max = self.psum_max.to(z.device) - self.psum += z.sum() - self.psum_sq += (z ** 2).sum() - self.psum_min += z.reshape(-1).min(-1)[0] - self.psum_max += z.reshape(-1).max(-1)[0] - assert len(z.shape) == 4 - self.count += z.shape[0] * z.shape[1] * z.shape[2] * z.shape[3] - self.len_dset += 1 - - if self.norm: - assert NotImplementedError - else: - reconstructions_unnormalize = reconstructions - - for b in range(batch_size): - if self.renderer_type == 'nerf': - rgb_input, cur_psnr_list_input = self.render_triplane( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - rgb, cur_psnr_list = self.render_triplane( - reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - elif self.renderer_type == 'eg3d': - rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - else: - raise NotImplementedError - - cur_psnr_list_rec = [] - for i in range(rgb.shape[0]): - cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - rgb = to8b(rgb.detach().cpu().numpy()) - - if batch_idx < 10: - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_input.png".format(batch_idx, b)), rgb_input[1]) - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_rec.png".format(batch_idx, b)), rgb[1]) - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_gt.png".format(batch_idx, b)), rgb_gt[1]) - - psnr_list += cur_psnr_list - psnr_input_list += cur_psnr_list_input - psnr_rec_list += cur_psnr_list_rec - - self.log("test/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - self.log("test/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - self.log("test/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - def on_test_epoch_end(self): - mean = self.psum / self.count - mean_min = self.psum_min / self.len_dset - mean_max = self.psum_max / self.len_dset - var = (self.psum_sq / self.count) - (mean ** 2) - std = torch.sqrt(var) - - print("mean min: {}".format(mean_min)) - print("mean max: {}".format(mean_max)) - print("mean: {}".format(mean)) - print("std: {}".format(std)) - - -class AutoencoderKLRollOut3DAwareOnlyInput(AutoencoderKL): - def __init__(self, *args, **kwargs): - try: - ckpt_path = kwargs['ckpt_path'] - kwargs['ckpt_path'] = None - except: - ckpt_path = None - - super().__init__(*args, **kwargs) - self.psum = torch.zeros([1]) - self.psum_sq = torch.zeros([1]) - self.psum_min = torch.zeros([1]) - self.psum_max = torch.zeros([1]) - self.count = 0 - self.len_dset = 0 - - # ddconfig = kwargs['ddconfig'] - # ddconfig['z_channels'] *= 3 - # self.decoder = Decoder(**ddconfig) - # self.post_quant_conv = torch.nn.Conv2d(kwargs['embed_dim'] * 3, ddconfig["z_channels"], 1) - - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path) - - def rollout(self, triplane): - res = triplane.shape[-1] - ch = triplane.shape[1] - triplane = triplane.reshape(-1, 3, ch//3, res, res).permute(0, 2, 3, 1, 4).reshape(-1, ch//3, res, 3 * res) - return triplane - - def to3daware(self, triplane): - res = triplane.shape[-2] - plane1 = triplane[..., :res] - plane2 = triplane[..., res:2*res] - plane3 = triplane[..., 2*res:3*res] - - x_mp = torch.nn.MaxPool2d((res, 1)) - y_mp = torch.nn.MaxPool2d((1, res)) - x_mp_rep = lambda i: x_mp(i).repeat(1, 1, res, 1).permute(0, 1, 3, 2) - y_mp_rep = lambda i: y_mp(i).repeat(1, 1, 1, res).permute(0, 1, 3, 2) - # for plane1 - plane21 = x_mp_rep(plane2) - plane31 = torch.flip(y_mp_rep(plane3), (3,)) - new_plane1 = torch.cat([plane1, plane21, plane31], 1) - # for plane2 - plane12 = y_mp_rep(plane1) - plane32 = x_mp_rep(plane3) - new_plane2 = torch.cat([plane2, plane12, plane32], 1) - # for plane3 - plane13 = torch.flip(x_mp_rep(plane1), (2,)) - plane23 = y_mp_rep(plane2) - new_plane3 = torch.cat([plane3, plane13, plane23], 1) - - new_plane = torch.cat([new_plane1, new_plane2, new_plane3], -1).contiguous() - return new_plane - - def unrollout(self, triplane): - res = triplane.shape[-2] - ch = 3 * triplane.shape[1] - triplane = triplane.reshape(-1, ch//3, res, 3, res).permute(0, 3, 1, 2, 4).reshape(-1, ch, res, res) - return triplane - - def encode(self, x, rollout=False): - if rollout: - x = self.to3daware(self.rollout(x)) - h = self.encoder(x) - moments = self.quant_conv(h) - posterior = DiagonalGaussianDistribution(moments) - return posterior - - def decode(self, z, unrollout=False): - # z = self.to3daware(z) - z = self.post_quant_conv(z) - dec = self.decoder(z) - if unrollout: - dec = self.unrollout(dec) - return dec - - def forward(self, input, sample_posterior=True): - posterior = self.encode(input) - if sample_posterior: - z = posterior.sample() - else: - z = posterior.mode() - dec = self.decode(z) - return dec, posterior - - def training_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(self.to3daware(inputs)) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='train/') - self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) - return aeloss - - def validation_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(self.to3daware(inputs), sample_posterior=False) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='val/') - self.log_dict(log_dict_ae) - - assert not self.norm - reconstructions = self.unrollout(reconstructions) - psnr_list = [] # between rec and gt - psnr_input_list = [] # between input and gt - psnr_rec_list = [] # between input and rec - batch_size = inputs.shape[0] - for b in range(batch_size): - if self.renderer_type == 'nerf': - rgb_input, cur_psnr_list_input = self.render_triplane( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - rgb, cur_psnr_list = self.render_triplane( - reconstructions[b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - elif self.renderer_type == 'eg3d': - rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - reconstructions[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - else: - raise NotImplementedError - - cur_psnr_list_rec = [] - for i in range(rgb.shape[0]): - cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - rgb = to8b(rgb.detach().cpu().numpy()) - - if b % 4 == 0 and batch_idx < 10: - rgb_all = np.concatenate([rgb_gt[1], rgb_input[1], rgb[1]], 1) - self.logger.experiment.log({ - "val/vis": [wandb.Image(rgb_all)] - }) - - psnr_list += cur_psnr_list - psnr_input_list += cur_psnr_list_input - psnr_rec_list += cur_psnr_list_rec - - self.log("val/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - self.log("val/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - self.log("val/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - return self.log_dict - - def to_rgb(self, plane): - x = plane.float() - if not hasattr(self, "colorize"): - self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def to_rgb_triplane(self, plane): - x = plane.float() - if not hasattr(self, "colorize_triplane"): - self.colorize_triplane = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize_triplane) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def test_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(self.to3daware(inputs), sample_posterior=False) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='test/') - self.log_dict(log_dict_ae) - - batch_size = inputs.shape[0] - psnr_list = [] # between rec and gt - psnr_input_list = [] # between input and gt - psnr_rec_list = [] # between input and rec - - z = posterior.mode() - colorize_z = self.to_rgb(z)[0] - colorize_triplane_input = self.to_rgb_triplane(inputs)[0] - colorize_triplane_output = self.to_rgb_triplane(reconstructions)[0] - if batch_idx < 10: - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_z_{}.png".format(batch_idx)), colorize_z) - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_{}.png".format(batch_idx)), colorize_triplane_input) - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_output_{}.png".format(batch_idx)), colorize_triplane_output) - - reconstructions = self.unrollout(reconstructions) - - if self.psum.device != z.device: - self.psum = self.psum.to(z.device) - self.psum_sq = self.psum_sq.to(z.device) - self.psum_min = self.psum_min.to(z.device) - self.psum_max = self.psum_max.to(z.device) - self.psum += z.sum() - self.psum_sq += (z ** 2).sum() - self.psum_min += z.reshape(-1).min(-1)[0] - self.psum_max += z.reshape(-1).max(-1)[0] - assert len(z.shape) == 4 - self.count += z.shape[0] * z.shape[1] * z.shape[2] * z.shape[3] - self.len_dset += 1 - - if self.norm: - assert NotImplementedError - else: - reconstructions_unnormalize = reconstructions - - for b in range(batch_size): - if self.renderer_type == 'nerf': - rgb_input, cur_psnr_list_input = self.render_triplane( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - rgb, cur_psnr_list = self.render_triplane( - reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - elif self.renderer_type == 'eg3d': - rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - else: - raise NotImplementedError - - cur_psnr_list_rec = [] - for i in range(rgb.shape[0]): - cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - rgb = to8b(rgb.detach().cpu().numpy()) - - if batch_idx < 10: - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_input.png".format(batch_idx, b)), rgb_input[1]) - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_rec.png".format(batch_idx, b)), rgb[1]) - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_gt.png".format(batch_idx, b)), rgb_gt[1]) - - psnr_list += cur_psnr_list - psnr_input_list += cur_psnr_list_input - psnr_rec_list += cur_psnr_list_rec - - self.log("test/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - self.log("test/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - self.log("test/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - def on_test_epoch_end(self): - mean = self.psum / self.count - mean_min = self.psum_min / self.len_dset - mean_max = self.psum_max / self.len_dset - var = (self.psum_sq / self.count) - (mean ** 2) - std = torch.sqrt(var) - - print("mean min: {}".format(mean_min)) - print("mean max: {}".format(mean_max)) - print("mean: {}".format(mean)) - print("std: {}".format(std)) - - -class AutoencoderKLRollOut3DAwareMeanPool(AutoencoderKL): - def __init__(self, *args, **kwargs): - try: - ckpt_path = kwargs['ckpt_path'] - kwargs['ckpt_path'] = None - except: - ckpt_path = None - - super().__init__(*args, **kwargs) - self.psum = torch.zeros([1]) - self.psum_sq = torch.zeros([1]) - self.psum_min = torch.zeros([1]) - self.psum_max = torch.zeros([1]) - self.count = 0 - self.len_dset = 0 - - ddconfig = kwargs['ddconfig'] - ddconfig['z_channels'] *= 3 - self.decoder = Decoder(**ddconfig) - self.post_quant_conv = torch.nn.Conv2d(kwargs['embed_dim'] * 3, ddconfig["z_channels"], 1) - - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path) - - def rollout(self, triplane): - res = triplane.shape[-1] - ch = triplane.shape[1] - triplane = triplane.reshape(-1, 3, ch//3, res, res).permute(0, 2, 3, 1, 4).reshape(-1, ch//3, res, 3 * res) - return triplane - - def to3daware(self, triplane): - res = triplane.shape[-2] - plane1 = triplane[..., :res] - plane2 = triplane[..., res:2*res] - plane3 = triplane[..., 2*res:3*res] - - x_mp = torch.nn.AvgPool2d((res, 1)) - y_mp = torch.nn.AvgPool2d((1, res)) - x_mp_rep = lambda i: x_mp(i).repeat(1, 1, res, 1).permute(0, 1, 3, 2) - y_mp_rep = lambda i: y_mp(i).repeat(1, 1, 1, res).permute(0, 1, 3, 2) - # for plane1 - plane21 = x_mp_rep(plane2) - plane31 = torch.flip(y_mp_rep(plane3), (3,)) - new_plane1 = torch.cat([plane1, plane21, plane31], 1) - # for plane2 - plane12 = y_mp_rep(plane1) - plane32 = x_mp_rep(plane3) - new_plane2 = torch.cat([plane2, plane12, plane32], 1) - # for plane3 - plane13 = torch.flip(x_mp_rep(plane1), (2,)) - plane23 = y_mp_rep(plane2) - new_plane3 = torch.cat([plane3, plane13, plane23], 1) - - new_plane = torch.cat([new_plane1, new_plane2, new_plane3], -1).contiguous() - return new_plane - - def unrollout(self, triplane): - res = triplane.shape[-2] - ch = 3 * triplane.shape[1] - triplane = triplane.reshape(-1, ch//3, res, 3, res).permute(0, 3, 1, 2, 4).reshape(-1, ch, res, res) - return triplane - - def encode(self, x, rollout=False): - if rollout: - x = self.to3daware(self.rollout(x)) - h = self.encoder(x) - moments = self.quant_conv(h) - posterior = DiagonalGaussianDistribution(moments) - return posterior - - def decode(self, z, unrollout=False): - z = self.to3daware(z) - z = self.post_quant_conv(z) - dec = self.decoder(z) - if unrollout: - dec = self.unrollout(dec) - return dec - - def forward(self, input, sample_posterior=True): - posterior = self.encode(input) - if sample_posterior: - z = posterior.sample() - else: - z = posterior.mode() - dec = self.decode(z) - return dec, posterior - - def training_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(self.to3daware(inputs)) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='train/') - self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) - return aeloss - - def validation_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(self.to3daware(inputs), sample_posterior=False) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='val/') - self.log_dict(log_dict_ae) - - assert not self.norm - reconstructions = self.unrollout(reconstructions) - psnr_list = [] # between rec and gt - psnr_input_list = [] # between input and gt - psnr_rec_list = [] # between input and rec - batch_size = inputs.shape[0] - for b in range(batch_size): - if self.renderer_type == 'nerf': - rgb_input, cur_psnr_list_input = self.render_triplane( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - rgb, cur_psnr_list = self.render_triplane( - reconstructions[b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - elif self.renderer_type == 'eg3d': - rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - reconstructions[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - else: - raise NotImplementedError - - cur_psnr_list_rec = [] - for i in range(rgb.shape[0]): - cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - rgb = to8b(rgb.detach().cpu().numpy()) - - if b % 4 == 0 and batch_idx < 10: - rgb_all = np.concatenate([rgb_gt[1], rgb_input[1], rgb[1]], 1) - self.logger.experiment.log({ - "val/vis": [wandb.Image(rgb_all)] - }) - - psnr_list += cur_psnr_list - psnr_input_list += cur_psnr_list_input - psnr_rec_list += cur_psnr_list_rec - - self.log("val/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - self.log("val/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - self.log("val/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - return self.log_dict - - def to_rgb(self, plane): - x = plane.float() - if not hasattr(self, "colorize"): - self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def to_rgb_triplane(self, plane): - x = plane.float() - if not hasattr(self, "colorize_triplane"): - self.colorize_triplane = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize_triplane) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def to_rgb_3daware(self, plane): - x = plane.float() - if not hasattr(self, "colorize_3daware"): - self.colorize_3daware = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize_3daware) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def test_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(self.to3daware(inputs), sample_posterior=False) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='test/') - self.log_dict(log_dict_ae) - - batch_size = inputs.shape[0] - psnr_list = [] # between rec and gt - psnr_input_list = [] # between input and gt - psnr_rec_list = [] # between input and rec - - z = posterior.mode() - colorize_z = self.to_rgb(z)[0] - colorize_triplane_input = self.to_rgb_triplane(inputs)[0] - colorize_triplane_output = self.to_rgb_triplane(reconstructions)[0] - colorize_triplane_rollout_3daware = self.to_rgb_3daware(self.to3daware(inputs))[0] - res = inputs.shape[1] - colorize_triplane_rollout_3daware_1 = self.to_rgb_triplane(self.to3daware(inputs)[:,res:2*res])[0] - colorize_triplane_rollout_3daware_2 = self.to_rgb_triplane(self.to3daware(inputs)[:,2*res:3*res])[0] - if batch_idx < 10: - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_z_{}.png".format(batch_idx)), colorize_z) - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_{}.png".format(batch_idx)), colorize_triplane_input) - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_output_{}.png".format(batch_idx)), colorize_triplane_output) - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_3daware_{}.png".format(batch_idx)), colorize_triplane_rollout_3daware) - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_3daware_{}_1.png".format(batch_idx)), colorize_triplane_rollout_3daware_1) - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_3daware_{}_2.png".format(batch_idx)), colorize_triplane_rollout_3daware_2) - - reconstructions = self.unrollout(reconstructions) - - if self.psum.device != z.device: - self.psum = self.psum.to(z.device) - self.psum_sq = self.psum_sq.to(z.device) - self.psum_min = self.psum_min.to(z.device) - self.psum_max = self.psum_max.to(z.device) - self.psum += z.sum() - self.psum_sq += (z ** 2).sum() - self.psum_min += z.reshape(-1).min(-1)[0] - self.psum_max += z.reshape(-1).max(-1)[0] - assert len(z.shape) == 4 - self.count += z.shape[0] * z.shape[1] * z.shape[2] * z.shape[3] - self.len_dset += 1 - - if self.norm: - assert NotImplementedError - else: - reconstructions_unnormalize = reconstructions - - for b in range(batch_size): - if self.renderer_type == 'nerf': - rgb_input, cur_psnr_list_input = self.render_triplane( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - rgb, cur_psnr_list = self.render_triplane( - reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - elif self.renderer_type == 'eg3d': - rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - else: - raise NotImplementedError - - cur_psnr_list_rec = [] - for i in range(rgb.shape[0]): - cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - rgb = to8b(rgb.detach().cpu().numpy()) - - if batch_idx < 10: - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_input.png".format(batch_idx, b)), rgb_input[1]) - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_rec.png".format(batch_idx, b)), rgb[1]) - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_gt.png".format(batch_idx, b)), rgb_gt[1]) - - psnr_list += cur_psnr_list - psnr_input_list += cur_psnr_list_input - psnr_rec_list += cur_psnr_list_rec - - self.log("test/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - self.log("test/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - self.log("test/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - def on_test_epoch_end(self): - mean = self.psum / self.count - mean_min = self.psum_min / self.len_dset - mean_max = self.psum_max / self.len_dset - var = (self.psum_sq / self.count) - (mean ** 2) - std = torch.sqrt(var) - - print("mean min: {}".format(mean_min)) - print("mean max: {}".format(mean_max)) - print("mean: {}".format(mean)) - print("std: {}".format(std)) - - -class AutoencoderKLGroupConv(AutoencoderKL): - def __init__(self, *args, **kwargs): - try: - ckpt_path = kwargs['ckpt_path'] - kwargs['ckpt_path'] = None - except: - ckpt_path = None - - super().__init__(*args, **kwargs) - self.latent_list = [] - self.psum = torch.zeros([1]) - self.psum_sq = torch.zeros([1]) - self.psum_min = torch.zeros([1]) - self.psum_max = torch.zeros([1]) - self.count = 0 - self.len_dset = 0 - - ddconfig = kwargs['ddconfig'] - # ddconfig['z_channels'] *= 3 - del self.decoder - del self.encoder - self.encoder = Encoder_GroupConv(**ddconfig) - self.decoder = Decoder_GroupConv(**ddconfig) - - if "mean" in ddconfig: - print("Using mean std!!") - self.triplane_mean = torch.Tensor(ddconfig['mean']).reshape(-1).unsqueeze(0).unsqueeze(-1).unsqueeze(-1).float() - self.triplane_std = torch.Tensor(ddconfig['std']).reshape(-1).unsqueeze(0).unsqueeze(-1).unsqueeze(-1).float() - else: - self.triplane_mean = None - self.triplane_std = None - - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path) - - def rollout(self, triplane): - res = triplane.shape[-1] - ch = triplane.shape[1] - triplane = triplane.reshape(-1, 3, ch//3, res, res).permute(0, 2, 3, 1, 4).reshape(-1, ch//3, res, 3 * res) - return triplane - - def to3daware(self, triplane): - res = triplane.shape[-2] - plane1 = triplane[..., :res] - plane2 = triplane[..., res:2*res] - plane3 = triplane[..., 2*res:3*res] - - x_mp = torch.nn.MaxPool2d((res, 1)) - y_mp = torch.nn.MaxPool2d((1, res)) - x_mp_rep = lambda i: x_mp(i).repeat(1, 1, res, 1).permute(0, 1, 3, 2) - y_mp_rep = lambda i: y_mp(i).repeat(1, 1, 1, res).permute(0, 1, 3, 2) - # for plane1 - plane21 = x_mp_rep(plane2) - plane31 = torch.flip(y_mp_rep(plane3), (3,)) - new_plane1 = torch.cat([plane1, plane21, plane31], 1) - # for plane2 - plane12 = y_mp_rep(plane1) - plane32 = x_mp_rep(plane3) - new_plane2 = torch.cat([plane2, plane12, plane32], 1) - # for plane3 - plane13 = torch.flip(x_mp_rep(plane1), (2,)) - plane23 = y_mp_rep(plane2) - new_plane3 = torch.cat([plane3, plane13, plane23], 1) - - new_plane = torch.cat([new_plane1, new_plane2, new_plane3], -1).contiguous() - return new_plane - - def unrollout(self, triplane): - res = triplane.shape[-2] - ch = 3 * triplane.shape[1] - triplane = triplane.reshape(-1, ch//3, res, 3, res).permute(0, 3, 1, 2, 4).reshape(-1, ch, res, res) - return triplane - - def encode(self, x, rollout=False): - if rollout: - # x = self.to3daware(self.rollout(x)) - x = self.rollout(x) - if self.triplane_mean is not None: - x = (x - self.triplane_mean.to(x.device)) / self.triplane_std.to(x.device) - h = self.encoder(x) - moments = self.quant_conv(h) - posterior = DiagonalGaussianDistribution(moments) - return posterior - - def decode(self, z, unrollout=False): - # z = self.to3daware(z) - z = self.post_quant_conv(z) - dec = self.decoder(z) - if self.triplane_mean is not None: - dec = dec * self.triplane_std.to(dec.device) + self.triplane_mean.to(dec.device) - if unrollout: - dec = self.unrollout(dec) - return dec - - def forward(self, input, sample_posterior=True): - posterior = self.encode(input) - if sample_posterior: - z = posterior.sample() - else: - z = posterior.mode() - dec = self.decode(z) - return dec, posterior - - def training_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(inputs) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='train/', batch=batch) - self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) - return aeloss - - def validation_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(inputs, sample_posterior=False) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='val/', batch=None) - self.log_dict(log_dict_ae) - - z = posterior.mode() - colorize_z = self.to_rgb(z)[0] - assert not self.norm - reconstructions = self.unrollout(reconstructions) - psnr_list = [] # between rec and gt - psnr_input_list = [] # between input and gt - psnr_rec_list = [] # between input and rec - batch_size = inputs.shape[0] - for b in range(batch_size): - if self.renderer_type == 'nerf': - rgb_input, cur_psnr_list_input = self.render_triplane( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - rgb, cur_psnr_list = self.render_triplane( - reconstructions[b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - elif self.renderer_type == 'eg3d': - rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - reconstructions[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - else: - raise NotImplementedError - - cur_psnr_list_rec = [] - for i in range(rgb.shape[0]): - cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - rgb = to8b(rgb.detach().cpu().numpy()) - - rgb_input = np.stack([rgb_input[..., 2], rgb_input[..., 1], rgb_input[..., 0]], -1) - rgb = np.stack([rgb[..., 2], rgb[..., 1], rgb[..., 0]], -1) - - if b % 2 == 0 and batch_idx < 10: - rgb_all = np.concatenate([rgb_gt[1], rgb_input[1], rgb[1]], 1) - self.logger.experiment.log({ - "val/vis": [wandb.Image(rgb_all)], - "val/latent_vis": [wandb.Image(colorize_z)] - }) - - psnr_list += cur_psnr_list - psnr_input_list += cur_psnr_list_input - psnr_rec_list += cur_psnr_list_rec - - self.log("val/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - self.log("val/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - self.log("val/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - return self.log_dict - - def to_rgb(self, plane): - x = plane.float() - if not hasattr(self, "colorize"): - self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def to_rgb_triplane(self, plane): - x = plane.float() - if not hasattr(self, "colorize_triplane"): - self.colorize_triplane = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize_triplane) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def to_rgb_3daware(self, plane): - x = plane.float() - if not hasattr(self, "colorize_3daware"): - self.colorize_3daware = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize_3daware) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def test_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(inputs, sample_posterior=False) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='test/', batch=None) - self.log_dict(log_dict_ae) - - batch_size = inputs.shape[0] - psnr_list = [] # between rec and gt - psnr_input_list = [] # between input and gt - psnr_rec_list = [] # between input and rec - - z = posterior.mode() - colorize_z = self.to_rgb(z)[0] - colorize_triplane_input = self.to_rgb_triplane(inputs)[0] - colorize_triplane_output = self.to_rgb_triplane(reconstructions)[0] - - import os - import random - import string - # z_np = z.detach().cpu().numpy() - z_np = inputs.detach().cpu().numpy() - fname = ''.join(random.choices(string.ascii_uppercase + string.digits, k=8)) + '.npy' - with open(os.path.join('/mnt/lustre/hongfangzhou.p/AE3D/tmp', fname), 'wb') as f: - np.save(f, z_np) - - # colorize_triplane_rollout_3daware = self.to_rgb_3daware(self.to3daware(inputs))[0] - # res = inputs.shape[1] - # colorize_triplane_rollout_3daware_1 = self.to_rgb_triplane(self.to3daware(inputs)[:,res:2*res])[0] - # colorize_triplane_rollout_3daware_2 = self.to_rgb_triplane(self.to3daware(inputs)[:,2*res:3*res])[0] - if batch_idx < 0: - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_z_{}.png".format(batch_idx)), colorize_z) - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_{}.png".format(batch_idx)), colorize_triplane_input) - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_output_{}.png".format(batch_idx)), colorize_triplane_output) - # imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_3daware_{}.png".format(batch_idx)), colorize_triplane_rollout_3daware) - # imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_3daware_{}_1.png".format(batch_idx)), colorize_triplane_rollout_3daware_1) - # imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_3daware_{}_2.png".format(batch_idx)), colorize_triplane_rollout_3daware_2) - - np_z = z.detach().cpu().numpy() - # with open(os.path.join(self.logger.log_dir, "latent_{}.npz".format(batch_idx)), 'wb') as f: - # np.save(f, np_z) - - self.latent_list.append(np_z) - - reconstructions = self.unrollout(reconstructions) - - if self.psum.device != z.device: - self.psum = self.psum.to(z.device) - self.psum_sq = self.psum_sq.to(z.device) - self.psum_min = self.psum_min.to(z.device) - self.psum_max = self.psum_max.to(z.device) - self.psum += z.sum() - self.psum_sq += (z ** 2).sum() - self.psum_min += z.reshape(-1).min(-1)[0] - self.psum_max += z.reshape(-1).max(-1)[0] - assert len(z.shape) == 4 - self.count += z.shape[0] * z.shape[1] * z.shape[2] * z.shape[3] - self.len_dset += 1 - - if self.norm: - assert NotImplementedError - else: - reconstructions_unnormalize = reconstructions - - if True: - for b in range(batch_size): - if self.renderer_type == 'nerf': - rgb_input, cur_psnr_list_input = self.render_triplane( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - rgb, cur_psnr_list = self.render_triplane( - reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - elif self.renderer_type == 'eg3d': - rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - else: - raise NotImplementedError - - cur_psnr_list_rec = [] - for i in range(rgb.shape[0]): - cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - rgb = to8b(rgb.detach().cpu().numpy()) - - if batch_idx < 10: - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_input.png".format(batch_idx, b)), rgb_input[1]) - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_rec.png".format(batch_idx, b)), rgb[1]) - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_gt.png".format(batch_idx, b)), rgb_gt[1]) - - psnr_list += cur_psnr_list - psnr_input_list += cur_psnr_list_input - psnr_rec_list += cur_psnr_list_rec - - self.log("test/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - self.log("test/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - self.log("test/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - def on_test_epoch_end(self): - mean = self.psum / self.count - mean_min = self.psum_min / self.len_dset - mean_max = self.psum_max / self.len_dset - var = (self.psum_sq / self.count) - (mean ** 2) - std = torch.sqrt(var) - - print("mean min: {}".format(mean_min)) - print("mean max: {}".format(mean_max)) - print("mean: {}".format(mean)) - print("std: {}".format(std)) - - latent = np.concatenate(self.latent_list) - q75, q25 = np.percentile(latent.reshape(-1), [75 ,25]) - median = np.median(latent.reshape(-1)) - iqr = q75 - q25 - norm_iqr = iqr * 0.7413 - print("Norm IQR: {}".format(norm_iqr)) - print("Inverse Norm IQR: {}".format(1/norm_iqr)) - print("Median: {}".format(median)) - - def loss(self, inputs, reconstructions, posteriors, prefix, batch=None): - reconstructions = reconstructions.contiguous() - # rec_loss = torch.abs(inputs.contiguous() - reconstructions) - # rec_loss = torch.sum(rec_loss) / rec_loss.shape[0] - rec_loss = F.mse_loss(inputs.contiguous(), reconstructions) - kl_loss = posteriors.kl() - # kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] - kl_loss = kl_loss.mean() - loss = self.lossconfig.rec_weight * rec_loss + self.lossconfig.kl_weight * kl_loss - - ret_dict = { - prefix+'mean_rec_loss': torch.abs(inputs.contiguous() - reconstructions.contiguous()).mean().detach(), - prefix+'rec_loss': rec_loss, - prefix+'kl_loss': kl_loss, - prefix+'loss': loss, - prefix+'mean': posteriors.mean.mean(), - prefix+'logvar': posteriors.logvar.mean(), - } - - - latent = posteriors.mean - ret_dict[prefix + 'latent_max'] = latent.max() - ret_dict[prefix + 'latent_min'] = latent.min() - - render_weight = self.lossconfig.get("render_weight", 0) - tv_weight = self.lossconfig.get("tv_weight", 0) - l1_weight = self.lossconfig.get("l1_weight", 0) - latent_tv_weight = self.lossconfig.get("latent_tv_weight", 0) - latent_l1_weight = self.lossconfig.get("latent_l1_weight", 0) - - triplane_rec = self.unrollout(reconstructions) - if render_weight > 0 and batch is not None: - rgb_rendered, target = self.render_triplane_eg3d_decoder_sample_pixel(triplane_rec, batch['batch_rays'], batch['img']) - # render_loss = ((rgb_rendered - target) ** 2).sum() / rgb_rendered.shape[0] * 256 - render_loss = F.mse_loss(rgb_rendered, target) - loss += render_weight * render_loss - ret_dict[prefix + 'render_loss'] = render_loss - if tv_weight > 0: - tvloss_y = F.mse_loss(triplane_rec[:, :, :-1], triplane_rec[:, :, 1:]) - tvloss_x = F.mse_loss(triplane_rec[:, :, :, :-1], triplane_rec[:, :, :, 1:]) - tvloss = tvloss_y + tvloss_x - loss += tv_weight * tvloss - ret_dict[prefix + 'tv_loss'] = tvloss - if l1_weight > 0: - l1 = (triplane_rec ** 2).mean() - loss += l1_weight * l1 - ret_dict[prefix + 'l1_loss'] = l1 - if latent_tv_weight > 0: - latent = posteriors.mean - latent_tv_y = F.mse_loss(latent[:, :, :-1], latent[:, :, 1:]) - latent_tv_x = F.mse_loss(latent[:, :, :, :-1], latent[:, :, :, 1:]) - latent_tv_loss = latent_tv_y + latent_tv_x - loss += latent_tv_loss * latent_tv_weight - ret_dict[prefix + 'latent_tv_loss'] = latent_tv_loss - if latent_l1_weight > 0: - latent = posteriors.mean - latent_l1_loss = (latent ** 2).mean() - loss += latent_l1_loss * latent_l1_weight - ret_dict[prefix + 'latent_l1_loss'] = latent_l1_loss - - return loss, ret_dict - - -class AutoencoderKLGroupConvLateFusion(AutoencoderKL): - def __init__(self, *args, **kwargs): - try: - ckpt_path = kwargs['ckpt_path'] - kwargs['ckpt_path'] = None - except: - ckpt_path = None - - super().__init__(*args, **kwargs) - self.latent_list = [] - self.psum = torch.zeros([1]) - self.psum_sq = torch.zeros([1]) - self.psum_min = torch.zeros([1]) - self.psum_max = torch.zeros([1]) - self.count = 0 - self.len_dset = 0 - - ddconfig = kwargs['ddconfig'] - del self.decoder - del self.encoder - self.encoder = Encoder_GroupConv_LateFusion(**ddconfig) - self.decoder = Decoder_GroupConv_LateFusion(**ddconfig) - - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path) - - def rollout(self, triplane): - res = triplane.shape[-1] - ch = triplane.shape[1] - triplane = triplane.reshape(-1, 3, ch//3, res, res).permute(0, 2, 3, 1, 4).reshape(-1, ch//3, res, 3 * res) - return triplane - - def to3daware(self, triplane): - res = triplane.shape[-2] - plane1 = triplane[..., :res] - plane2 = triplane[..., res:2*res] - plane3 = triplane[..., 2*res:3*res] - - x_mp = torch.nn.MaxPool2d((res, 1)) - y_mp = torch.nn.MaxPool2d((1, res)) - x_mp_rep = lambda i: x_mp(i).repeat(1, 1, res, 1).permute(0, 1, 3, 2) - y_mp_rep = lambda i: y_mp(i).repeat(1, 1, 1, res).permute(0, 1, 3, 2) - # for plane1 - plane21 = x_mp_rep(plane2) - plane31 = torch.flip(y_mp_rep(plane3), (3,)) - new_plane1 = torch.cat([plane1, plane21, plane31], 1) - # for plane2 - plane12 = y_mp_rep(plane1) - plane32 = x_mp_rep(plane3) - new_plane2 = torch.cat([plane2, plane12, plane32], 1) - # for plane3 - plane13 = torch.flip(x_mp_rep(plane1), (2,)) - plane23 = y_mp_rep(plane2) - new_plane3 = torch.cat([plane3, plane13, plane23], 1) - - new_plane = torch.cat([new_plane1, new_plane2, new_plane3], -1).contiguous() - return new_plane - - def unrollout(self, triplane): - res = triplane.shape[-2] - ch = 3 * triplane.shape[1] - triplane = triplane.reshape(-1, ch//3, res, 3, res).permute(0, 3, 1, 2, 4).reshape(-1, ch, res, res) - return triplane - - def encode(self, x, rollout=False): - if rollout: - x = self.rollout(x) - h = self.encoder(x) - moments = self.quant_conv(h) - posterior = DiagonalGaussianDistribution(moments) - return posterior - - def decode(self, z, unrollout=False): - z = self.post_quant_conv(z) - dec = self.decoder(z) - if unrollout: - dec = self.unrollout(dec) - return dec - - def forward(self, input, sample_posterior=True): - posterior = self.encode(input) - if sample_posterior: - z = posterior.sample() - else: - z = posterior.mode() - dec = self.decode(z) - return dec, posterior - - def training_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(inputs) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='train/', batch=batch) - self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) - return aeloss - - def validation_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(inputs, sample_posterior=False) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='val/', batch=None) - self.log_dict(log_dict_ae) - - assert not self.norm - reconstructions = self.unrollout(reconstructions) - psnr_list = [] # between rec and gt - psnr_input_list = [] # between input and gt - psnr_rec_list = [] # between input and rec - batch_size = inputs.shape[0] - for b in range(batch_size): - if self.renderer_type == 'nerf': - rgb_input, cur_psnr_list_input = self.render_triplane( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - rgb, cur_psnr_list = self.render_triplane( - reconstructions[b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - elif self.renderer_type == 'eg3d': - rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - reconstructions[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - else: - raise NotImplementedError - - cur_psnr_list_rec = [] - for i in range(rgb.shape[0]): - cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - rgb = to8b(rgb.detach().cpu().numpy()) - - if b % 4 == 0 and batch_idx < 10: - rgb_all = np.concatenate([rgb_gt[1], rgb_input[1], rgb[1]], 1) - self.logger.experiment.log({ - "val/vis": [wandb.Image(rgb_all)] - }) - - psnr_list += cur_psnr_list - psnr_input_list += cur_psnr_list_input - psnr_rec_list += cur_psnr_list_rec - - self.log("val/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - self.log("val/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - self.log("val/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - return self.log_dict - - def to_rgb(self, plane): - x = plane.float() - if not hasattr(self, "colorize"): - self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def to_rgb_triplane(self, plane): - x = plane.float() - if not hasattr(self, "colorize_triplane"): - self.colorize_triplane = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize_triplane) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def to_rgb_3daware(self, plane): - x = plane.float() - if not hasattr(self, "colorize_3daware"): - self.colorize_3daware = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize_3daware) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def test_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(inputs, sample_posterior=False) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='test/', batch=None) - self.log_dict(log_dict_ae) - - batch_size = inputs.shape[0] - psnr_list = [] # between rec and gt - psnr_input_list = [] # between input and gt - psnr_rec_list = [] # between input and rec - - z = posterior.mode() - colorize_z = self.to_rgb(z)[0] - colorize_triplane_input = self.to_rgb_triplane(inputs)[0] - colorize_triplane_output = self.to_rgb_triplane(reconstructions)[0] - # colorize_triplane_rollout_3daware = self.to_rgb_3daware(self.to3daware(inputs))[0] - # res = inputs.shape[1] - # colorize_triplane_rollout_3daware_1 = self.to_rgb_triplane(self.to3daware(inputs)[:,res:2*res])[0] - # colorize_triplane_rollout_3daware_2 = self.to_rgb_triplane(self.to3daware(inputs)[:,2*res:3*res])[0] - if batch_idx < 10: - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_z_{}.png".format(batch_idx)), colorize_z) - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_{}.png".format(batch_idx)), colorize_triplane_input) - imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_output_{}.png".format(batch_idx)), colorize_triplane_output) - # imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_3daware_{}.png".format(batch_idx)), colorize_triplane_rollout_3daware) - # imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_3daware_{}_1.png".format(batch_idx)), colorize_triplane_rollout_3daware_1) - # imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_3daware_{}_2.png".format(batch_idx)), colorize_triplane_rollout_3daware_2) - - np_z = z.detach().cpu().numpy() - # with open(os.path.join(self.logger.log_dir, "latent_{}.npz".format(batch_idx)), 'wb') as f: - # np.save(f, np_z) - - self.latent_list.append(np_z) - - reconstructions = self.unrollout(reconstructions) - - if self.psum.device != z.device: - self.psum = self.psum.to(z.device) - self.psum_sq = self.psum_sq.to(z.device) - self.psum_min = self.psum_min.to(z.device) - self.psum_max = self.psum_max.to(z.device) - self.psum += z.sum() - self.psum_sq += (z ** 2).sum() - self.psum_min += z.reshape(-1).min(-1)[0] - self.psum_max += z.reshape(-1).max(-1)[0] - assert len(z.shape) == 4 - self.count += z.shape[0] * z.shape[1] * z.shape[2] * z.shape[3] - self.len_dset += 1 - - if self.norm: - assert NotImplementedError - else: - reconstructions_unnormalize = reconstructions - - for b in range(batch_size): - if self.renderer_type == 'nerf': - rgb_input, cur_psnr_list_input = self.render_triplane( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - rgb, cur_psnr_list = self.render_triplane( - reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - elif self.renderer_type == 'eg3d': - rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - else: - raise NotImplementedError - - cur_psnr_list_rec = [] - for i in range(rgb.shape[0]): - cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - rgb = to8b(rgb.detach().cpu().numpy()) - - if batch_idx < 10: - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_input.png".format(batch_idx, b)), rgb_input[1]) - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_rec.png".format(batch_idx, b)), rgb[1]) - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_gt.png".format(batch_idx, b)), rgb_gt[1]) - - psnr_list += cur_psnr_list - psnr_input_list += cur_psnr_list_input - psnr_rec_list += cur_psnr_list_rec - - self.log("test/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - self.log("test/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - self.log("test/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - def on_test_epoch_end(self): - mean = self.psum / self.count - mean_min = self.psum_min / self.len_dset - mean_max = self.psum_max / self.len_dset - var = (self.psum_sq / self.count) - (mean ** 2) - std = torch.sqrt(var) - - print("mean min: {}".format(mean_min)) - print("mean max: {}".format(mean_max)) - print("mean: {}".format(mean)) - print("std: {}".format(std)) - - latent = np.concatenate(self.latent_list) - q75, q25 = np.percentile(latent.reshape(-1), [75 ,25]) - median = np.median(latent.reshape(-1)) - iqr = q75 - q25 - norm_iqr = iqr * 0.7413 - print("Norm IQR: {}".format(norm_iqr)) - print("Inverse Norm IQR: {}".format(1/norm_iqr)) - print("Median: {}".format(median)) - - -from module.model_2d import ViTEncoder, ViTDecoder - -class AutoencoderVIT(AutoencoderKL): - def __init__(self, *args, **kwargs): - try: - ckpt_path = kwargs['ckpt_path'] - kwargs['ckpt_path'] = None - except: - ckpt_path = None - - super().__init__(*args, **kwargs) - self.latent_list = [] - self.psum = torch.zeros([1]) - self.psum_sq = torch.zeros([1]) - self.psum_min = torch.zeros([1]) - self.psum_max = torch.zeros([1]) - self.count = 0 - self.len_dset = 0 - - ddconfig = kwargs['ddconfig'] - # ddconfig['z_channels'] *= 3 - del self.decoder - del self.encoder - del self.quant_conv - del self.post_quant_conv - - assert ddconfig["z_channels"] == 256 - self.encoder = ViTEncoder( - image_size=(256, 256*3), - patch_size=(256//32, 256//32), - dim=768, - depth=12, - heads=12, - mlp_dim=3072, - channels=8) - self.decoder = ViTDecoder( - image_size=(256, 256*3), - patch_size=(256//32, 256//32), - dim=768, - depth=12, - heads=12, - mlp_dim=3072, - channels=8) - - self.quant_conv = torch.nn.Conv2d(768, 2*self.embed_dim, 1) - self.post_quant_conv = torch.nn.Conv2d(self.embed_dim, 768, 1) - - if "mean" in ddconfig: - print("Using mean std!!") - self.triplane_mean = torch.Tensor(ddconfig['mean']).reshape(-1).unsqueeze(0).unsqueeze(-1).unsqueeze(-1).float() - self.triplane_std = torch.Tensor(ddconfig['std']).reshape(-1).unsqueeze(0).unsqueeze(-1).unsqueeze(-1).float() - else: - self.triplane_mean = None - self.triplane_std = None - - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path) - - def rollout(self, triplane): - res = triplane.shape[-1] - ch = triplane.shape[1] - triplane = triplane.reshape(-1, 3, ch//3, res, res).permute(0, 2, 3, 1, 4).reshape(-1, ch//3, res, 3 * res) - return triplane - - def to3daware(self, triplane): - res = triplane.shape[-2] - plane1 = triplane[..., :res] - plane2 = triplane[..., res:2*res] - plane3 = triplane[..., 2*res:3*res] - - x_mp = torch.nn.MaxPool2d((res, 1)) - y_mp = torch.nn.MaxPool2d((1, res)) - x_mp_rep = lambda i: x_mp(i).repeat(1, 1, res, 1).permute(0, 1, 3, 2) - y_mp_rep = lambda i: y_mp(i).repeat(1, 1, 1, res).permute(0, 1, 3, 2) - # for plane1 - plane21 = x_mp_rep(plane2) - plane31 = torch.flip(y_mp_rep(plane3), (3,)) - new_plane1 = torch.cat([plane1, plane21, plane31], 1) - # for plane2 - plane12 = y_mp_rep(plane1) - plane32 = x_mp_rep(plane3) - new_plane2 = torch.cat([plane2, plane12, plane32], 1) - # for plane3 - plane13 = torch.flip(x_mp_rep(plane1), (2,)) - plane23 = y_mp_rep(plane2) - new_plane3 = torch.cat([plane3, plane13, plane23], 1) - - new_plane = torch.cat([new_plane1, new_plane2, new_plane3], -1).contiguous() - return new_plane - - def unrollout(self, triplane): - res = triplane.shape[-2] - ch = 3 * triplane.shape[1] - triplane = triplane.reshape(-1, ch//3, res, 3, res).permute(0, 3, 1, 2, 4).reshape(-1, ch, res, res) - return triplane - - def encode(self, x, rollout=False): - if rollout: - # x = self.to3daware(self.rollout(x)) - x = self.rollout(x) - if self.triplane_mean is not None: - x = (x - self.triplane_mean.to(x.device)) / self.triplane_std.to(x.device) - h = self.encoder(x) - moments = self.quant_conv(h) - posterior = DiagonalGaussianDistribution(moments) - return posterior - - def decode(self, z, unrollout=False): - # z = self.to3daware(z) - z = self.post_quant_conv(z) - dec = self.decoder(z) - if self.triplane_mean is not None: - dec = dec * self.triplane_std.to(dec.device) + self.triplane_mean.to(dec.device) - if unrollout: - dec = self.unrollout(dec) - return dec - - def forward(self, input, sample_posterior=True): - posterior = self.encode(input) - if sample_posterior: - z = posterior.sample() - else: - z = posterior.mode() - dec = self.decode(z) - return dec, posterior - - def training_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(inputs) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='train/', batch=batch) - self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) - return aeloss - - def validation_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(inputs, sample_posterior=False) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='val/', batch=None) - self.log_dict(log_dict_ae) - - assert not self.norm - reconstructions = self.unrollout(reconstructions) - psnr_list = [] # between rec and gt - psnr_input_list = [] # between input and gt - psnr_rec_list = [] # between input and rec - batch_size = inputs.shape[0] - for b in range(batch_size): - if self.renderer_type == 'nerf': - rgb_input, cur_psnr_list_input = self.render_triplane( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - rgb, cur_psnr_list = self.render_triplane( - reconstructions[b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - elif self.renderer_type == 'eg3d': - rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - reconstructions[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - else: - raise NotImplementedError - - cur_psnr_list_rec = [] - for i in range(rgb.shape[0]): - cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - rgb = to8b(rgb.detach().cpu().numpy()) - - if b % 4 == 0 and batch_idx < 10: - rgb_all = np.concatenate([rgb_gt[1], rgb_input[1], rgb[1]], 1) - self.logger.experiment.log({ - "val/vis": [wandb.Image(rgb_all)] - }) - - psnr_list += cur_psnr_list - psnr_input_list += cur_psnr_list_input - psnr_rec_list += cur_psnr_list_rec - - self.log("val/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - self.log("val/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - self.log("val/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - return self.log_dict - - def to_rgb(self, plane): - x = plane.float() - if not hasattr(self, "colorize"): - self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def to_rgb_triplane(self, plane): - x = plane.float() - if not hasattr(self, "colorize_triplane"): - self.colorize_triplane = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize_triplane) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def to_rgb_3daware(self, plane): - x = plane.float() - if not hasattr(self, "colorize_3daware"): - self.colorize_3daware = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize_3daware) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def test_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, posterior = self(inputs, sample_posterior=False) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, prefix='test/', batch=None) - self.log_dict(log_dict_ae) - - batch_size = inputs.shape[0] - psnr_list = [] # between rec and gt - psnr_input_list = [] # between input and gt - psnr_rec_list = [] # between input and rec - - z = posterior.mode() - colorize_z = self.to_rgb(z)[0] - colorize_triplane_input = self.to_rgb_triplane(inputs)[0] - colorize_triplane_output = self.to_rgb_triplane(reconstructions)[0] - - import os - import random - import string - # z_np = z.detach().cpu().numpy() - z_np = inputs.detach().cpu().numpy() - fname = ''.join(random.choices(string.ascii_uppercase + string.digits, k=8)) + '.npy' - with open(os.path.join('/mnt/lustre/hongfangzhou.p/AE3D/tmp', fname), 'wb') as f: - np.save(f, z_np) - - # colorize_triplane_rollout_3daware = self.to_rgb_3daware(self.to3daware(inputs))[0] - # res = inputs.shape[1] - # colorize_triplane_rollout_3daware_1 = self.to_rgb_triplane(self.to3daware(inputs)[:,res:2*res])[0] - # colorize_triplane_rollout_3daware_2 = self.to_rgb_triplane(self.to3daware(inputs)[:,2*res:3*res])[0] - # if batch_idx < 10: - # imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_z_{}.png".format(batch_idx)), colorize_z) - # imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_{}.png".format(batch_idx)), colorize_triplane_input) - # imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_output_{}.png".format(batch_idx)), colorize_triplane_output) - # imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_3daware_{}.png".format(batch_idx)), colorize_triplane_rollout_3daware) - # imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_3daware_{}_1.png".format(batch_idx)), colorize_triplane_rollout_3daware_1) - # imageio.imwrite(os.path.join(self.logger.log_dir, "colorize_input_3daware_{}_2.png".format(batch_idx)), colorize_triplane_rollout_3daware_2) - - np_z = z.detach().cpu().numpy() - # with open(os.path.join(self.logger.log_dir, "latent_{}.npz".format(batch_idx)), 'wb') as f: - # np.save(f, np_z) - - self.latent_list.append(np_z) - - reconstructions = self.unrollout(reconstructions) - - if self.psum.device != z.device: - self.psum = self.psum.to(z.device) - self.psum_sq = self.psum_sq.to(z.device) - self.psum_min = self.psum_min.to(z.device) - self.psum_max = self.psum_max.to(z.device) - self.psum += z.sum() - self.psum_sq += (z ** 2).sum() - self.psum_min += z.reshape(-1).min(-1)[0] - self.psum_max += z.reshape(-1).max(-1)[0] - assert len(z.shape) == 4 - self.count += z.shape[0] * z.shape[1] * z.shape[2] * z.shape[3] - self.len_dset += 1 - - if self.norm: - assert NotImplementedError - else: - reconstructions_unnormalize = reconstructions - - if True: - for b in range(batch_size): - if self.renderer_type == 'nerf': - rgb_input, cur_psnr_list_input = self.render_triplane( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - rgb, cur_psnr_list = self.render_triplane( - reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img_flat'][b], - batch['near'][b].unsqueeze(-1), batch['far'][b].unsqueeze(-1) - ) - elif self.renderer_type == 'eg3d': - rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - else: - raise NotImplementedError - - cur_psnr_list_rec = [] - for i in range(rgb.shape[0]): - cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - rgb = to8b(rgb.detach().cpu().numpy()) - - # if batch_idx < 10: - # imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_input.png".format(batch_idx, b)), rgb_input[1]) - # imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_rec.png".format(batch_idx, b)), rgb[1]) - # imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_gt.png".format(batch_idx, b)), rgb_gt[1]) - - psnr_list += cur_psnr_list - psnr_input_list += cur_psnr_list_input - psnr_rec_list += cur_psnr_list_rec - - self.log("test/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - self.log("test/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - self.log("test/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - def on_test_epoch_end(self): - mean = self.psum / self.count - mean_min = self.psum_min / self.len_dset - mean_max = self.psum_max / self.len_dset - var = (self.psum_sq / self.count) - (mean ** 2) - std = torch.sqrt(var) - - print("mean min: {}".format(mean_min)) - print("mean max: {}".format(mean_max)) - print("mean: {}".format(mean)) - print("std: {}".format(std)) - - latent = np.concatenate(self.latent_list) - q75, q25 = np.percentile(latent.reshape(-1), [75 ,25]) - median = np.median(latent.reshape(-1)) - iqr = q75 - q25 - norm_iqr = iqr * 0.7413 - print("Norm IQR: {}".format(norm_iqr)) - print("Inverse Norm IQR: {}".format(1/norm_iqr)) - print("Median: {}".format(median)) diff --git a/3DTopia/model/triplane_vqvae.py b/3DTopia/model/triplane_vqvae.py deleted file mode 100644 index fe6be8fae4ad14394eb1f98477f5483e0ae04115..0000000000000000000000000000000000000000 --- a/3DTopia/model/triplane_vqvae.py +++ /dev/null @@ -1,418 +0,0 @@ -import os -import imageio -import torch -import wandb -import numpy as np -import pytorch_lightning as pl -import torch.nn.functional as F - -from module.model_2d import Encoder, Decoder, DiagonalGaussianDistribution, Encoder_GroupConv, Decoder_GroupConv, Encoder_GroupConv_LateFusion, Decoder_GroupConv_LateFusion -from utility.initialize import instantiate_from_config -from utility.triplane_renderer.renderer import get_embedder, NeRF, run_network, render_path1, to8b, img2mse, mse2psnr -from utility.triplane_renderer.eg3d_renderer import Renderer_TriPlane -from module.quantise import VectorQuantiser -from module.quantize_taming import EMAVectorQuantizer, VectorQuantizer2, QuantizeEMAReset - -class CVQVAE(pl.LightningModule): - def __init__(self, - ddconfig, - lossconfig, - embed_dim, - learning_rate=1e-3, - ckpt_path=None, - ignore_keys=[], - colorize_nlabels=None, - monitor=None, - decoder_ckpt=None, - norm=True, - renderer_type='nerf', - is_cvqvae=False, - renderer_config=dict( - rgbnet_dim=18, - rgbnet_width=128, - viewpe=0, - feape=0 - ), - vector_quantizer_config=dict( - num_embed=1024, - beta=0.25, - distance='cos', - anchor='closest', - first_batch=False, - contras_loss=True, - ) - ): - super().__init__() - self.save_hyperparameters() - self.norm = norm - self.renderer_config = renderer_config - self.learning_rate = learning_rate - - ddconfig['double_z'] = False - self.encoder = Encoder_GroupConv(**ddconfig) - self.decoder = Decoder_GroupConv(**ddconfig) - - self.lossconfig = lossconfig - - self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) - self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) - - self.embed_dim = embed_dim - if colorize_nlabels is not None: - assert type(colorize_nlabels)==int - self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) - if monitor is not None: - self.monitor = monitor - - self.decoder_ckpt = decoder_ckpt - self.renderer_type = renderer_type - if decoder_ckpt is not None: - self.triplane_decoder, self.triplane_render_kwargs = self.create_eg3d_decoder(decoder_ckpt) - - vector_quantizer_config['embed_dim'] = embed_dim - - if is_cvqvae: - self.vector_quantizer = VectorQuantiser( - **vector_quantizer_config - ) - else: - self.vector_quantizer = EMAVectorQuantizer( - n_embed=vector_quantizer_config['num_embed'], - codebook_dim = embed_dim, - beta=vector_quantizer_config['beta'] - ) - # self.vector_quantizer = VectorQuantizer2( - # n_e = vector_quantizer_config['num_embed'], - # e_dim = embed_dim, - # beta = vector_quantizer_config['beta'] - # ) - # self.vector_quantizer = QuantizeEMAReset( - # nb_code = vector_quantizer_config['num_embed'], - # code_dim = embed_dim, - # mu = vector_quantizer_config['beta'], - # ) - - self.psum = torch.zeros([1]) - self.psum_sq = torch.zeros([1]) - self.psum_min = torch.zeros([1]) - self.psum_max = torch.zeros([1]) - self.count = 0 - self.len_dset = 0 - self.latent_list = [] - - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) - - def init_from_ckpt(self, path, ignore_keys=list()): - sd = torch.load(path, map_location="cpu")["state_dict"] - keys = list(sd.keys()) - for k in keys: - for ik in ignore_keys: - if k.startswith(ik): - print("Deleting key {} from state_dict.".format(k)) - del sd[k] - self.load_state_dict(sd, strict=True) - print(f"Restored from {path}") - - def encode(self, x, rollout=False): - if rollout: - x = self.rollout(x) - h = self.encoder(x) - moments = self.quant_conv(h) - z_q, loss, (perplexity, min_encodings, encoding_indices) = self.vector_quantizer(moments) - return z_q, loss, perplexity, encoding_indices - - def decode(self, z, unrollout=False): - z = self.post_quant_conv(z) - dec = self.decoder(z) - if unrollout: - dec = self.unrollout(dec) - return dec - - def forward(self, input): - z_q, loss, perplexity, encoding_indices = self.encode(input) - dec = self.decode(z_q) - return dec, loss, perplexity, encoding_indices - - def rollout(self, triplane): - res = triplane.shape[-1] - ch = triplane.shape[1] - triplane = triplane.reshape(-1, 3, ch//3, res, res).permute(0, 2, 3, 1, 4).reshape(-1, ch//3, res, 3 * res) - return triplane - - def to3daware(self, triplane): - res = triplane.shape[-2] - plane1 = triplane[..., :res] - plane2 = triplane[..., res:2*res] - plane3 = triplane[..., 2*res:3*res] - - x_mp = torch.nn.MaxPool2d((res, 1)) - y_mp = torch.nn.MaxPool2d((1, res)) - x_mp_rep = lambda i: x_mp(i).repeat(1, 1, res, 1).permute(0, 1, 3, 2) - y_mp_rep = lambda i: y_mp(i).repeat(1, 1, 1, res).permute(0, 1, 3, 2) - # for plane1 - plane21 = x_mp_rep(plane2) - plane31 = torch.flip(y_mp_rep(plane3), (3,)) - new_plane1 = torch.cat([plane1, plane21, plane31], 1) - # for plane2 - plane12 = y_mp_rep(plane1) - plane32 = x_mp_rep(plane3) - new_plane2 = torch.cat([plane2, plane12, plane32], 1) - # for plane3 - plane13 = torch.flip(x_mp_rep(plane1), (2,)) - plane23 = y_mp_rep(plane2) - new_plane3 = torch.cat([plane3, plane13, plane23], 1) - - new_plane = torch.cat([new_plane1, new_plane2, new_plane3], -1).contiguous() - return new_plane - - def unrollout(self, triplane): - res = triplane.shape[-2] - ch = 3 * triplane.shape[1] - triplane = triplane.reshape(-1, ch//3, res, 3, res).permute(0, 3, 1, 2, 4).reshape(-1, ch, res, res) - return triplane - - def training_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, vq_loss, perplexity, encoding_indices = self(inputs) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, vq_loss, prefix='train/', batch=batch) - log_dict_ae['train/perplexity'] = perplexity - self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) - return aeloss - - def validation_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, vq_loss, perplexity, encoding_indices = self(inputs) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, vq_loss, prefix='val/', batch=None) - log_dict_ae['val/perplexity'] = perplexity - self.log_dict(log_dict_ae) - - reconstructions = self.unrollout(reconstructions) - psnr_list = [] # between rec and gt - psnr_input_list = [] # between input and gt - psnr_rec_list = [] # between input and rec - batch_size = inputs.shape[0] - for b in range(batch_size): - rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - reconstructions[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - - cur_psnr_list_rec = [] - for i in range(rgb.shape[0]): - cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - rgb = to8b(rgb.detach().cpu().numpy()) - - if b % 4 == 0 and batch_idx < 10: - rgb_all = np.concatenate([rgb_gt[1], rgb_input[1], rgb[1]], 1) - self.logger.experiment.log({ - "val/vis": [wandb.Image(rgb_all)], - }) - - psnr_list += cur_psnr_list - psnr_input_list += cur_psnr_list_input - psnr_rec_list += cur_psnr_list_rec - - self.log("val/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - self.log("val/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - self.log("val/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - return self.log_dict - - def to_rgb(self, plane): - x = plane.float() - if not hasattr(self, "colorize"): - self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def to_rgb_triplane(self, plane): - x = plane.float() - if not hasattr(self, "colorize_triplane"): - self.colorize_triplane = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize_triplane) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def to_rgb_3daware(self, plane): - x = plane.float() - if not hasattr(self, "colorize_3daware"): - self.colorize_3daware = torch.randn(3, x.shape[1], 1, 1).to(x) - x = torch.nn.functional.conv2d(x, weight=self.colorize_3daware) - x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) - return x - - def test_step(self, batch, batch_idx): - inputs = self.rollout(batch['triplane']) - reconstructions, vq_loss, perplexity, encoding_indices = self(inputs) - aeloss, log_dict_ae = self.loss(inputs, reconstructions, vq_loss, prefix='test/', batch=None) - log_dict_ae['test/perplexity'] = perplexity - self.log_dict(log_dict_ae) - - batch_size = inputs.shape[0] - psnr_list = [] # between rec and gt - psnr_input_list = [] # between input and gt - psnr_rec_list = [] # between input and rec - - colorize_triplane_input = self.to_rgb_triplane(inputs)[0] - colorize_triplane_output = self.to_rgb_triplane(reconstructions)[0] - - reconstructions = self.unrollout(reconstructions) - - if self.norm: - assert NotImplementedError - else: - reconstructions_unnormalize = reconstructions - - if True: - for b in range(batch_size): - rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder( - batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - rgb, cur_psnr_list = self.render_triplane_eg3d_decoder( - reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img'][b], - ) - - cur_psnr_list_rec = [] - for i in range(rgb.shape[0]): - cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i]))) - - rgb_input = to8b(rgb_input.detach().cpu().numpy()) - rgb_gt = to8b(batch['img'][b].detach().cpu().numpy()) - rgb = to8b(rgb.detach().cpu().numpy()) - - if batch_idx < 10: - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_input.png".format(batch_idx, b)), rgb_input[1]) - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_rec.png".format(batch_idx, b)), rgb[1]) - imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_gt.png".format(batch_idx, b)), rgb_gt[1]) - - psnr_list += cur_psnr_list - psnr_input_list += cur_psnr_list_input - psnr_rec_list += cur_psnr_list_rec - - self.log("test/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True) - self.log("test/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True) - self.log("test/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True) - - def on_test_epoch_end(self): - mean = self.psum / self.count - mean_min = self.psum_min / self.len_dset - mean_max = self.psum_max / self.len_dset - var = (self.psum_sq / self.count) - (mean ** 2) - std = torch.sqrt(var) - - print("mean min: {}".format(mean_min)) - print("mean max: {}".format(mean_max)) - print("mean: {}".format(mean)) - print("std: {}".format(std)) - - latent = np.concatenate(self.latent_list) - q75, q25 = np.percentile(latent.reshape(-1), [75 ,25]) - median = np.median(latent.reshape(-1)) - iqr = q75 - q25 - norm_iqr = iqr * 0.7413 - print("Norm IQR: {}".format(norm_iqr)) - print("Inverse Norm IQR: {}".format(1/norm_iqr)) - print("Median: {}".format(median)) - - def loss(self, inputs, reconstructions, vq_loss, prefix, batch=None): - reconstructions = reconstructions.contiguous() - rec_loss = F.mse_loss(inputs.contiguous(), reconstructions) - loss = self.lossconfig.rec_weight * rec_loss + self.lossconfig.vq_weight * vq_loss - - ret_dict = { - prefix+'mean_rec_loss': torch.abs(inputs.contiguous() - reconstructions.contiguous()).mean().detach(), - prefix+'rec_loss': rec_loss, - prefix+'vq_loss': vq_loss, - prefix+'loss': loss, - } - - render_weight = self.lossconfig.get("render_weight", 0) - tv_weight = self.lossconfig.get("tv_weight", 0) - l1_weight = self.lossconfig.get("l1_weight", 0) - latent_tv_weight = self.lossconfig.get("latent_tv_weight", 0) - latent_l1_weight = self.lossconfig.get("latent_l1_weight", 0) - - triplane_rec = self.unrollout(reconstructions) - if render_weight > 0 and batch is not None: - rgb_rendered, target = self.render_triplane_eg3d_decoder_sample_pixel(triplane_rec, batch['batch_rays'], batch['img']) - render_loss = F.mse(rgb_rendered, target) - loss += render_weight * render_loss - ret_dict[prefix + 'render_loss'] = render_loss - if tv_weight > 0: - tvloss_y = torch.abs(triplane_rec[:, :, :-1] - triplane_rec[:, :, 1:]).mean() - tvloss_x = torch.abs(triplane_rec[:, :, :, :-1] - triplane_rec[:, :, :, 1:]).mean() - tvloss = tvloss_y + tvloss_x - loss += tv_weight * tvloss - ret_dict[prefix + 'tv_loss'] = tvloss - if l1_weight > 0: - l1 = (triplane_rec ** 2).mean() - loss += l1_weight * l1 - ret_dict[prefix + 'l1_loss'] = l1 - - ret_dict[prefix+'loss'] = loss - - return loss, ret_dict - - def create_eg3d_decoder(self, decoder_ckpt): - triplane_decoder = Renderer_TriPlane(**self.renderer_config) - pretrain_pth = torch.load(decoder_ckpt, map_location='cpu') - pretrain_pth = { - '.'.join(k.split('.')[1:]): v for k, v in pretrain_pth.items() - } - # import pdb; pdb.set_trace() - triplane_decoder.load_state_dict(pretrain_pth) - render_kwargs = { - 'depth_resolution': 128, - 'disparity_space_sampling': False, - 'box_warp': 2.4, - 'depth_resolution_importance': 128, - 'clamp_mode': 'softplus', - 'white_back': True, - 'det': True - } - return triplane_decoder, render_kwargs - - def render_triplane_eg3d_decoder(self, triplane, batch_rays, target): - ray_o = batch_rays[:, 0] - ray_d = batch_rays[:, 1] - psnr_list = [] - rec_img_list = [] - res = triplane.shape[-2] - for i in range(ray_o.shape[0]): - with torch.no_grad(): - render_out = self.triplane_decoder(triplane.reshape(1, 3, -1, res, res), - ray_o[i:i+1], ray_d[i:i+1], self.triplane_render_kwargs, whole_img=True, tvloss=False) - rec_img = render_out['rgb_marched'].permute(0, 2, 3, 1) - psnr = mse2psnr(img2mse(rec_img[0], target[i])) - psnr_list.append(psnr) - rec_img_list.append(rec_img) - return torch.cat(rec_img_list, 0), psnr_list - - def render_triplane_eg3d_decoder_sample_pixel(self, triplane, batch_rays, target, sample_num=1024): - assert batch_rays.shape[1] == 1 - sel = torch.randint(batch_rays.shape[-2], [sample_num]) - ray_o = batch_rays[:, 0, 0, sel] - ray_d = batch_rays[:, 0, 1, sel] - res = triplane.shape[-2] - render_out = self.triplane_decoder(triplane.reshape(triplane.shape[0], 3, -1, res, res), - ray_o, ray_d, self.triplane_render_kwargs, whole_img=False, tvloss=False) - rec_img = render_out['rgb_marched'] - target = target.reshape(triplane.shape[0], -1, 3)[:, sel, :] - return rec_img, target - - def configure_optimizers(self): - lr = self.learning_rate - opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ - list(self.decoder.parameters())+ - list(self.quant_conv.parameters())+ - list(self.post_quant_conv.parameters())+ - list(self.vector_quantizer.parameters()), - lr=lr) - return opt_ae diff --git a/3DTopia/module/model_2d.py b/3DTopia/module/model_2d.py deleted file mode 100644 index e501c20953c37314b00c4689b37c2c969a60c47d..0000000000000000000000000000000000000000 --- a/3DTopia/module/model_2d.py +++ /dev/null @@ -1,2206 +0,0 @@ -# pytorch_diffusion + derived encoder decoder -import math -import torch -import torch.nn as nn -import numpy as np -from einops import rearrange - -from utility.initialize import instantiate_from_config -from .nn_2d import LinearAttention - - -def get_timestep_embedding(timesteps, embedding_dim): - """ - This matches the implementation in Denoising Diffusion Probabilistic Models: - From Fairseq. - Build sinusoidal embeddings. - This matches the implementation in tensor2tensor, but differs slightly - from the description in Section 3.5 of "Attention Is All You Need". - """ - assert len(timesteps.shape) == 1 - - half_dim = embedding_dim // 2 - emb = math.log(10000) / (half_dim - 1) - emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) - emb = emb.to(device=timesteps.device) - emb = timesteps.float()[:, None] * emb[None, :] - emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) - if embedding_dim % 2 == 1: # zero pad - emb = torch.nn.functional.pad(emb, (0,1,0,0)) - return emb - - -def nonlinearity(x): - # swish - return x*torch.sigmoid(x) - - -def Normalize(in_channels, num_groups=32): - return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) - - -class Upsample(nn.Module): - def __init__(self, in_channels, with_conv): - super().__init__() - self.with_conv = with_conv - if self.with_conv: - self.conv = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") - if self.with_conv: - x = self.conv(x) - return x - - -class Downsample(nn.Module): - def __init__(self, in_channels, with_conv): - super().__init__() - self.with_conv = with_conv - if self.with_conv: - # no asymmetric padding in torch conv, must do it ourselves - self.conv = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=3, - stride=2, - padding=0) - - def forward(self, x): - if self.with_conv: - pad = (0,1,0,1) - x = torch.nn.functional.pad(x, pad, mode="constant", value=0) - x = self.conv(x) - else: - x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) - return x - - -class ResnetBlock(nn.Module): - def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, - dropout, temb_channels=512): - super().__init__() - self.in_channels = in_channels - out_channels = in_channels if out_channels is None else out_channels - self.out_channels = out_channels - self.use_conv_shortcut = conv_shortcut - - self.norm1 = Normalize(in_channels) - self.conv1 = torch.nn.Conv2d(in_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - if temb_channels > 0: - self.temb_proj = torch.nn.Linear(temb_channels, - out_channels) - self.norm2 = Normalize(out_channels) - self.dropout = torch.nn.Dropout(dropout) - self.conv2 = torch.nn.Conv2d(out_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - self.conv_shortcut = torch.nn.Conv2d(in_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - else: - self.nin_shortcut = torch.nn.Conv2d(in_channels, - out_channels, - kernel_size=1, - stride=1, - padding=0) - - def forward(self, x, temb): - h = x - h = self.norm1(h) - h = nonlinearity(h) - h = self.conv1(h) - - if temb is not None: - h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] - - h = self.norm2(h) - h = nonlinearity(h) - h = self.dropout(h) - h = self.conv2(h) - - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - x = self.conv_shortcut(x) - else: - x = self.nin_shortcut(x) - - return x+h - - -class LinAttnBlock(LinearAttention): - """to match AttnBlock usage""" - def __init__(self, in_channels): - super().__init__(dim=in_channels, heads=1, dim_head=in_channels) - - -class AttnBlock(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.in_channels = in_channels - - self.norm = Normalize(in_channels) - self.q = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.k = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.v = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.proj_out = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - - - def forward(self, x): - h_ = x - h_ = self.norm(h_) - q = self.q(h_) - k = self.k(h_) - v = self.v(h_) - - # compute attention - b,c,h,w = q.shape - q = q.reshape(b,c,h*w) - q = q.permute(0,2,1) # b,hw,c - k = k.reshape(b,c,h*w) # b,c,hw - w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] - w_ = w_ * (int(c)**(-0.5)) - w_ = torch.nn.functional.softmax(w_, dim=2) - - # attend to values - v = v.reshape(b,c,h*w) - w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q) - h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] - h_ = h_.reshape(b,c,h,w) - - h_ = self.proj_out(h_) - - return x+h_ - - -def make_attn(in_channels, attn_type="vanilla"): - assert attn_type in ["vanilla", "linear", "none", "vanilla_groupconv", "crossattention"], f'attn_type {attn_type} unknown' - # print(f"making attention of type '{attn_type}' with {in_channels} in_channels") - if attn_type == "vanilla": - return AttnBlock(in_channels) - elif attn_type == 'vanilla_groupconv': - return AttnBlock_GroupConv(in_channels) - elif attn_type == 'crossattention': - num_heads = 8 - return TriplaneAttentionBlock(in_channels, num_heads, in_channels // num_heads, True) - elif attn_type == "none": - return nn.Identity(in_channels) - else: - return LinAttnBlock(in_channels) - - -class Model(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"): - super().__init__() - if use_linear_attn: attn_type = "linear" - self.ch = ch - self.temb_ch = self.ch*4 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - - self.use_timestep = use_timestep - if self.use_timestep: - # timestep embedding - self.temb = nn.Module() - self.temb.dense = nn.ModuleList([ - torch.nn.Linear(self.ch, - self.temb_ch), - torch.nn.Linear(self.temb_ch, - self.temb_ch), - ]) - - # downsampling - self.conv_in = torch.nn.Conv2d(in_channels, - self.ch, - kernel_size=3, - stride=1, - padding=1) - - curr_res = resolution - in_ch_mult = (1,)+tuple(ch_mult) - self.down = nn.ModuleList() - for i_level in range(self.num_resolutions): - block = nn.ModuleList() - attn = nn.ModuleList() - block_in = ch*in_ch_mult[i_level] - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks): - block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - down = nn.Module() - down.block = block - down.attn = attn - if i_level != self.num_resolutions-1: - down.downsample = Downsample(block_in, resamp_with_conv) - curr_res = curr_res // 2 - self.down.append(down) - - # middle - self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) - self.mid.block_2 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # upsampling - self.up = nn.ModuleList() - for i_level in reversed(range(self.num_resolutions)): - block = nn.ModuleList() - attn = nn.ModuleList() - block_out = ch*ch_mult[i_level] - skip_in = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks+1): - if i_block == self.num_res_blocks: - skip_in = ch*in_ch_mult[i_level] - block.append(ResnetBlock(in_channels=block_in+skip_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - up = nn.Module() - up.block = block - up.attn = attn - if i_level != 0: - up.upsample = Upsample(block_in, resamp_with_conv) - curr_res = curr_res * 2 - self.up.insert(0, up) # prepend to get consistent order - - # end - self.norm_out = Normalize(block_in) - self.conv_out = torch.nn.Conv2d(block_in, - out_ch, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x, t=None, context=None): - #assert x.shape[2] == x.shape[3] == self.resolution - if context is not None: - # assume aligned context, cat along channel axis - x = torch.cat((x, context), dim=1) - if self.use_timestep: - # timestep embedding - assert t is not None - temb = get_timestep_embedding(t, self.ch) - temb = self.temb.dense[0](temb) - temb = nonlinearity(temb) - temb = self.temb.dense[1](temb) - else: - temb = None - - # downsampling - hs = [self.conv_in(x)] - for i_level in range(self.num_resolutions): - for i_block in range(self.num_res_blocks): - h = self.down[i_level].block[i_block](hs[-1], temb) - if len(self.down[i_level].attn) > 0: - h = self.down[i_level].attn[i_block](h) - hs.append(h) - if i_level != self.num_resolutions-1: - hs.append(self.down[i_level].downsample(hs[-1])) - - # middle - h = hs[-1] - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - # upsampling - for i_level in reversed(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks+1): - h = self.up[i_level].block[i_block]( - torch.cat([h, hs.pop()], dim=1), temb) - if len(self.up[i_level].attn) > 0: - h = self.up[i_level].attn[i_block](h) - if i_level != 0: - h = self.up[i_level].upsample(h) - - # end - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - return h - - def get_last_layer(self): - return self.conv_out.weight - - -class Encoder(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla", - **ignore_kwargs): - super().__init__() - if use_linear_attn: attn_type = "linear" - self.ch = ch - self.temb_ch = 0 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - - # downsampling - self.conv_in = torch.nn.Conv2d(in_channels, - self.ch, - kernel_size=3, - stride=1, - padding=1) - - curr_res = resolution - in_ch_mult = (1,)+tuple(ch_mult) - self.in_ch_mult = in_ch_mult - self.down = nn.ModuleList() - for i_level in range(self.num_resolutions): - block = nn.ModuleList() - attn = nn.ModuleList() - block_in = ch*in_ch_mult[i_level] - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks): - block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - down = nn.Module() - down.block = block - down.attn = attn - if i_level != self.num_resolutions-1: - down.downsample = Downsample(block_in, resamp_with_conv) - curr_res = curr_res // 2 - self.down.append(down) - - # middle - self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) - self.mid.block_2 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # end - self.norm_out = Normalize(block_in) - self.conv_out = torch.nn.Conv2d(block_in, - 2*z_channels if double_z else z_channels, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - # timestep embedding - temb = None - - # downsampling - hs = [self.conv_in(x)] - for i_level in range(self.num_resolutions): - for i_block in range(self.num_res_blocks): - h = self.down[i_level].block[i_block](hs[-1], temb) - if len(self.down[i_level].attn) > 0: - h = self.down[i_level].attn[i_block](h) - hs.append(h) - if i_level != self.num_resolutions-1: - hs.append(self.down[i_level].downsample(hs[-1])) - - # middle - h = hs[-1] - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - # end - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - return h - - -class Decoder(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, - attn_type="vanilla", **ignorekwargs): - super().__init__() - if use_linear_attn: attn_type = "linear" - self.ch = ch - self.temb_ch = 0 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - self.give_pre_end = give_pre_end - self.tanh_out = tanh_out - - # compute in_ch_mult, block_in and curr_res at lowest res - in_ch_mult = (1,)+tuple(ch_mult) - block_in = ch*ch_mult[self.num_resolutions-1] - curr_res = resolution // 2**(self.num_resolutions-1) - self.z_shape = (1,z_channels,curr_res,curr_res) - # print("Working with z of shape {} = {} dimensions.".format( - # self.z_shape, np.prod(self.z_shape))) - - # z to block_in - self.conv_in = torch.nn.Conv2d(z_channels, - block_in, - kernel_size=3, - stride=1, - padding=1) - - # middle - self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) - self.mid.block_2 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # upsampling - self.up = nn.ModuleList() - for i_level in reversed(range(self.num_resolutions)): - block = nn.ModuleList() - attn = nn.ModuleList() - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks+1): - block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - up = nn.Module() - up.block = block - up.attn = attn - if i_level != 0: - up.upsample = Upsample(block_in, resamp_with_conv) - curr_res = curr_res * 2 - self.up.insert(0, up) # prepend to get consistent order - - # end - self.norm_out = Normalize(block_in) - self.conv_out = torch.nn.Conv2d(block_in, - out_ch, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, z): - #assert z.shape[1:] == self.z_shape[1:] - self.last_z_shape = z.shape - - # timestep embedding - temb = None - - # z to block_in - h = self.conv_in(z) - - # middle - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - # upsampling - for i_level in reversed(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks+1): - h = self.up[i_level].block[i_block](h, temb) - if len(self.up[i_level].attn) > 0: - h = self.up[i_level].attn[i_block](h) - if i_level != 0: - h = self.up[i_level].upsample(h) - - # end - if self.give_pre_end: - return h - - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - if self.tanh_out: - h = torch.tanh(h) - return h - - -class SimpleDecoder(nn.Module): - def __init__(self, in_channels, out_channels, *args, **kwargs): - super().__init__() - self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1), - ResnetBlock(in_channels=in_channels, - out_channels=2 * in_channels, - temb_channels=0, dropout=0.0), - ResnetBlock(in_channels=2 * in_channels, - out_channels=4 * in_channels, - temb_channels=0, dropout=0.0), - ResnetBlock(in_channels=4 * in_channels, - out_channels=2 * in_channels, - temb_channels=0, dropout=0.0), - nn.Conv2d(2*in_channels, in_channels, 1), - Upsample(in_channels, with_conv=True)]) - # end - self.norm_out = Normalize(in_channels) - self.conv_out = torch.nn.Conv2d(in_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - for i, layer in enumerate(self.model): - if i in [1,2,3]: - x = layer(x, None) - else: - x = layer(x) - - h = self.norm_out(x) - h = nonlinearity(h) - x = self.conv_out(h) - return x - - -class UpsampleDecoder(nn.Module): - def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution, - ch_mult=(2,2), dropout=0.0): - super().__init__() - # upsampling - self.temb_ch = 0 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - block_in = in_channels - curr_res = resolution // 2 ** (self.num_resolutions - 1) - self.res_blocks = nn.ModuleList() - self.upsample_blocks = nn.ModuleList() - for i_level in range(self.num_resolutions): - res_block = [] - block_out = ch * ch_mult[i_level] - for i_block in range(self.num_res_blocks + 1): - res_block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - self.res_blocks.append(nn.ModuleList(res_block)) - if i_level != self.num_resolutions - 1: - self.upsample_blocks.append(Upsample(block_in, True)) - curr_res = curr_res * 2 - - # end - self.norm_out = Normalize(block_in) - self.conv_out = torch.nn.Conv2d(block_in, - out_channels, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - # upsampling - h = x - for k, i_level in enumerate(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks + 1): - h = self.res_blocks[i_level][i_block](h, None) - if i_level != self.num_resolutions - 1: - h = self.upsample_blocks[k](h) - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - return h - - -class LatentRescaler(nn.Module): - def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2): - super().__init__() - # residual block, interpolate, residual block - self.factor = factor - self.conv_in = nn.Conv2d(in_channels, - mid_channels, - kernel_size=3, - stride=1, - padding=1) - self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels, - out_channels=mid_channels, - temb_channels=0, - dropout=0.0) for _ in range(depth)]) - self.attn = AttnBlock(mid_channels) - self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels, - out_channels=mid_channels, - temb_channels=0, - dropout=0.0) for _ in range(depth)]) - - self.conv_out = nn.Conv2d(mid_channels, - out_channels, - kernel_size=1, - ) - - def forward(self, x): - x = self.conv_in(x) - for block in self.res_block1: - x = block(x, None) - x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor)))) - x = self.attn(x) - for block in self.res_block2: - x = block(x, None) - x = self.conv_out(x) - return x - - -class MergedRescaleEncoder(nn.Module): - def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, - ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1): - super().__init__() - intermediate_chn = ch * ch_mult[-1] - self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult, - z_channels=intermediate_chn, double_z=False, resolution=resolution, - attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv, - out_ch=None) - self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn, - mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth) - - def forward(self, x): - x = self.encoder(x) - x = self.rescaler(x) - return x - - -class MergedRescaleDecoder(nn.Module): - def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8), - dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1): - super().__init__() - tmp_chn = z_channels*ch_mult[-1] - self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout, - resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks, - ch_mult=ch_mult, resolution=resolution, ch=ch) - self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn, - out_channels=tmp_chn, depth=rescale_module_depth) - - def forward(self, x): - x = self.rescaler(x) - x = self.decoder(x) - return x - - -class Upsampler(nn.Module): - def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2): - super().__init__() - assert out_size >= in_size - num_blocks = int(np.log2(out_size//in_size))+1 - factor_up = 1.+ (out_size % in_size) - print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}") - self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels, - out_channels=in_channels) - self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2, - attn_resolutions=[], in_channels=None, ch=in_channels, - ch_mult=[ch_mult for _ in range(num_blocks)]) - - def forward(self, x): - x = self.rescaler(x) - x = self.decoder(x) - return x - - -class Resize(nn.Module): - def __init__(self, in_channels=None, learned=False, mode="bilinear"): - super().__init__() - self.with_conv = learned - self.mode = mode - if self.with_conv: - print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode") - raise NotImplementedError() - assert in_channels is not None - # no asymmetric padding in torch conv, must do it ourselves - self.conv = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=4, - stride=2, - padding=1) - - def forward(self, x, scale_factor=1.0): - if scale_factor==1.0: - return x - else: - x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor) - return x - -class FirstStagePostProcessor(nn.Module): - - def __init__(self, ch_mult:list, in_channels, - pretrained_model:nn.Module=None, - reshape=False, - n_channels=None, - dropout=0., - pretrained_config=None): - super().__init__() - if pretrained_config is None: - assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None' - self.pretrained_model = pretrained_model - else: - assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None' - self.instantiate_pretrained(pretrained_config) - - self.do_reshape = reshape - - if n_channels is None: - n_channels = self.pretrained_model.encoder.ch - - self.proj_norm = Normalize(in_channels,num_groups=in_channels//2) - self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3, - stride=1,padding=1) - - blocks = [] - downs = [] - ch_in = n_channels - for m in ch_mult: - blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout)) - ch_in = m * n_channels - downs.append(Downsample(ch_in, with_conv=False)) - - self.model = nn.ModuleList(blocks) - self.downsampler = nn.ModuleList(downs) - - - def instantiate_pretrained(self, config): - model = instantiate_from_config(config) - self.pretrained_model = model.eval() - # self.pretrained_model.train = False - for param in self.pretrained_model.parameters(): - param.requires_grad = False - - - @torch.no_grad() - def encode_with_pretrained(self,x): - c = self.pretrained_model.encode(x) - if isinstance(c, DiagonalGaussianDistribution): - c = c.mode() - return c - - def forward(self,x): - z_fs = self.encode_with_pretrained(x) - z = self.proj_norm(z_fs) - z = self.proj(z) - z = nonlinearity(z) - - for submodel, downmodel in zip(self.model,self.downsampler): - z = submodel(z,temb=None) - z = downmodel(z) - - if self.do_reshape: - z = rearrange(z,'b c h w -> b (h w) c') - return z - - -class DiagonalGaussianDistribution(object): - def __init__(self, parameters, deterministic=False): - self.parameters = parameters - self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) - self.logvar = torch.clamp(self.logvar, -30.0, 20.0) - self.deterministic = deterministic - self.std = torch.exp(0.5 * self.logvar) - self.var = torch.exp(self.logvar) - if self.deterministic: - self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) - - def sample(self): - x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device) - return x - - def kl(self, other=None): - if self.deterministic: - return torch.Tensor([0.]) - else: - if other is None: - return 0.5 * torch.sum(torch.pow(self.mean, 2) - + self.var - 1.0 - self.logvar, - dim=[1, 2, 3]) - else: - return 0.5 * torch.sum( - torch.pow(self.mean - other.mean, 2) / other.var - + self.var / other.var - 1.0 - self.logvar + other.logvar, - dim=[1, 2, 3]) - - def nll(self, sample, dims=[1,2,3]): - if self.deterministic: - return torch.Tensor([0.]) - logtwopi = np.log(2.0 * np.pi) - return 0.5 * torch.sum( - logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, - dim=dims) - - def mode(self): - return self.mean - - -class ResnetBlock_GroupConv(nn.Module): - def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, - dropout, temb_channels=512): - super().__init__() - self.in_channels = in_channels - out_channels = in_channels if out_channels is None else out_channels - self.out_channels = out_channels - self.use_conv_shortcut = conv_shortcut - - self.norm1 = Normalize(in_channels * 3, 32 * 3) - self.conv1 = torch.nn.Conv2d(in_channels * 3, - out_channels * 3, - kernel_size=3, - stride=1, - padding=1, - groups=3) - if temb_channels > 0: - self.temb_proj = torch.nn.Linear(temb_channels, - out_channels) - self.norm2 = Normalize(out_channels * 3, 32 * 3) - self.dropout = torch.nn.Dropout(dropout) - self.conv2 = torch.nn.Conv2d(out_channels * 3, - out_channels * 3, - kernel_size=3, - stride=1, - padding=1, - groups=3) - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - self.conv_shortcut = torch.nn.Conv2d(in_channels * 3, - out_channels * 3, - kernel_size=3, - stride=1, - padding=1, - groups=3) - else: - self.nin_shortcut = torch.nn.Conv2d(in_channels * 3, - out_channels * 3, - kernel_size=1, - stride=1, - padding=0, - groups=3) - - def forward(self, x, temb): - h = x - h = self.norm1(h) - h = nonlinearity(h) - h = self.conv1(h) - - assert temb is None - if temb is not None: - h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] - - h = self.norm2(h) - h = nonlinearity(h) - h = self.dropout(h) - h = self.conv2(h) - - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - x = self.conv_shortcut(x) - else: - x = self.nin_shortcut(x) - - return x+h - - -def rollout(triplane): - res = triplane.shape[-1] - ch = triplane.shape[1] - triplane = triplane.reshape(-1, 3, ch//3, res, res).permute(0, 2, 3, 1, 4).reshape(-1, ch//3, res, 3 * res) - return triplane - -def unrollout(triplane): - res = triplane.shape[-2] - ch = 3 * triplane.shape[1] - triplane = triplane.reshape(-1, ch//3, res, 3, res).permute(0, 3, 1, 2, 4).reshape(-1, ch, res, res) - return triplane - -class Upsample_GroupConv(nn.Module): - def __init__(self, in_channels, with_conv): - super().__init__() - self.with_conv = with_conv - if self.with_conv: - self.conv = torch.nn.Conv2d(in_channels * 3, - in_channels * 3, - kernel_size=3, - stride=1, - padding=1, - groups=3) - - def forward(self, x): - x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") - if self.with_conv: - x = self.conv(x) - return x - - -class Downsample_GroupConv(nn.Module): - def __init__(self, in_channels, with_conv): - super().__init__() - self.with_conv = with_conv - if self.with_conv: - # no asymmetric padding in torch conv, must do it ourselves - self.conv = torch.nn.Conv2d(in_channels * 3, - in_channels * 3, - kernel_size=3, - stride=2, - padding=0, - groups=3) - - def forward(self, x): - if self.with_conv: - pad = (0,1,0,1) - x = torch.nn.functional.pad(x, pad, mode="constant", value=0) - x = self.conv(x) - else: - x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) - return x - -class AttnBlock_GroupConv(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.in_channels = in_channels - - self.norm = Normalize(in_channels) - self.q = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.k = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.v = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.proj_out = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - - - def forward(self, x, temp=None): - x = rollout(x) - h_ = x - h_ = self.norm(h_) - q = self.q(h_) - k = self.k(h_) - v = self.v(h_) - - # compute attention - b,c,h,w = q.shape - q = q.reshape(b,c,h*w) - q = q.permute(0,2,1) # b,hw,c - k = k.reshape(b,c,h*w) # b,c,hw - w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] - w_ = w_ * (int(c)**(-0.5)) - w_ = torch.nn.functional.softmax(w_, dim=2) - - # attend to values - v = v.reshape(b,c,h*w) - w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q) - h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] - h_ = h_.reshape(b,c,h,w) - - h_ = self.proj_out(h_) - - return unrollout(x+h_) - - -from torch import nn, einsum -from inspect import isfunction -from einops import rearrange, repeat - -def exists(val): - return val is not None - -def default(val, d): - if exists(val): - return val - return d() if isfunction(d) else d - -def checkpoint(func, inputs, params, flag): - """ - Evaluate a function without caching intermediate activations, allowing for - reduced memory at the expense of extra compute in the backward pass. - :param func: the function to evaluate. - :param inputs: the argument sequence to pass to `func`. - :param params: a sequence of parameters `func` depends on but does not - explicitly take as arguments. - :param flag: if False, disable gradient checkpointing. - """ - if flag: - args = tuple(inputs) + tuple(params) - return CheckpointFunction.apply(func, len(inputs), *args) - else: - return func(*inputs) - -class CheckpointFunction(torch.autograd.Function): - @staticmethod - def forward(ctx, run_function, length, *args): - ctx.run_function = run_function - ctx.input_tensors = list(args[:length]) - ctx.input_params = list(args[length:]) - - with torch.no_grad(): - output_tensors = ctx.run_function(*ctx.input_tensors) - return output_tensors - - @staticmethod - def backward(ctx, *output_grads): - ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] - with torch.enable_grad(): - # Fixes a bug where the first op in run_function modifies the - # Tensor storage in place, which is not allowed for detach()'d - # Tensors. - shallow_copies = [x.view_as(x) for x in ctx.input_tensors] - output_tensors = ctx.run_function(*shallow_copies) - input_grads = torch.autograd.grad( - output_tensors, - ctx.input_tensors + ctx.input_params, - output_grads, - allow_unused=True, - ) - del ctx.input_tensors - del ctx.input_params - del output_tensors - return (None, None) + input_grads - -class CrossAttention(nn.Module): - def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): - super().__init__() - inner_dim = dim_head * heads - context_dim = default(context_dim, query_dim) - - self.scale = dim_head ** -0.5 - self.heads = heads - - self.to_q = nn.Linear(query_dim, inner_dim, bias=False) - self.to_k = nn.Linear(context_dim, inner_dim, bias=False) - self.to_v = nn.Linear(context_dim, inner_dim, bias=False) - - self.to_out = nn.Sequential( - nn.Linear(inner_dim, query_dim), - nn.Dropout(dropout) - ) - - def forward(self, x, context=None, mask=None): - h = self.heads - - x = x.permute(0, 2, 1) - context = context.permute(0, 2, 1) - - q = self.to_q(x) - context = default(context, x) - k = self.to_k(context) - v = self.to_v(context) - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) - - sim = einsum('b i d, b j d -> b i j', q, k) * self.scale - - if exists(mask): - mask = rearrange(mask, 'b ... -> b (...)') - max_neg_value = -torch.finfo(sim.dtype).max - mask = repeat(mask, 'b j -> (b h) () j', h=h) - sim.masked_fill_(~mask, max_neg_value) - - # attention, what we cannot get enough of - attn = sim.softmax(dim=-1) - - out = einsum('b i j, b j d -> b i d', attn, v) - out = rearrange(out, '(b h) n d -> b n (h d)', h=h) - return self.to_out(out).permute(0, 2, 1) - -def normalization(channels): - """ - Make a standard normalization layer. - :param channels: number of input channels. - :return: an nn.Module for normalization. - """ - return GroupNorm32(32, channels) - -class GroupNorm32(nn.GroupNorm): - def forward(self, x): - return super().forward(x.float()).type(x.dtype) - -class TriplaneAttentionBlock(nn.Module): - def __init__( - self, - channels, - num_heads=1, - num_head_channels=-1, - use_checkpoint=False, - use_new_attention_order=False, - ): - super().__init__() - self.channels = channels - if num_head_channels == -1: - self.num_heads = num_heads - else: - assert ( - channels % num_head_channels == 0 - ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" - self.num_heads = channels // num_head_channels - self.use_checkpoint = use_checkpoint - self.norm = normalization(channels) - - self.plane1_ca = CrossAttention(channels, channels, self.num_heads, num_head_channels) - self.plane2_ca = CrossAttention(channels, channels, self.num_heads, num_head_channels) - self.plane3_ca = CrossAttention(channels, channels, self.num_heads, num_head_channels) - - def forward(self, x, temp=None): - return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!! - #return pt_checkpoint(self._forward, x) # pytorch - - def _forward(self, x): - x = rollout(x) - - b, c, *spatial = x.shape - res = x.shape[-2] - plane1 = x[..., :res].reshape(b, c, -1) - plane2 = x[..., res:res*2].reshape(b, c, -1) - plane3 = x[..., 2*res:3*res].reshape(b, c, -1) - x = x.reshape(b, c, -1) - - plane1_output = self.plane1_ca(self.norm(plane1), self.norm(x)) - plane2_output = self.plane2_ca(self.norm(plane2), self.norm(x)) - plane3_output = self.plane3_ca(self.norm(plane3), self.norm(x)) - - h = torch.cat([plane1_output, plane2_output, plane3_output], -1) - - x = (x + h).reshape(b, c, *spatial) - - return unrollout(x) - - -class Encoder_GroupConv(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, z_channels, double_z=True, use_linear_attn=False, - attn_type="vanilla_groupconv", mid_layers=1, - **ignore_kwargs): - super().__init__() - assert not use_linear_attn - self.ch = ch - self.temb_ch = 0 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - - # downsampling - # self.conv_in = torch.nn.Conv2d(in_channels, - # self.ch, - # kernel_size=3, - # stride=1, - # padding=1) - self.conv_in = torch.nn.Conv2d(in_channels * 3, - self.ch * 3, - kernel_size=3, - stride=1, - padding=1, - groups=3) - - curr_res = resolution - in_ch_mult = (1,)+tuple(ch_mult) - self.in_ch_mult = in_ch_mult - self.down = nn.ModuleList() - for i_level in range(self.num_resolutions): - block = nn.ModuleList() - attn = nn.ModuleList() - block_in = ch*in_ch_mult[i_level] - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks): - block.append(ResnetBlock_GroupConv(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - down = nn.Module() - down.block = block - down.attn = attn - if i_level != self.num_resolutions-1: - down.downsample = Downsample_GroupConv(block_in, resamp_with_conv) - curr_res = curr_res // 2 - self.down.append(down) - - # middle - self.attn_type = attn_type - self.mid = nn.Module() - if attn_type == 'crossattention': - self.mid.block_1 = nn.ModuleList() - for _ in range(mid_layers): - self.mid.block_1.append( - ResnetBlock_GroupConv(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - ) - self.mid.block_1.append( - make_attn(block_in, attn_type=attn_type) - ) - else: - self.mid.block_1 = ResnetBlock_GroupConv(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) - self.mid.block_2 = ResnetBlock_GroupConv(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # end - self.norm_out = Normalize(block_in * 3, 32 * 3) - self.conv_out = torch.nn.Conv2d(block_in * 3, - 2*z_channels * 3 if double_z else z_channels * 3, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - # timestep embedding - temb = None - - x = unrollout(x) - - # downsampling - hs = [self.conv_in(x)] - for i_level in range(self.num_resolutions): - for i_block in range(self.num_res_blocks): - h = self.down[i_level].block[i_block](hs[-1], temb) - if len(self.down[i_level].attn) > 0: - h = self.down[i_level].attn[i_block](h) - hs.append(h) - if i_level != self.num_resolutions-1: - hs.append(self.down[i_level].downsample(hs[-1])) - - # middle - h = hs[-1] - if self.attn_type == 'crossattention': - for m in self.mid.block_1: - h = m(h, temb) - else: - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - # end - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - - h = rollout(h) - - return h - -class Decoder_GroupConv(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, - attn_type="vanilla_groupconv", mid_layers=1, **ignorekwargs): - super().__init__() - assert not use_linear_attn - self.ch = ch - self.temb_ch = 0 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - self.give_pre_end = give_pre_end - self.tanh_out = tanh_out - - # compute in_ch_mult, block_in and curr_res at lowest res - in_ch_mult = (1,)+tuple(ch_mult) - block_in = ch*ch_mult[self.num_resolutions-1] - curr_res = resolution // 2**(self.num_resolutions-1) - self.z_shape = (1,z_channels,curr_res,curr_res) - # print("Working with z of shape {} = {} dimensions.".format( - # self.z_shape, np.prod(self.z_shape))) - - # z to block_in - self.conv_in = torch.nn.Conv2d(z_channels * 3, - block_in * 3, - kernel_size=3, - stride=1, - padding=1, - groups=3) - - # middle - self.mid = nn.Module() - self.attn_type = attn_type - if attn_type == 'crossattention': - self.mid.block_1 = nn.ModuleList() - for _ in range(mid_layers): - self.mid.block_1.append( - ResnetBlock_GroupConv(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - ) - self.mid.block_1.append( - make_attn(block_in, attn_type=attn_type) - ) - else: - self.mid.block_1 = ResnetBlock_GroupConv(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) - self.mid.block_2 = ResnetBlock_GroupConv(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # upsampling - self.up = nn.ModuleList() - for i_level in reversed(range(self.num_resolutions)): - block = nn.ModuleList() - attn = nn.ModuleList() - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks+1): - block.append(ResnetBlock_GroupConv(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - up = nn.Module() - up.block = block - up.attn = attn - if i_level != 0: - up.upsample = Upsample_GroupConv(block_in, resamp_with_conv) - curr_res = curr_res * 2 - self.up.insert(0, up) # prepend to get consistent order - - # end - self.norm_out = Normalize(block_in * 3, 32 * 3) - self.conv_out = torch.nn.Conv2d(block_in * 3, - out_ch * 3, - kernel_size=3, - stride=1, - padding=1, - groups=3) - - def forward(self, z): - #assert z.shape[1:] == self.z_shape[1:] - self.last_z_shape = z.shape - - z = unrollout(z) - - # timestep embedding - temb = None - - # z to block_in - h = self.conv_in(z) - - # middle - if self.attn_type == 'crossattention': - for m in self.mid.block_1: - h = m(h, temb) - else: - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - # upsampling - for i_level in reversed(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks+1): - h = self.up[i_level].block[i_block](h, temb) - if len(self.up[i_level].attn) > 0: - h = self.up[i_level].attn[i_block](h) - if i_level != 0: - h = self.up[i_level].upsample(h) - - # end - if self.give_pre_end: - return h - - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - if self.tanh_out: - h = torch.tanh(h) - - h = rollout(h) - - return h - - - -# not success attempts -class CrossAttnFuseBlock_GroupConv(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.in_channels = in_channels - - self.norm = Normalize(in_channels) - self.q0 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.k0 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.v0 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.q1 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.k1 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.v1 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.q2 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.k2 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.v2 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.proj_out0 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.proj_out1 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.proj_out2 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - - self.fuse_out = torch.nn.Conv2d(in_channels * 3, - in_channels, - kernel_size=1, - stride=1, - padding=0) - - def forward(self, x): - x = rollout(x) - - b, c, *spatial = x.shape - res = x.shape[-2] - plane1 = x[..., :res].reshape(b, c, res, res) - plane2 = x[..., res:res*2].reshape(b, c, res, res) - plane3 = x[..., 2*res:3*res].reshape(b, c, res, res) - - # h_ = x - # h_ = self.norm(h_) - # q = self.q(h_) - # k = self.k(h_) - # v = self.v(h_) - - q0 = self.q0(self.norm(plane2)) - k0 = self.k0(self.norm(plane2)) - v0 = self.v0(self.norm(plane2)) - - q1 = self.q1(self.norm(plane2)) - k1 = self.k1(self.norm(plane1)) - v1 = self.v1(self.norm(plane1)) - - q2 = self.q2(self.norm(plane2)) - k2 = self.k2(self.norm(plane3)) - v2 = self.v2(self.norm(plane3)) - - def compute_attention(q, k, v): - # compute attention - b,c,h,w = q.shape - q = q.reshape(b,c,h*w) - q = q.permute(0,2,1) # b,hw,c - k = k.reshape(b,c,h*w) # b,c,hw - w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] - w_ = w_ * (int(c)**(-0.5)) - w_ = torch.nn.functional.softmax(w_, dim=2) - # attend to values - v = v.reshape(b,c,h*w) - w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q) - h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] - h_ = h_.reshape(b,c,h,w) - - return h_ - - h0 = compute_attention(q0, k0, v0) - h0 = self.proj_out0(h0) - - h1 = compute_attention(q1, k1, v1) - h1 = self.proj_out1(h1) - - h2 = compute_attention(q2, k2, v2) - h2 = self.proj_out2(h2) - - fuse_out = self.fuse_out( - torch.cat([h0, h1, h2], 1) - ) - - return fuse_out - -class CrossAttnDecodeBlock_GroupConv(nn.Module): - def __init__(self, in_channels, h, w): - super().__init__() - self.in_channels = in_channels - self.h = h - self.w = w - - self.norm = Normalize(in_channels) - self.q0 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.k0 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.v0 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - - self.q1 = torch.nn.Parameter(torch.randn(1, self.in_channels, h, w)) - self.q1.requires_grad = True - - self.k1 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.v1 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - - self.q2 = torch.nn.Parameter(torch.randn(1, self.in_channels, h, w)) - self.q2.requires_grad = True - - self.k2 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.v2 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.proj_out0 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.proj_out1 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.proj_out2 = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - - self.fuse_out = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - - def forward(self, x): - # x = rollout(x) - - b, c, *spatial = x.shape - res = x.shape[-2] - # plane1 = x[..., :res].reshape(b, c, res, res) - # plane2 = x[..., res:res*2].reshape(b, c, res, res) - # plane3 = x[..., 2*res:3*res].reshape(b, c, res, res) - - # h_ = x - # h_ = self.norm(h_) - # q = self.q(h_) - # k = self.k(h_) - # v = self.v(h_) - - q0 = self.q0(self.norm(x)) - k0 = self.k0(self.norm(x)) - v0 = self.v0(self.norm(x)) - - q1 = self.q1.repeat(b, 1, 1, 1) - k1 = self.k1(self.norm(x)) - v1 = self.v1(self.norm(x)) - - q2 = self.q2.repeat(b, 1, 1, 1) - k2 = self.k2(self.norm(x)) - v2 = self.v2(self.norm(x)) - - def compute_attention(q, k, v): - # compute attention - b,c,h,w = q.shape - q = q.reshape(b,c,h*w) - q = q.permute(0,2,1) # b,hw,c - k = k.reshape(b,c,h*w) # b,c,hw - w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] - w_ = w_ * (int(c)**(-0.5)) - w_ = torch.nn.functional.softmax(w_, dim=2) - # attend to values - v = v.reshape(b,c,h*w) - w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q) - h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] - h_ = h_.reshape(b,c,h,w) - return h_ - - h0 = compute_attention(q0, k0, v0) - h0 = self.proj_out0(h0) - - h1 = compute_attention(q1, k1, v1) - h1 = self.proj_out1(h1) - - h2 = compute_attention(q2, k2, v2) - h2 = self.proj_out2(h2) - - fuse_out = self.fuse_out( - torch.cat([h1, h0, h2], -1) - ) - - fuse_out = unrollout(fuse_out) - - return fuse_out - -class Encoder_GroupConv_LateFusion(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla_groupconv", - **ignore_kwargs): - super().__init__() - assert not use_linear_attn - self.ch = ch - self.temb_ch = 0 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - - # downsampling - self.conv_in = torch.nn.Conv2d(in_channels * 3, - self.ch * 3, - kernel_size=3, - stride=1, - padding=1, - groups=3) - - curr_res = resolution - in_ch_mult = (1,)+tuple(ch_mult) - self.in_ch_mult = in_ch_mult - self.down = nn.ModuleList() - for i_level in range(self.num_resolutions): - block = nn.ModuleList() - attn = nn.ModuleList() - block_in = ch*in_ch_mult[i_level] - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks): - block.append(ResnetBlock_GroupConv(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - down = nn.Module() - down.block = block - down.attn = attn - if i_level != self.num_resolutions-1: - down.downsample = Downsample_GroupConv(block_in, resamp_with_conv) - curr_res = curr_res // 2 - self.down.append(down) - - # middle - self.mid = nn.Module() - self.mid.block_1 = ResnetBlock_GroupConv(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) - self.mid.block_2 = ResnetBlock_GroupConv(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # fuse to one plane - self.fuse = CrossAttnFuseBlock_GroupConv(block_in) - - # end - self.norm_out = Normalize(block_in, 32) - self.conv_out = torch.nn.Conv2d(block_in, - 2*z_channels if double_z else z_channels, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - # timestep embedding - temb = None - - x = unrollout(x) - - # downsampling - hs = [self.conv_in(x)] - for i_level in range(self.num_resolutions): - for i_block in range(self.num_res_blocks): - h = self.down[i_level].block[i_block](hs[-1], temb) - if len(self.down[i_level].attn) > 0: - h = self.down[i_level].attn[i_block](h) - hs.append(h) - if i_level != self.num_resolutions-1: - hs.append(self.down[i_level].downsample(hs[-1])) - - # middle - h = hs[-1] - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - h = self.fuse(h) - - # end - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - - # h = rollout(h) - - return h - -class Decoder_GroupConv_LateFusion(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, - attn_type="vanilla_groupconv", **ignorekwargs): - super().__init__() - assert not use_linear_attn - self.ch = ch - self.temb_ch = 0 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - self.give_pre_end = give_pre_end - self.tanh_out = tanh_out - - # compute in_ch_mult, block_in and curr_res at lowest res - in_ch_mult = (1,)+tuple(ch_mult) - block_in = ch*ch_mult[self.num_resolutions-1] - curr_res = resolution // 2**(self.num_resolutions-1) - self.z_shape = (1,z_channels,curr_res,curr_res) - # print("Working with z of shape {} = {} dimensions.".format( - # self.z_shape, np.prod(self.z_shape))) - - # z to block_in - self.conv_in = torch.nn.Conv2d(z_channels, - block_in, - kernel_size=3, - stride=1, - padding=1) - - # triplane decoder - self.triplane_decoder = CrossAttnDecodeBlock_GroupConv(block_in, curr_res, curr_res) - - # middle - self.mid = nn.Module() - self.mid.block_1 = ResnetBlock_GroupConv(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) - self.mid.block_2 = ResnetBlock_GroupConv(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # upsampling - self.up = nn.ModuleList() - for i_level in reversed(range(self.num_resolutions)): - block = nn.ModuleList() - attn = nn.ModuleList() - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks+1): - block.append(ResnetBlock_GroupConv(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(make_attn(block_in, attn_type=attn_type)) - up = nn.Module() - up.block = block - up.attn = attn - if i_level != 0: - up.upsample = Upsample_GroupConv(block_in, resamp_with_conv) - curr_res = curr_res * 2 - self.up.insert(0, up) # prepend to get consistent order - - # end - self.norm_out = Normalize(block_in * 3, 32 * 3) - self.conv_out = torch.nn.Conv2d(block_in * 3, - out_ch * 3, - kernel_size=3, - stride=1, - padding=1, - groups=3) - - def forward(self, z): - #assert z.shape[1:] == self.z_shape[1:] - self.last_z_shape = z.shape - - # timestep embedding - temb = None - - # z to block_in - h = self.conv_in(z) - - h = self.triplane_decoder(h) - - # middle - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - # upsampling - for i_level in reversed(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks+1): - h = self.up[i_level].block[i_block](h, temb) - if len(self.up[i_level].attn) > 0: - h = self.up[i_level].attn[i_block](h) - if i_level != 0: - h = self.up[i_level].upsample(h) - - # end - if self.give_pre_end: - return h - - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - if self.tanh_out: - h = torch.tanh(h) - - h = rollout(h) - - return h - - -# VIT Encoder and Decoder from https://github.com/thuanz123/enhancing-transformers/blob/main/enhancing/modules/stage1/layers.py -# ------------------------------------------------------------------------------------ -# Enhancing Transformers -# Copyright (c) 2022 Thuan H. Nguyen. All Rights Reserved. -# Licensed under the MIT License [see LICENSE for details] -# ------------------------------------------------------------------------------------ -# Modified from ViT-Pytorch (https://github.com/lucidrains/vit-pytorch) -# Copyright (c) 2020 Phil Wang. All Rights Reserved. -# ------------------------------------------------------------------------------------ - -import math -import numpy as np -from typing import Union, Tuple, List -from collections import OrderedDict - -import torch -import torch.nn as nn -import torch.nn.functional as F -from einops import rearrange, repeat -from einops.layers.torch import Rearrange - -def get_2d_sincos_pos_embed(embed_dim, grid_size): - """ - grid_size: int or (int, int) of the grid height and width - return: - pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) - """ - grid_size = (grid_size, grid_size) if type(grid_size) != tuple else grid_size - grid_h = np.arange(grid_size[0], dtype=np.float32) - grid_w = np.arange(grid_size[1], dtype=np.float32) - grid = np.meshgrid(grid_w, grid_h) # here w goes first - grid = np.stack(grid, axis=0) - - grid = grid.reshape([2, 1, grid_size[0], grid_size[1]]) - pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) - - return pos_embed - - -def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): - assert embed_dim % 2 == 0 - - # use half of dimensions to encode grid_h - emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) - emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) - - emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) - return emb - - -def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): - """ - embed_dim: output dimension for each position - pos: a list of positions to be encoded: size (M,) - out: (M, D) - """ - assert embed_dim % 2 == 0 - omega = np.arange(embed_dim // 2, dtype=np.float32) - omega /= embed_dim / 2. - omega = 1. / 10000**omega # (D/2,) - - pos = pos.reshape(-1) # (M,) - out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product - - emb_sin = np.sin(out) # (M, D/2) - emb_cos = np.cos(out) # (M, D/2) - - emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) - return emb - - -def init_weights(m): - if isinstance(m, nn.Linear): - # we use xavier_uniform following official JAX ViT: - torch.nn.init.xavier_uniform_(m.weight) - if m.bias is not None: - nn.init.constant_(m.bias, 0) - elif isinstance(m, nn.LayerNorm): - nn.init.constant_(m.bias, 0) - nn.init.constant_(m.weight, 1.0) - elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): - w = m.weight.data - torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) - - -class PreNorm(nn.Module): - def __init__(self, dim: int, fn: nn.Module) -> None: - super().__init__() - self.norm = nn.LayerNorm(dim) - self.fn = fn - - def forward(self, x: torch.FloatTensor, **kwargs) -> torch.FloatTensor: - return self.fn(self.norm(x), **kwargs) - - -class FeedForward(nn.Module): - def __init__(self, dim: int, hidden_dim: int) -> None: - super().__init__() - self.net = nn.Sequential( - nn.Linear(dim, hidden_dim), - nn.Tanh(), - nn.Linear(hidden_dim, dim) - ) - - def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: - return self.net(x) - - -class Attention(nn.Module): - def __init__(self, dim: int, heads: int = 8, dim_head: int = 64) -> None: - super().__init__() - inner_dim = dim_head * heads - project_out = not (heads == 1 and dim_head == dim) - - self.heads = heads - self.scale = dim_head ** -0.5 - - self.attend = nn.Softmax(dim = -1) - self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) - - self.to_out = nn.Linear(inner_dim, dim) if project_out else nn.Identity() - - def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: - qkv = self.to_qkv(x).chunk(3, dim = -1) - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) - - attn = torch.matmul(q, k.transpose(-1, -2)) * self.scale - attn = self.attend(attn) - - out = torch.matmul(attn, v) - out = rearrange(out, 'b h n d -> b n (h d)') - - return self.to_out(out) - - -class Transformer(nn.Module): - def __init__(self, dim: int, depth: int, heads: int, dim_head: int, mlp_dim: int) -> None: - super().__init__() - self.layers = nn.ModuleList([]) - for idx in range(depth): - layer = nn.ModuleList([PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head)), - PreNorm(dim, FeedForward(dim, mlp_dim))]) - self.layers.append(layer) - self.norm = nn.LayerNorm(dim) - - def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: - for attn, ff in self.layers: - x = attn(x) + x - x = ff(x) + x - - return self.norm(x) - - -class ViTEncoder(nn.Module): - def __init__(self, image_size: Union[Tuple[int, int], int], patch_size: Union[Tuple[int, int], int], - dim: int, depth: int, heads: int, mlp_dim: int, channels: int = 3, dim_head: int = 64) -> None: - super().__init__() - image_height, image_width = image_size if isinstance(image_size, tuple) \ - else (image_size, image_size) - patch_height, patch_width = patch_size if isinstance(patch_size, tuple) \ - else (patch_size, patch_size) - - assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' - en_pos_embedding = get_2d_sincos_pos_embed(dim, (image_height // patch_height, image_width // patch_width)) - - self.num_patches = (image_height // patch_height) * (image_width // patch_width) - self.patch_dim = channels * patch_height * patch_width - - self.to_patch_embedding = nn.Sequential( - nn.Conv2d(channels, dim, kernel_size=patch_size, stride=patch_size), - Rearrange('b c h w -> b (h w) c'), - ) - - self.patch_height = patch_height - self.patch_width = patch_width - self.image_height = image_height - self.image_width = image_width - self.dim = dim - - self.en_pos_embedding = nn.Parameter(torch.from_numpy(en_pos_embedding).float().unsqueeze(0), requires_grad=False) - self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim) - - self.apply(init_weights) - - def forward(self, img: torch.FloatTensor) -> torch.FloatTensor: - x = self.to_patch_embedding(img) - x = x + self.en_pos_embedding - x = self.transformer(x) - - x = Rearrange('b h w c -> b c h w')(x.reshape(-1, self.image_height // self.patch_height, self.image_width // self.patch_width, self.dim)) - - return x - - -class ViTDecoder(nn.Module): - def __init__(self, image_size: Union[Tuple[int, int], int], patch_size: Union[Tuple[int, int], int], - dim: int, depth: int, heads: int, mlp_dim: int, channels: int = 3, dim_head: int = 64) -> None: - super().__init__() - image_height, image_width = image_size if isinstance(image_size, tuple) \ - else (image_size, image_size) - patch_height, patch_width = patch_size if isinstance(patch_size, tuple) \ - else (patch_size, patch_size) - - assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' - de_pos_embedding = get_2d_sincos_pos_embed(dim, (image_height // patch_height, image_width // patch_width)) - - self.num_patches = (image_height // patch_height) * (image_width // patch_width) - self.patch_dim = channels * patch_height * patch_width - - self.patch_height = patch_height - self.patch_width = patch_width - self.image_height = image_height - self.image_width = image_width - self.dim = dim - - self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim) - self.de_pos_embedding = nn.Parameter(torch.from_numpy(de_pos_embedding).float().unsqueeze(0), requires_grad=False) - self.to_pixel = nn.Sequential( - Rearrange('b (h w) c -> b c h w', h=image_height // patch_height), - nn.ConvTranspose2d(dim, channels, kernel_size=patch_size, stride=patch_size) - ) - - self.apply(init_weights) - - def forward(self, token: torch.FloatTensor) -> torch.FloatTensor: - token = Rearrange('b c h w -> b (h w) c')(token) - - x = token + self.de_pos_embedding - x = self.transformer(x) - x = self.to_pixel(x) - - return x - - def get_last_layer(self) -> nn.Parameter: - return self.to_pixel[-1].weight diff --git a/3DTopia/module/nn_2d.py b/3DTopia/module/nn_2d.py deleted file mode 100644 index d44cc7f0b0aa6106053343d509c73bf7b466aba0..0000000000000000000000000000000000000000 --- a/3DTopia/module/nn_2d.py +++ /dev/null @@ -1,546 +0,0 @@ -# adopted from -# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py -# and -# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py -# and -# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py -# -# thanks! - -# zero123/zero123/ldm/modules/diffusionmodules/util.py -import os -import math -import torch -import torch.nn as nn -import numpy as np -from einops import repeat - - -def instantiate_from_config(config): - if not "target" in config: - if config == '__is_first_stage__': - return None - elif config == "__is_unconditional__": - return None - raise KeyError("Expected key `target` to instantiate.") - return get_obj_from_str(config["target"])(**config.get("params", dict())) - - -def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): - if schedule == "linear": - betas = ( - torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 - ) - - elif schedule == "cosine": - timesteps = ( - torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s - ) - alphas = timesteps / (1 + cosine_s) * np.pi / 2 - alphas = torch.cos(alphas).pow(2) - alphas = alphas / alphas[0] - betas = 1 - alphas[1:] / alphas[:-1] - betas = np.clip(betas, a_min=0, a_max=0.999) - - elif schedule == "sqrt_linear": - betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) - elif schedule == "sqrt": - betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5 - else: - raise ValueError(f"schedule '{schedule}' unknown.") - return betas.numpy() - - -def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True): - if ddim_discr_method == 'uniform': - c = num_ddpm_timesteps // num_ddim_timesteps - ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) - elif ddim_discr_method == 'quad': - ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int) - else: - raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"') - - # assert ddim_timesteps.shape[0] == num_ddim_timesteps - # add one to get the final alpha values right (the ones from first scale to data during sampling) - steps_out = ddim_timesteps + 1 - if verbose: - print(f'Selected timesteps for ddim sampler: {steps_out}') - return steps_out - - -def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): - # select alphas for computing the variance schedule - alphas = alphacums[ddim_timesteps] - alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) - - # according the the formula provided in https://arxiv.org/abs/2010.02502 - sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)) - if verbose: - print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}') - print(f'For the chosen value of eta, which is {eta}, ' - f'this results in the following sigma_t schedule for ddim sampler {sigmas}') - return sigmas, alphas, alphas_prev - - -def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): - """ - Create a beta schedule that discretizes the given alpha_t_bar function, - which defines the cumulative product of (1-beta) over time from t = [0,1]. - :param num_diffusion_timesteps: the number of betas to produce. - :param alpha_bar: a lambda that takes an argument t from 0 to 1 and - produces the cumulative product of (1-beta) up to that - part of the diffusion process. - :param max_beta: the maximum beta to use; use values lower than 1 to - prevent singularities. - """ - betas = [] - for i in range(num_diffusion_timesteps): - t1 = i / num_diffusion_timesteps - t2 = (i + 1) / num_diffusion_timesteps - betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) - return np.array(betas) - - -def extract_into_tensor(a, t, x_shape): - b, *_ = t.shape - out = a.gather(-1, t) - return out.reshape(b, *((1,) * (len(x_shape) - 1))) - - -def checkpoint(func, inputs, params, flag): - """ - Evaluate a function without caching intermediate activations, allowing for - reduced memory at the expense of extra compute in the backward pass. - :param func: the function to evaluate. - :param inputs: the argument sequence to pass to `func`. - :param params: a sequence of parameters `func` depends on but does not - explicitly take as arguments. - :param flag: if False, disable gradient checkpointing. - """ - if flag: - args = tuple(inputs) + tuple(params) - return CheckpointFunction.apply(func, len(inputs), *args) - else: - return func(*inputs) - - -class CheckpointFunction(torch.autograd.Function): - @staticmethod - def forward(ctx, run_function, length, *args): - ctx.run_function = run_function - ctx.input_tensors = list(args[:length]) - ctx.input_params = list(args[length:]) - - with torch.no_grad(): - output_tensors = ctx.run_function(*ctx.input_tensors) - return output_tensors - - @staticmethod - def backward(ctx, *output_grads): - ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] - with torch.enable_grad(): - # Fixes a bug where the first op in run_function modifies the - # Tensor storage in place, which is not allowed for detach()'d - # Tensors. - shallow_copies = [x.view_as(x) for x in ctx.input_tensors] - output_tensors = ctx.run_function(*shallow_copies) - input_grads = torch.autograd.grad( - output_tensors, - ctx.input_tensors + ctx.input_params, - output_grads, - allow_unused=True, - ) - del ctx.input_tensors - del ctx.input_params - del output_tensors - return (None, None) + input_grads - - -def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): - """ - Create sinusoidal timestep embeddings. - :param timesteps: a 1-D Tensor of N indices, one per batch element. - These may be fractional. - :param dim: the dimension of the output. - :param max_period: controls the minimum frequency of the embeddings. - :return: an [N x dim] Tensor of positional embeddings. - """ - if not repeat_only: - half = dim // 2 - freqs = torch.exp( - -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half - ).to(device=timesteps.device) - args = timesteps[:, None].float() * freqs[None] - embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) - if dim % 2: - embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) - else: - embedding = repeat(timesteps, 'b -> b d', d=dim) - return embedding - - -def zero_module(module): - """ - Zero out the parameters of a module and return it. - """ - for p in module.parameters(): - p.detach().zero_() - return module - - -def scale_module(module, scale): - """ - Scale the parameters of a module and return it. - """ - for p in module.parameters(): - p.detach().mul_(scale) - return module - - -def mean_flat(tensor): - """ - Take the mean over all non-batch dimensions. - """ - return tensor.mean(dim=list(range(1, len(tensor.shape)))) - - -def normalization(channels): - """ - Make a standard normalization layer. - :param channels: number of input channels. - :return: an nn.Module for normalization. - """ - return GroupNorm32(32, channels) - - -# PyTorch 1.7 has SiLU, but we support PyTorch 1.5. -class SiLU(nn.Module): - def forward(self, x): - return x * torch.sigmoid(x) - - -class GroupNorm32(nn.GroupNorm): - def forward(self, x): - return super().forward(x.float()).type(x.dtype) - -def conv_nd(dims, *args, **kwargs): - """ - Create a 1D, 2D, or 3D convolution module. - """ - if dims == 1: - return nn.Conv1d(*args, **kwargs) - elif dims == 2: - return nn.Conv2d(*args, **kwargs) - elif dims == 3: - return nn.Conv3d(*args, **kwargs) - raise ValueError(f"unsupported dimensions: {dims}") - - -def linear(*args, **kwargs): - """ - Create a linear module. - """ - return nn.Linear(*args, **kwargs) - - -def avg_pool_nd(dims, *args, **kwargs): - """ - Create a 1D, 2D, or 3D average pooling module. - """ - if dims == 1: - return nn.AvgPool1d(*args, **kwargs) - elif dims == 2: - return nn.AvgPool2d(*args, **kwargs) - elif dims == 3: - return nn.AvgPool3d(*args, **kwargs) - raise ValueError(f"unsupported dimensions: {dims}") - - -class HybridConditioner(nn.Module): - - def __init__(self, c_concat_config, c_crossattn_config): - super().__init__() - self.concat_conditioner = instantiate_from_config(c_concat_config) - self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) - - def forward(self, c_concat, c_crossattn): - c_concat = self.concat_conditioner(c_concat) - c_crossattn = self.crossattn_conditioner(c_crossattn) - return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]} - - -def noise_like(shape, device, repeat=False): - repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) - noise = lambda: torch.randn(shape, device=device) - return repeat_noise() if repeat else noise() - - -# zero123/zero123/ldm/modules/attention.py -from inspect import isfunction -import math -import torch -import torch.nn.functional as F -from torch import nn, einsum -from einops import rearrange, repeat - - -def exists(val): - return val is not None - - -def uniq(arr): - return{el: True for el in arr}.keys() - - -def default(val, d): - if exists(val): - return val - return d() if isfunction(d) else d - - -def max_neg_value(t): - return -torch.finfo(t.dtype).max - - -def init_(tensor): - dim = tensor.shape[-1] - std = 1 / math.sqrt(dim) - tensor.uniform_(-std, std) - return tensor - - -# feedforward -class GEGLU(nn.Module): - def __init__(self, dim_in, dim_out): - super().__init__() - self.proj = nn.Linear(dim_in, dim_out * 2) - - def forward(self, x): - x, gate = self.proj(x).chunk(2, dim=-1) - return x * F.gelu(gate) - - -class FeedForward(nn.Module): - def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): - super().__init__() - inner_dim = int(dim * mult) - dim_out = default(dim_out, dim) - project_in = nn.Sequential( - nn.Linear(dim, inner_dim), - nn.GELU() - ) if not glu else GEGLU(dim, inner_dim) - - self.net = nn.Sequential( - project_in, - nn.Dropout(dropout), - nn.Linear(inner_dim, dim_out) - ) - - def forward(self, x): - return self.net(x) - - -def zero_module(module): - """ - Zero out the parameters of a module and return it. - """ - for p in module.parameters(): - p.detach().zero_() - return module - - -def Normalize(in_channels): - return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) - - -class LinearAttention(nn.Module): - def __init__(self, dim, heads=4, dim_head=32): - super().__init__() - self.heads = heads - hidden_dim = dim_head * heads - self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) - self.to_out = nn.Conv2d(hidden_dim, dim, 1) - - def forward(self, x): - b, c, h, w = x.shape - qkv = self.to_qkv(x) - q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) - k = k.softmax(dim=-1) - context = torch.einsum('bhdn,bhen->bhde', k, v) - out = torch.einsum('bhde,bhdn->bhen', context, q) - out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) - return self.to_out(out) - - -class SpatialSelfAttention(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.in_channels = in_channels - - self.norm = Normalize(in_channels) - self.q = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.k = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.v = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.proj_out = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - - def forward(self, x): - h_ = x - h_ = self.norm(h_) - q = self.q(h_) - k = self.k(h_) - v = self.v(h_) - - # compute attention - b,c,h,w = q.shape - q = rearrange(q, 'b c h w -> b (h w) c') - k = rearrange(k, 'b c h w -> b c (h w)') - w_ = torch.einsum('bij,bjk->bik', q, k) - - w_ = w_ * (int(c)**(-0.5)) - w_ = torch.nn.functional.softmax(w_, dim=2) - - # attend to values - v = rearrange(v, 'b c h w -> b c (h w)') - w_ = rearrange(w_, 'b i j -> b j i') - h_ = torch.einsum('bij,bjk->bik', v, w_) - h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) - h_ = self.proj_out(h_) - - return x+h_ - - -class CrossAttention(nn.Module): - def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): - super().__init__() - inner_dim = dim_head * heads - context_dim = default(context_dim, query_dim) - - self.scale = dim_head ** -0.5 - self.heads = heads - - self.to_q = nn.Linear(query_dim, inner_dim, bias=False) - self.to_k = nn.Linear(context_dim, inner_dim, bias=False) - self.to_v = nn.Linear(context_dim, inner_dim, bias=False) - - self.to_out = nn.Sequential( - nn.Linear(inner_dim, query_dim), - nn.Dropout(dropout) - ) - - def forward(self, x, context=None, mask=None): - h = self.heads - - q = self.to_q(x) - context = default(context, x) - k = self.to_k(context) - v = self.to_v(context) - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) - - sim = einsum('b i d, b j d -> b i j', q, k) * self.scale - - if exists(mask): - mask = rearrange(mask, 'b ... -> b (...)') - max_neg_value = -torch.finfo(sim.dtype).max - mask = repeat(mask, 'b j -> (b h) () j', h=h) - sim.masked_fill_(~mask, max_neg_value) - - # attention, what we cannot get enough of - attn = sim.softmax(dim=-1) - - out = einsum('b i j, b j d -> b i d', attn, v) - out = rearrange(out, '(b h) n d -> b n (h d)', h=h) - return self.to_out(out) - - -class BasicTransformerBlock(nn.Module): - def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, - disable_self_attn=False): - super().__init__() - self.disable_self_attn = disable_self_attn - self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, - context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn - self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) - self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, - heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none - self.norm1 = nn.LayerNorm(dim) - self.norm2 = nn.LayerNorm(dim) - self.norm3 = nn.LayerNorm(dim) - self.checkpoint = checkpoint - - def forward(self, x, context=None): - return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) - - def _forward(self, x, context=None): - x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x - x = self.attn2(self.norm2(x), context=context) + x - x = self.ff(self.norm3(x)) + x - return x - - -class SpatialTransformer(nn.Module): - """ - Transformer block for image-like data. - First, project the input (aka embedding) - and reshape to b, t, d. - Then apply standard transformer action. - Finally, reshape to image - """ - def __init__(self, in_channels, n_heads, d_head, - depth=1, dropout=0., context_dim=None, - disable_self_attn=False): - super().__init__() - self.in_channels = in_channels - inner_dim = n_heads * d_head - self.norm = Normalize(in_channels) - - self.proj_in = nn.Conv2d(in_channels, - inner_dim, - kernel_size=1, - stride=1, - padding=0) - - self.transformer_blocks = nn.ModuleList( - [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim, - disable_self_attn=disable_self_attn) - for d in range(depth)] - ) - - self.proj_out = zero_module(nn.Conv2d(inner_dim, - in_channels, - kernel_size=1, - stride=1, - padding=0)) - - def forward(self, x, context=None): - # note: if no context is given, cross-attention defaults to self-attention - b, c, h, w = x.shape - x_in = x - x = self.norm(x) - x = self.proj_in(x) - x = rearrange(x, 'b c h w -> b (h w) c').contiguous() - for block in self.transformer_blocks: - x = block(x, context=context) - x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() - x = self.proj_out(x) - return x + x_in - - -def exists(x): - return x is not None diff --git a/3DTopia/module/quantise.py b/3DTopia/module/quantise.py deleted file mode 100644 index 07540d6d99f649a6cbd9cb3c8b6a608a77f4e4fa..0000000000000000000000000000000000000000 --- a/3DTopia/module/quantise.py +++ /dev/null @@ -1,159 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -import numpy as np -from torch import einsum -from einops import rearrange - - -class VectorQuantiser(nn.Module): - """ - Improved version over vector quantiser, with the dynamic initialisation - for these unoptimised "dead" points. - num_embed: number of codebook entry - embed_dim: dimensionality of codebook entry - beta: weight for the commitment loss - distance: distance for looking up the closest code - anchor: anchor sampled methods - first_batch: if true, the offline version of our model - contras_loss: if true, use the contras_loss to further improve the performance - """ - def __init__(self, num_embed, embed_dim, beta, distance='cos', - anchor='probrandom', first_batch=False, contras_loss=False): - super().__init__() - - self.num_embed = num_embed - self.embed_dim = embed_dim - self.beta = beta - self.distance = distance - self.anchor = anchor - self.first_batch = first_batch - self.contras_loss = contras_loss - self.decay = 0.99 - self.init = False - - self.pool = FeaturePool(self.num_embed, self.embed_dim) - self.embedding = nn.Embedding(self.num_embed, self.embed_dim) - self.embedding.weight.data.uniform_(-1.0 / self.num_embed, 1.0 / self.num_embed) - self.register_buffer("embed_prob", torch.zeros(self.num_embed)) - - - def forward(self, z, temp=None, rescale_logits=False, return_logits=False): - assert temp is None or temp==1.0, "Only for interface compatible with Gumbel" - assert rescale_logits==False, "Only for interface compatible with Gumbel" - assert return_logits==False, "Only for interface compatible with Gumbel" - # reshape z -> (batch, height, width, channel) and flatten - z = rearrange(z, 'b c h w -> b h w c').contiguous() - z_flattened = z.view(-1, self.embed_dim) - - # clculate the distance - if self.distance == 'l2': - # l2 distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z - d = - torch.sum(z_flattened.detach() ** 2, dim=1, keepdim=True) - \ - torch.sum(self.embedding.weight ** 2, dim=1) + \ - 2 * torch.einsum('bd, dn-> bn', z_flattened.detach(), rearrange(self.embedding.weight, 'n d-> d n')) - elif self.distance == 'cos': - # cosine distances from z to embeddings e_j - normed_z_flattened = F.normalize(z_flattened, dim=1).detach() - normed_codebook = F.normalize(self.embedding.weight, dim=1) - d = torch.einsum('bd,dn->bn', normed_z_flattened, rearrange(normed_codebook, 'n d -> d n')) - - # encoding - sort_distance, indices = d.sort(dim=1) - # look up the closest point for the indices - encoding_indices = indices[:,-1] - encodings = torch.zeros(encoding_indices.unsqueeze(1).shape[0], self.num_embed, device=z.device) - encodings.scatter_(1, encoding_indices.unsqueeze(1), 1) - - # quantise and unflatten - z_q = torch.matmul(encodings, self.embedding.weight).view(z.shape) - # compute loss for embedding - loss = self.beta * torch.mean((z_q.detach()-z)**2) + torch.mean((z_q - z.detach()) ** 2) - # preserve gradients - z_q = z + (z_q - z).detach() - # reshape back to match original input shape - z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous() - # count - # import pdb - # pdb.set_trace() - avg_probs = torch.mean(encodings, dim=0) - perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) - min_encodings = encodings - - # online clustered reinitialisation for unoptimized points - if self.training: - # calculate the average usage of code entries - self.embed_prob.mul_(self.decay).add_(avg_probs, alpha= 1 - self.decay) - # running average updates - if self.anchor in ['closest', 'random', 'probrandom'] and (not self.init): - # closest sampling - if self.anchor == 'closest': - sort_distance, indices = d.sort(dim=0) - random_feat = z_flattened.detach()[indices[-1,:]] - # feature pool based random sampling - elif self.anchor == 'random': - random_feat = self.pool.query(z_flattened.detach()) - # probabilitical based random sampling - elif self.anchor == 'probrandom': - norm_distance = F.softmax(d.t(), dim=1) - prob = torch.multinomial(norm_distance, num_samples=1).view(-1) - random_feat = z_flattened.detach()[prob] - # decay parameter based on the average usage - decay = torch.exp(-(self.embed_prob*self.num_embed*10)/(1-self.decay)-1e-3).unsqueeze(1).repeat(1, self.embed_dim) - self.embedding.weight.data = self.embedding.weight.data * (1 - decay) + random_feat * decay - if self.first_batch: - self.init = True - # contrastive loss - if self.contras_loss: - sort_distance, indices = d.sort(dim=0) - dis_pos = sort_distance[-max(1, int(sort_distance.size(0)/self.num_embed)):,:].mean(dim=0, keepdim=True) - dis_neg = sort_distance[:int(sort_distance.size(0)*1/2),:] - dis = torch.cat([dis_pos, dis_neg], dim=0).t() / 0.07 - contra_loss = F.cross_entropy(dis, torch.zeros((dis.size(0),), dtype=torch.long, device=dis.device)) - loss += contra_loss - - return z_q, loss, (perplexity, min_encodings, encoding_indices) - -class FeaturePool(): - """ - This class implements a feature buffer that stores previously encoded features - - This buffer enables us to initialize the codebook using a history of generated features - rather than the ones produced by the latest encoders - """ - def __init__(self, pool_size, dim=64): - """ - Initialize the FeaturePool class - - Parameters: - pool_size(int) -- the size of featue buffer - """ - self.pool_size = pool_size - if self.pool_size > 0: - self.nums_features = 0 - self.features = (torch.rand((pool_size, dim)) * 2 - 1)/ pool_size - - def query(self, features): - """ - return features from the pool - """ - self.features = self.features.to(features.device) - if self.nums_features < self.pool_size: - if features.size(0) > self.pool_size: # if the batch size is large enough, directly update the whole codebook - random_feat_id = torch.randint(0, features.size(0), (int(self.pool_size),)) - self.features = features[random_feat_id] - self.nums_features = self.pool_size - else: - # if the mini-batch is not large nuough, just store it for the next update - num = self.nums_features + features.size(0) - self.features[self.nums_features:num] = features - self.nums_features = num - else: - if features.size(0) > int(self.pool_size): - random_feat_id = torch.randint(0, features.size(0), (int(self.pool_size),)) - self.features = features[random_feat_id] - else: - random_id = torch.randperm(self.pool_size) - self.features[random_id[:features.size(0)]] = features - - return self.features diff --git a/3DTopia/module/quantize_taming.py b/3DTopia/module/quantize_taming.py deleted file mode 100644 index e018d4c07ed5ddd513ca46ea2f063000bdd6ddc1..0000000000000000000000000000000000000000 --- a/3DTopia/module/quantize_taming.py +++ /dev/null @@ -1,564 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -import numpy as np -from torch import einsum -from einops import rearrange - - -class VectorQuantizer(nn.Module): - """ - see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py - ____________________________________________ - Discretization bottleneck part of the VQ-VAE. - Inputs: - - n_e : number of embeddings - - e_dim : dimension of embedding - - beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 - _____________________________________________ - """ - - # NOTE: this class contains a bug regarding beta; see VectorQuantizer2 for - # a fix and use legacy=False to apply that fix. VectorQuantizer2 can be - # used wherever VectorQuantizer has been used before and is additionally - # more efficient. - def __init__(self, n_e, e_dim, beta): - super(VectorQuantizer, self).__init__() - self.n_e = n_e - self.e_dim = e_dim - self.beta = beta - - self.embedding = nn.Embedding(self.n_e, self.e_dim) - self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) - - def forward(self, z): - """ - Inputs the output of the encoder network z and maps it to a discrete - one-hot vector that is the index of the closest embedding vector e_j - z (continuous) -> z_q (discrete) - z.shape = (batch, channel, height, width) - quantization pipeline: - 1. get encoder input (B,C,H,W) - 2. flatten input to (B*H*W,C) - """ - # reshape z -> (batch, height, width, channel) and flatten - z = z.permute(0, 2, 3, 1).contiguous() - z_flattened = z.view(-1, self.e_dim) - # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z - - d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ - torch.sum(self.embedding.weight**2, dim=1) - 2 * \ - torch.matmul(z_flattened, self.embedding.weight.t()) - - ## could possible replace this here - # #\start... - # find closest encodings - min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1) - - min_encodings = torch.zeros( - min_encoding_indices.shape[0], self.n_e).to(z) - min_encodings.scatter_(1, min_encoding_indices, 1) - - # dtype min encodings: torch.float32 - # min_encodings shape: torch.Size([2048, 512]) - # min_encoding_indices.shape: torch.Size([2048, 1]) - - # get quantized latent vectors - z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) - #.........\end - - # with: - # .........\start - #min_encoding_indices = torch.argmin(d, dim=1) - #z_q = self.embedding(min_encoding_indices) - # ......\end......... (TODO) - - # compute loss for embedding - loss = torch.mean((z_q.detach()-z)**2) + self.beta * \ - torch.mean((z_q - z.detach()) ** 2) - - # preserve gradients - z_q = z + (z_q - z).detach() - - # perplexity - e_mean = torch.mean(min_encodings, dim=0) - perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) - - # reshape back to match original input shape - z_q = z_q.permute(0, 3, 1, 2).contiguous() - - return z_q, loss, (perplexity, min_encodings, min_encoding_indices) - - def get_codebook_entry(self, indices, shape): - # shape specifying (batch, height, width, channel) - # TODO: check for more easy handling with nn.Embedding - min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices) - min_encodings.scatter_(1, indices[:,None], 1) - - # get quantized latent vectors - z_q = torch.matmul(min_encodings.float(), self.embedding.weight) - - if shape is not None: - z_q = z_q.view(shape) - - # reshape back to match original input shape - z_q = z_q.permute(0, 3, 1, 2).contiguous() - - return z_q - - -class GumbelQuantize(nn.Module): - """ - credit to @karpathy: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py (thanks!) - Gumbel Softmax trick quantizer - Categorical Reparameterization with Gumbel-Softmax, Jang et al. 2016 - https://arxiv.org/abs/1611.01144 - """ - def __init__(self, num_hiddens, embedding_dim, n_embed, straight_through=True, - kl_weight=5e-4, temp_init=1.0, use_vqinterface=True, - remap=None, unknown_index="random"): - super().__init__() - - self.embedding_dim = embedding_dim - self.n_embed = n_embed - - self.straight_through = straight_through - self.temperature = temp_init - self.kl_weight = kl_weight - - self.proj = nn.Conv2d(num_hiddens, n_embed, 1) - self.embed = nn.Embedding(n_embed, embedding_dim) - - self.use_vqinterface = use_vqinterface - - self.remap = remap - if self.remap is not None: - self.register_buffer("used", torch.tensor(np.load(self.remap))) - self.re_embed = self.used.shape[0] - self.unknown_index = unknown_index # "random" or "extra" or integer - if self.unknown_index == "extra": - self.unknown_index = self.re_embed - self.re_embed = self.re_embed+1 - print(f"Remapping {self.n_embed} indices to {self.re_embed} indices. " - f"Using {self.unknown_index} for unknown indices.") - else: - self.re_embed = n_embed - - def remap_to_used(self, inds): - ishape = inds.shape - assert len(ishape)>1 - inds = inds.reshape(ishape[0],-1) - used = self.used.to(inds) - match = (inds[:,:,None]==used[None,None,...]).long() - new = match.argmax(-1) - unknown = match.sum(2)<1 - if self.unknown_index == "random": - new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device) - else: - new[unknown] = self.unknown_index - return new.reshape(ishape) - - def unmap_to_all(self, inds): - ishape = inds.shape - assert len(ishape)>1 - inds = inds.reshape(ishape[0],-1) - used = self.used.to(inds) - if self.re_embed > self.used.shape[0]: # extra token - inds[inds>=self.used.shape[0]] = 0 # simply set to zero - back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds) - return back.reshape(ishape) - - def forward(self, z, temp=None, return_logits=False): - # force hard = True when we are in eval mode, as we must quantize. actually, always true seems to work - hard = self.straight_through if self.training else True - temp = self.temperature if temp is None else temp - - logits = self.proj(z) - if self.remap is not None: - # continue only with used logits - full_zeros = torch.zeros_like(logits) - logits = logits[:,self.used,...] - - soft_one_hot = F.gumbel_softmax(logits, tau=temp, dim=1, hard=hard) - if self.remap is not None: - # go back to all entries but unused set to zero - full_zeros[:,self.used,...] = soft_one_hot - soft_one_hot = full_zeros - z_q = einsum('b n h w, n d -> b d h w', soft_one_hot, self.embed.weight) - - # + kl divergence to the prior loss - qy = F.softmax(logits, dim=1) - diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.n_embed + 1e-10), dim=1).mean() - - ind = soft_one_hot.argmax(dim=1) - if self.remap is not None: - ind = self.remap_to_used(ind) - if self.use_vqinterface: - if return_logits: - return z_q, diff, (None, None, ind), logits - return z_q, diff, (None, None, ind) - return z_q, diff, ind - - def get_codebook_entry(self, indices, shape): - b, h, w, c = shape - assert b*h*w == indices.shape[0] - indices = rearrange(indices, '(b h w) -> b h w', b=b, h=h, w=w) - if self.remap is not None: - indices = self.unmap_to_all(indices) - one_hot = F.one_hot(indices, num_classes=self.n_embed).permute(0, 3, 1, 2).float() - z_q = einsum('b n h w, n d -> b d h w', one_hot, self.embed.weight) - return z_q - - -class VectorQuantizer2(nn.Module): - """ - Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly - avoids costly matrix multiplications and allows for post-hoc remapping of indices. - """ - # NOTE: due to a bug the beta term was applied to the wrong term. for - # backwards compatibility we use the buggy version by default, but you can - # specify legacy=False to fix it. - def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", - sane_index_shape=False, legacy=True): - super().__init__() - self.n_e = n_e - self.e_dim = e_dim - self.beta = beta - self.legacy = legacy - - self.embedding = nn.Embedding(self.n_e, self.e_dim) - self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) - - self.remap = remap - if self.remap is not None: - self.register_buffer("used", torch.tensor(np.load(self.remap))) - self.re_embed = self.used.shape[0] - self.unknown_index = unknown_index # "random" or "extra" or integer - if self.unknown_index == "extra": - self.unknown_index = self.re_embed - self.re_embed = self.re_embed+1 - print(f"Remapping {self.n_e} indices to {self.re_embed} indices. " - f"Using {self.unknown_index} for unknown indices.") - else: - self.re_embed = n_e - - self.sane_index_shape = sane_index_shape - - def remap_to_used(self, inds): - ishape = inds.shape - assert len(ishape)>1 - inds = inds.reshape(ishape[0],-1) - used = self.used.to(inds) - match = (inds[:,:,None]==used[None,None,...]).long() - new = match.argmax(-1) - unknown = match.sum(2)<1 - if self.unknown_index == "random": - new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device) - else: - new[unknown] = self.unknown_index - return new.reshape(ishape) - - def unmap_to_all(self, inds): - ishape = inds.shape - assert len(ishape)>1 - inds = inds.reshape(ishape[0],-1) - used = self.used.to(inds) - if self.re_embed > self.used.shape[0]: # extra token - inds[inds>=self.used.shape[0]] = 0 # simply set to zero - back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds) - return back.reshape(ishape) - - def forward(self, z, temp=None, rescale_logits=False, return_logits=False): - assert temp is None or temp==1.0, "Only for interface compatible with Gumbel" - assert rescale_logits==False, "Only for interface compatible with Gumbel" - assert return_logits==False, "Only for interface compatible with Gumbel" - # reshape z -> (batch, height, width, channel) and flatten - z = rearrange(z, 'b c h w -> b h w c').contiguous() - z_flattened = z.view(-1, self.e_dim) - # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z - - d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ - torch.sum(self.embedding.weight**2, dim=1) - 2 * \ - torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n')) - - min_encoding_indices = torch.argmin(d, dim=1) - z_q = self.embedding(min_encoding_indices).view(z.shape) - perplexity = 0 - min_encodings = None - - # compute loss for embedding - if not self.legacy: - loss = self.beta * torch.mean((z_q.detach()-z)**2) + \ - torch.mean((z_q - z.detach()) ** 2) - else: - loss = torch.mean((z_q.detach()-z)**2) + self.beta * \ - torch.mean((z_q - z.detach()) ** 2) - - # preserve gradients - z_q = z + (z_q - z).detach() - - # reshape back to match original input shape - z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous() - - if self.remap is not None: - min_encoding_indices = min_encoding_indices.reshape(z.shape[0],-1) # add batch axis - min_encoding_indices = self.remap_to_used(min_encoding_indices) - min_encoding_indices = min_encoding_indices.reshape(-1,1) # flatten - - if self.sane_index_shape: - min_encoding_indices = min_encoding_indices.reshape( - z_q.shape[0], z_q.shape[2], z_q.shape[3]) - - return z_q, loss, (perplexity, min_encodings, min_encoding_indices) - - def get_codebook_entry(self, indices, shape): - # shape specifying (batch, height, width, channel) - if self.remap is not None: - indices = indices.reshape(shape[0],-1) # add batch axis - indices = self.unmap_to_all(indices) - indices = indices.reshape(-1) # flatten again - - # get quantized latent vectors - z_q = self.embedding(indices) - - if shape is not None: - z_q = z_q.view(shape) - # reshape back to match original input shape - z_q = z_q.permute(0, 3, 1, 2).contiguous() - - return z_q - -class EmbeddingEMA(nn.Module): - def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5): - super().__init__() - self.decay = decay - self.eps = eps - weight = torch.randn(num_tokens, codebook_dim) - self.weight = nn.Parameter(weight, requires_grad = False) - self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad = False) - self.embed_avg = nn.Parameter(weight.clone(), requires_grad = False) - self.update = True - - def forward(self, embed_id): - return F.embedding(embed_id, self.weight) - - def cluster_size_ema_update(self, new_cluster_size): - self.cluster_size.data.mul_(self.decay).add_(new_cluster_size, alpha=1 - self.decay) - - def embed_avg_ema_update(self, new_embed_avg): - self.embed_avg.data.mul_(self.decay).add_(new_embed_avg, alpha=1 - self.decay) - - def weight_update(self, num_tokens): - n = self.cluster_size.sum() - smoothed_cluster_size = ( - (self.cluster_size + self.eps) / (n + num_tokens * self.eps) * n - ) - #normalize embedding average with smoothed cluster size - embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1) - self.weight.data.copy_(embed_normalized) - - -class EMAVectorQuantizer(nn.Module): - def __init__(self, n_embed, codebook_dim, beta, decay=0.99, eps=1e-5, - remap=None, unknown_index="random"): - super().__init__() - self.codebook_dim = codebook_dim - self.num_tokens = n_embed - self.beta = beta - self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps) - - self.remap = remap - if self.remap is not None: - self.register_buffer("used", torch.tensor(np.load(self.remap))) - self.re_embed = self.used.shape[0] - self.unknown_index = unknown_index # "random" or "extra" or integer - if self.unknown_index == "extra": - self.unknown_index = self.re_embed - self.re_embed = self.re_embed+1 - print(f"Remapping {self.n_embed} indices to {self.re_embed} indices. " - f"Using {self.unknown_index} for unknown indices.") - else: - self.re_embed = n_embed - - def remap_to_used(self, inds): - ishape = inds.shape - assert len(ishape)>1 - inds = inds.reshape(ishape[0],-1) - used = self.used.to(inds) - match = (inds[:,:,None]==used[None,None,...]).long() - new = match.argmax(-1) - unknown = match.sum(2)<1 - if self.unknown_index == "random": - new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device) - else: - new[unknown] = self.unknown_index - return new.reshape(ishape) - - def unmap_to_all(self, inds): - ishape = inds.shape - assert len(ishape)>1 - inds = inds.reshape(ishape[0],-1) - used = self.used.to(inds) - if self.re_embed > self.used.shape[0]: # extra token - inds[inds>=self.used.shape[0]] = 0 # simply set to zero - back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds) - return back.reshape(ishape) - - def dequantize(self, ids): - return self.embedding(ids) - - def forward(self, z): - # reshape z -> (batch, height, width, channel) and flatten - #z, 'b c h w -> b h w c' - z = rearrange(z, 'b c h w -> b h w c') - z_flattened = z.reshape(-1, self.codebook_dim) - - # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z - d = z_flattened.pow(2).sum(dim=1, keepdim=True) + \ - self.embedding.weight.pow(2).sum(dim=1) - 2 * \ - torch.einsum('bd,nd->bn', z_flattened, self.embedding.weight) # 'n d -> d n' - - - encoding_indices = torch.argmin(d, dim=1) - - z_q = self.embedding(encoding_indices).view(z.shape) - encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype) - avg_probs = torch.mean(encodings, dim=0) - perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) - - if self.training and self.embedding.update: - #EMA cluster size - encodings_sum = encodings.sum(0) - self.embedding.cluster_size_ema_update(encodings_sum) - #EMA embedding average - embed_sum = encodings.transpose(0,1) @ z_flattened - self.embedding.embed_avg_ema_update(embed_sum) - #normalize embed_avg and update weight - self.embedding.weight_update(self.num_tokens) - - # compute loss for embedding - loss = self.beta * F.mse_loss(z_q.detach(), z) - - # preserve gradients - z_q = z + (z_q - z).detach() - - # reshape back to match original input shape - #z_q, 'b h w c -> b c h w' - z_q = rearrange(z_q, 'b h w c -> b c h w') - return z_q, loss, (perplexity, encodings, encoding_indices) - - -class QuantizeEMAReset(nn.Module): - def __init__(self, nb_code, code_dim, mu): - super().__init__() - self.nb_code = nb_code - self.code_dim = code_dim - self.mu = mu - self.reset_codebook() - - def reset_codebook(self): - self.init = False - self.code_sum = None - self.code_count = None - device = "cuda" if torch.cuda.is_available() else "cpu" - self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim).to(device)) - - def _tile(self, x): - nb_code_x, code_dim = x.shape - if nb_code_x < self.nb_code: - n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x - std = 0.01 / np.sqrt(code_dim) - out = x.repeat(n_repeats, 1) - out = out + torch.randn_like(out) * std - else : - out = x - return out - - def init_codebook(self, x): - out = self._tile(x) - self.codebook = out[:self.nb_code] - self.code_sum = self.codebook.clone() - self.code_count = torch.ones(self.nb_code, device=self.codebook.device) - self.init = True - - @torch.no_grad() - def compute_perplexity(self, code_idx) : - # Calculate new centres - code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L - code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1) - - code_count = code_onehot.sum(dim=-1) # nb_code - prob = code_count / torch.sum(code_count) - perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7))) - return perplexity - - @torch.no_grad() - def update_codebook(self, x, code_idx): - - code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L - code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1) - - code_sum = torch.matmul(code_onehot, x) # nb_code, w - code_count = code_onehot.sum(dim=-1) # nb_code - - out = self._tile(x) - code_rand = out[:self.nb_code] - - # Update centres - self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum # w, nb_code - self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count # nb_code - - usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float() - code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1) - - self.codebook = usage * code_update + (1 - usage) * code_rand - prob = code_count / torch.sum(code_count) - perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7))) - - - return perplexity - - def quantize(self, x): - # Calculate latent code x_l - k_w = self.codebook.t() - distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0, - keepdim=True) # (N * L, b) - _, code_idx = torch.min(distance, dim=-1) - return code_idx - - def dequantize(self, code_idx): - x = F.embedding(code_idx, self.codebook) - return x - - def forward(self, x): - N, C, H, W = x.shape - - # Preprocess - # x = self.preprocess(x) - x = rearrange(x, 'b c h w -> b h w c') - x = x.reshape(-1, self.code_dim) - - # Init codebook if not inited - if self.training and not self.init: - self.init_codebook(x) - - # quantize and dequantize through bottleneck - code_idx = self.quantize(x) - x_d = self.dequantize(code_idx) - - # Update embeddings - if self.training: - perplexity = self.update_codebook(x, code_idx) - else : - perplexity = self.compute_perplexity(code_idx) - - # Loss - commit_loss = F.mse_loss(x, x_d.detach()) - - # Passthrough - x_d = x + (x_d - x).detach() - - # Postprocess - x_d = x_d.view(N, H, W, C).permute(0, 3, 1, 2).contiguous() - - return x_d, commit_loss, (perplexity, code_idx, code_idx) \ No newline at end of file diff --git a/3DTopia/module/renderer.py b/3DTopia/module/renderer.py deleted file mode 100644 index bff0e703093f86bbe1693960db5574815aca6a56..0000000000000000000000000000000000000000 --- a/3DTopia/module/renderer.py +++ /dev/null @@ -1,463 +0,0 @@ -import os -import math -import numpy as np - -import torch -import torch.nn as nn -import torch.nn.functional as F - - -# TriPlane Utils -class MipRayMarcher2(nn.Module): - def __init__(self): - super().__init__() - - def run_forward(self, colors, densities, depths, rendering_options): - deltas = depths[:, :, 1:] - depths[:, :, :-1] - colors_mid = (colors[:, :, :-1] + colors[:, :, 1:]) / 2 - densities_mid = (densities[:, :, :-1] + densities[:, :, 1:]) / 2 - depths_mid = (depths[:, :, :-1] + depths[:, :, 1:]) / 2 - - - if rendering_options['clamp_mode'] == 'softplus': - densities_mid = F.softplus(densities_mid - 1) # activation bias of -1 makes things initialize better - else: - assert False, "MipRayMarcher only supports `clamp_mode`=`softplus`!" - - density_delta = densities_mid * deltas - - alpha = 1 - torch.exp(-density_delta) - - alpha_shifted = torch.cat([torch.ones_like(alpha[:, :, :1]), 1-alpha + 1e-10], -2) - weights = alpha * torch.cumprod(alpha_shifted, -2)[:, :, :-1] - - composite_rgb = torch.sum(weights * colors_mid, -2) - weight_total = weights.sum(2) - # composite_depth = torch.sum(weights * depths_mid, -2) / weight_total - composite_depth = torch.sum(weights * depths_mid, -2) - - # clip the composite to min/max range of depths - composite_depth = torch.nan_to_num(composite_depth, float('inf')) - # composite_depth = torch.nan_to_num(composite_depth, 0.) - composite_depth = torch.clamp(composite_depth, torch.min(depths), torch.max(depths)) - - if rendering_options.get('white_back', False): - composite_rgb = composite_rgb + 1 - weight_total - - composite_rgb = composite_rgb * 2 - 1 # Scale to (-1, 1) - - return composite_rgb, composite_depth, weights - - def forward(self, colors, densities, depths, rendering_options): - composite_rgb, composite_depth, weights = self.run_forward(colors, densities, depths, rendering_options) - - return composite_rgb, composite_depth, weights - -def transform_vectors(matrix: torch.Tensor, vectors4: torch.Tensor) -> torch.Tensor: - """ - Left-multiplies MxM @ NxM. Returns NxM. - """ - res = torch.matmul(vectors4, matrix.T) - return res - -def normalize_vecs(vectors: torch.Tensor) -> torch.Tensor: - """ - Normalize vector lengths. - """ - return vectors / (torch.norm(vectors, dim=-1, keepdim=True)) - -def torch_dot(x: torch.Tensor, y: torch.Tensor): - """ - Dot product of two tensors. - """ - return (x * y).sum(-1) - -def get_ray_limits_box(rays_o: torch.Tensor, rays_d: torch.Tensor, box_side_length): - """ - Author: Petr Kellnhofer - Intersects rays with the [-1, 1] NDC volume. - Returns min and max distance of entry. - Returns -1 for no intersection. - https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection - """ - o_shape = rays_o.shape - rays_o = rays_o.detach().reshape(-1, 3) - rays_d = rays_d.detach().reshape(-1, 3) - - - bb_min = [-1*(box_side_length/2), -1*(box_side_length/2), -1*(box_side_length/2)] - bb_max = [1*(box_side_length/2), 1*(box_side_length/2), 1*(box_side_length/2)] - bounds = torch.tensor([bb_min, bb_max], dtype=rays_o.dtype, device=rays_o.device) - is_valid = torch.ones(rays_o.shape[:-1], dtype=bool, device=rays_o.device) - - # Precompute inverse for stability. - invdir = 1 / rays_d - sign = (invdir < 0).long() - - # Intersect with YZ plane. - tmin = (bounds.index_select(0, sign[..., 0])[..., 0] - rays_o[..., 0]) * invdir[..., 0] - tmax = (bounds.index_select(0, 1 - sign[..., 0])[..., 0] - rays_o[..., 0]) * invdir[..., 0] - - # Intersect with XZ plane. - tymin = (bounds.index_select(0, sign[..., 1])[..., 1] - rays_o[..., 1]) * invdir[..., 1] - tymax = (bounds.index_select(0, 1 - sign[..., 1])[..., 1] - rays_o[..., 1]) * invdir[..., 1] - - # Resolve parallel rays. - is_valid[torch.logical_or(tmin > tymax, tymin > tmax)] = False - - # Use the shortest intersection. - tmin = torch.max(tmin, tymin) - tmax = torch.min(tmax, tymax) - - # Intersect with XY plane. - tzmin = (bounds.index_select(0, sign[..., 2])[..., 2] - rays_o[..., 2]) * invdir[..., 2] - tzmax = (bounds.index_select(0, 1 - sign[..., 2])[..., 2] - rays_o[..., 2]) * invdir[..., 2] - - # Resolve parallel rays. - is_valid[torch.logical_or(tmin > tzmax, tzmin > tmax)] = False - - # Use the shortest intersection. - tmin = torch.max(tmin, tzmin) - tmax = torch.min(tmax, tzmax) - - # Mark invalid. - tmin[torch.logical_not(is_valid)] = -1 - tmax[torch.logical_not(is_valid)] = -2 - - return tmin.reshape(*o_shape[:-1], 1), tmax.reshape(*o_shape[:-1], 1) - -def linspace(start: torch.Tensor, stop: torch.Tensor, num: int): - """ - Creates a tensor of shape [num, *start.shape] whose values are evenly spaced from start to end, inclusive. - Replicates but the multi-dimensional bahaviour of numpy.linspace in PyTorch. - """ - # create a tensor of 'num' steps from 0 to 1 - steps = torch.arange(num, dtype=torch.float32, device=start.device) / (num - 1) - - # reshape the 'steps' tensor to [-1, *([1]*start.ndim)] to allow for broadcastings - # - using 'steps.reshape([-1, *([1]*start.ndim)])' would be nice here but torchscript - # "cannot statically infer the expected size of a list in this contex", hence the code below - for i in range(start.ndim): - steps = steps.unsqueeze(-1) - - # the output starts at 'start' and increments until 'stop' in each dimension - out = start[None] + steps * (stop - start)[None] - - return out - -def generate_planes(): - """ - Defines planes by the three vectors that form the "axes" of the - plane. Should work with arbitrary number of planes and planes of - arbitrary orientation. - """ - return torch.tensor([[[1, 0, 0], - [0, 1, 0], - [0, 0, 1]], - [[1, 0, 0], - [0, 0, 1], - [0, 1, 0]], - [[0, 0, 1], - [1, 0, 0], - [0, 1, 0]]], dtype=torch.float32) - -def project_onto_planes(planes, coordinates): - """ - Does a projection of a 3D point onto a batch of 2D planes, - returning 2D plane coordinates. - Takes plane axes of shape n_planes, 3, 3 - # Takes coordinates of shape N, M, 3 - # returns projections of shape N*n_planes, M, 2 - """ - - # # ORIGINAL - # N, M, C = coordinates.shape - # xy_coords = coordinates[..., [0, 1]] - # xz_coords = coordinates[..., [0, 2]] - # zx_coords = coordinates[..., [2, 0]] - # return torch.stack([xy_coords, xz_coords, zx_coords], dim=1).reshape(N*3, M, 2) - - # FIXED - N, M, _ = coordinates.shape - xy_coords = coordinates[..., [0, 1]] - yz_coords = coordinates[..., [1, 2]] - zx_coords = coordinates[..., [2, 0]] - return torch.stack([xy_coords, yz_coords, zx_coords], dim=1).reshape(N*3, M, 2) - -def sample_from_planes(plane_axes, plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None): - assert padding_mode == 'zeros' - N, n_planes, C, H, W = plane_features.shape - _, M, _ = coordinates.shape - plane_features = plane_features.view(N*n_planes, C, H, W) - - coordinates = (2/box_warp) * coordinates # TODO: add specific box bounds - - projected_coordinates = project_onto_planes(plane_axes, coordinates).unsqueeze(1) - - output_features = torch.nn.functional.grid_sample(plane_features, projected_coordinates.float(), mode=mode, padding_mode=padding_mode, align_corners=False).permute(0, 3, 2, 1).reshape(N, n_planes, M, C) - return output_features - -def sample_from_3dgrid(grid, coordinates): - """ - Expects coordinates in shape (batch_size, num_points_per_batch, 3) - Expects grid in shape (1, channels, H, W, D) - (Also works if grid has batch size) - Returns sampled features of shape (batch_size, num_points_per_batch, feature_channels) - """ - batch_size, n_coords, n_dims = coordinates.shape - sampled_features = torch.nn.functional.grid_sample(grid.expand(batch_size, -1, -1, -1, -1), - coordinates.reshape(batch_size, 1, 1, -1, n_dims), - mode='bilinear', padding_mode='zeros', align_corners=False) - N, C, H, W, D = sampled_features.shape - sampled_features = sampled_features.permute(0, 4, 3, 2, 1).reshape(N, H*W*D, C) - return sampled_features - -class FullyConnectedLayer(nn.Module): - def __init__(self, - in_features, # Number of input features. - out_features, # Number of output features. - bias = True, # Apply additive bias before the activation function? - activation = 'linear', # Activation function: 'relu', 'lrelu', etc. - lr_multiplier = 1, # Learning rate multiplier. - bias_init = 0, # Initial value for the additive bias. - ): - super().__init__() - self.in_features = in_features - self.out_features = out_features - self.activation = activation - # self.weight = torch.nn.Parameter(torch.full([out_features, in_features], np.float32(0))) - self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) / lr_multiplier) - self.bias = torch.nn.Parameter(torch.full([out_features], np.float32(bias_init))) if bias else None - self.weight_gain = lr_multiplier / np.sqrt(in_features) - self.bias_gain = lr_multiplier - - def forward(self, x): - w = self.weight.to(x.dtype) * self.weight_gain - b = self.bias - if b is not None: - b = b.to(x.dtype) - if self.bias_gain != 1: - b = b * self.bias_gain - - if self.activation == 'linear' and b is not None: - x = torch.addmm(b.unsqueeze(0), x, w.t()) - else: - x = x.matmul(w.t()) - x = bias_act.bias_act(x, b, act=self.activation) - return x - - def extra_repr(self): - return f'in_features={self.in_features:d}, out_features={self.out_features:d}, activation={self.activation:s}' - -class TriPlane_Decoder(nn.Module): - def __init__(self, dim=12, width=128): - super().__init__() - self.net = torch.nn.Sequential( - FullyConnectedLayer(dim, width), - torch.nn.Softplus(), - FullyConnectedLayer(width, width), - torch.nn.Softplus(), - FullyConnectedLayer(width, 1 + 3) - ) - - def forward(self, sampled_features): - sampled_features = sampled_features.mean(1) - x = sampled_features - - N, M, C = x.shape - x = x.view(N*M, C) - - x = self.net(x) - x = x.view(N, M, -1) - rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF - sigma = x[..., 0:1] - return {'rgb': rgb, 'sigma': sigma} - -class Renderer_TriPlane(nn.Module): - def __init__(self, rgbnet_dim=18, rgbnet_width=128): - super(Renderer_TriPlane, self).__init__() - self.decoder = TriPlane_Decoder(dim=rgbnet_dim//3, width=rgbnet_width) - self.ray_marcher = MipRayMarcher2() - self.plane_axes = generate_planes() - - def forward(self, planes, ray_origins, ray_directions, rendering_options, whole_img=False): - self.plane_axes = self.plane_axes.to(ray_origins.device) - - ray_start, ray_end = get_ray_limits_box(ray_origins, ray_directions, box_side_length=rendering_options['box_warp']) - is_ray_valid = ray_end > ray_start - if torch.any(is_ray_valid).item(): - ray_start[~is_ray_valid] = ray_start[is_ray_valid].min() - ray_end[~is_ray_valid] = ray_start[is_ray_valid].max() - depths_coarse = self.sample_stratified(ray_origins, ray_start, ray_end, rendering_options['depth_resolution'], rendering_options['disparity_space_sampling']) - - batch_size, num_rays, samples_per_ray, _ = depths_coarse.shape - - # Coarse Pass - sample_coordinates = (ray_origins.unsqueeze(-2) + depths_coarse * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3) - sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3) - - - out = self.run_model(planes, self.decoder, sample_coordinates, sample_directions, rendering_options) - colors_coarse = out['rgb'] - densities_coarse = out['sigma'] - colors_coarse = colors_coarse.reshape(batch_size, num_rays, samples_per_ray, colors_coarse.shape[-1]) - densities_coarse = densities_coarse.reshape(batch_size, num_rays, samples_per_ray, 1) - - # Fine Pass - N_importance = rendering_options['depth_resolution_importance'] - if N_importance > 0: - _, _, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options) - - depths_fine = self.sample_importance(depths_coarse, weights, N_importance) - - sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, N_importance, -1).reshape(batch_size, -1, 3) - sample_coordinates = (ray_origins.unsqueeze(-2) + depths_fine * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3) - - out = self.run_model(planes, self.decoder, sample_coordinates, sample_directions, rendering_options) - colors_fine = out['rgb'] - densities_fine = out['sigma'] - colors_fine = colors_fine.reshape(batch_size, num_rays, N_importance, colors_fine.shape[-1]) - densities_fine = densities_fine.reshape(batch_size, num_rays, N_importance, 1) - - all_depths, all_colors, all_densities = self.unify_samples(depths_coarse, colors_coarse, densities_coarse, - depths_fine, colors_fine, densities_fine) - - # Aggregate - rgb_final, depth_final, weights = self.ray_marcher(all_colors, all_densities, all_depths, rendering_options) - else: - rgb_final, depth_final, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options) - - # return rgb_final, depth_final, weights.sum(2) - if whole_img: - H = W = int(ray_origins.shape[1] ** 0.5) - rgb_final = rgb_final.permute(0, 2, 1).reshape(-1, 3, H, W).contiguous() - depth_final = depth_final.permute(0, 2, 1).reshape(-1, 1, H, W).contiguous() - depth_final = (depth_final - depth_final.min()) / (depth_final.max() - depth_final.min()) - depth_final = depth_final.repeat(1, 3, 1, 1) - # rgb_final = torch.clip(rgb_final, min=0, max=1) - rgb_final = (rgb_final + 1) / 2. - weights = weights.sum(2).reshape(rgb_final.shape[0], rgb_final.shape[2], rgb_final.shape[3]) - return { - 'rgb_marched': rgb_final, - 'depth_final': depth_final, - 'weights': weights, - } - else: - rgb_final = (rgb_final + 1) / 2. - return { - 'rgb_marched': rgb_final, - 'depth_final': depth_final, - } - - def run_model(self, planes, decoder, sample_coordinates, sample_directions, options): - sampled_features = sample_from_planes(self.plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp']) - - out = decoder(sampled_features) - if options.get('density_noise', 0) > 0: - out['sigma'] += torch.randn_like(out['sigma']) * options['density_noise'] - return out - - def sort_samples(self, all_depths, all_colors, all_densities): - _, indices = torch.sort(all_depths, dim=-2) - all_depths = torch.gather(all_depths, -2, indices) - all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1])) - all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1)) - return all_depths, all_colors, all_densities - - def unify_samples(self, depths1, colors1, densities1, depths2, colors2, densities2): - all_depths = torch.cat([depths1, depths2], dim = -2) - all_colors = torch.cat([colors1, colors2], dim = -2) - all_densities = torch.cat([densities1, densities2], dim = -2) - - _, indices = torch.sort(all_depths, dim=-2) - all_depths = torch.gather(all_depths, -2, indices) - all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1])) - all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1)) - - return all_depths, all_colors, all_densities - - def sample_stratified(self, ray_origins, ray_start, ray_end, depth_resolution, disparity_space_sampling=False): - """ - Return depths of approximately uniformly spaced samples along rays. - """ - N, M, _ = ray_origins.shape - if disparity_space_sampling: - depths_coarse = torch.linspace(0, - 1, - depth_resolution, - device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1) - depth_delta = 1/(depth_resolution - 1) - depths_coarse += torch.rand_like(depths_coarse) * depth_delta - depths_coarse = 1./(1./ray_start * (1. - depths_coarse) + 1./ray_end * depths_coarse) - else: - if type(ray_start) == torch.Tensor: - depths_coarse = linspace(ray_start, ray_end, depth_resolution).permute(1,2,0,3) - depth_delta = (ray_end - ray_start) / (depth_resolution - 1) - depths_coarse += torch.rand_like(depths_coarse) * depth_delta[..., None] - else: - depths_coarse = torch.linspace(ray_start, ray_end, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1) - depth_delta = (ray_end - ray_start)/(depth_resolution - 1) - depths_coarse += torch.rand_like(depths_coarse) * depth_delta - - return depths_coarse - - def sample_importance(self, z_vals, weights, N_importance): - """ - Return depths of importance sampled points along rays. See NeRF importance sampling for more. - """ - with torch.no_grad(): - batch_size, num_rays, samples_per_ray, _ = z_vals.shape - - z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray) - weights = weights.reshape(batch_size * num_rays, -1) # -1 to account for loss of 1 sample in MipRayMarcher - - # smooth weights - weights = torch.nn.functional.max_pool1d(weights.unsqueeze(1).float(), 2, 1, padding=1) - weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze() - weights = weights + 0.01 - - z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:]) - importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1], - N_importance).detach().reshape(batch_size, num_rays, N_importance, 1) - return importance_z_vals - - def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5): - """ - Sample @N_importance samples from @bins with distribution defined by @weights. - Inputs: - bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2" - weights: (N_rays, N_samples_) - N_importance: the number of samples to draw from the distribution - det: deterministic or not - eps: a small number to prevent division by zero - Outputs: - samples: the sampled samples - """ - N_rays, N_samples_ = weights.shape - weights = weights + eps # prevent division by zero (don't do inplace op!) - pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_) - cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function - cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) # (N_rays, N_samples_+1) - # padded to 0~1 inclusive - - if det: - u = torch.linspace(0, 1, N_importance, device=bins.device) - u = u.expand(N_rays, N_importance) - else: - u = torch.rand(N_rays, N_importance, device=bins.device) - u = u.contiguous() - - inds = torch.searchsorted(cdf, u, right=True) - below = torch.clamp_min(inds-1, 0) - above = torch.clamp_max(inds, N_samples_) - - inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance) - cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2) - bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2) - - denom = cdf_g[...,1]-cdf_g[...,0] - denom[denomnchpwq', x) - x = x.reshape(b, 3, self.out_channel//3, self.out_reso, self.out_reso).contiguous() - return x - - -class SingleImageToTriplaneVAE(nn.Module): - def __init__(self, backbone='dino_vits8', input_reso=256, out_reso=128, out_channel=18, z_dim=32, - decoder_depth=16, decoder_heads=16, decoder_mlp_dim=1024, decoder_dim_head=64, dropout=0): - super().__init__() - self.backbone = backbone - - self.input_image_size = input_reso - self.out_reso = out_reso - self.out_channel = out_channel - self.z_dim = z_dim - - self.decoder_depth = decoder_depth - self.decoder_heads = decoder_heads - self.decoder_mlp_dim = decoder_mlp_dim - self.decoder_dim_head = decoder_dim_head - - self.dropout = dropout - self.patch_size = 8 if '8' in backbone else 16 - - if 'dino' in backbone: - self.vit = torch.hub.load('facebookresearch/dino:main', backbone) - self.embed_dim = self.vit.embed_dim - self.preprocess = None - else: - raise NotImplementedError - - self.fc_mu = nn.Linear(self.embed_dim, self.z_dim) - self.fc_var = nn.Linear(self.embed_dim, self.z_dim) - - self.vit_decoder = TriplaneDecoder((self.input_image_size // self.patch_size) ** 2, self.z_dim, - depth=self.decoder_depth, heads=self.decoder_heads, mlp_dim=self.decoder_mlp_dim, - out_channel=self.out_channel, out_reso=self.out_reso, dim_head = self.decoder_dim_head, dropout=0) - - def forward(self, x, is_train): - assert x.shape[-1] == self.input_image_size - bs = x.shape[0] - if 'dino' in self.backbone: - z = self.vit.get_intermediate_layers(x, n=1)[0][:, 1:] # [bs, 1024, self.embed_dim] - else: - raise NotImplementedError - - z = z.reshape(-1, z.shape[-1]) - mu = self.fc_mu(z) - logvar = self.fc_var(z) - std = torch.exp(0.5 * logvar) - eps = torch.randn_like(std) - if is_train: - rep_z = eps * std + mu - else: - rep_z = eps - rep_z = rep_z.reshape(bs, -1, self.z_dim) - out = self.vit_decoder(rep_z) - - return out, mu, logvar diff --git a/3DTopia/sample_stage1.py b/3DTopia/sample_stage1.py deleted file mode 100644 index 60a1192df3f429604c28721b94fe9b9eb28e07c5..0000000000000000000000000000000000000000 --- a/3DTopia/sample_stage1.py +++ /dev/null @@ -1,299 +0,0 @@ -import os -import cv2 -import json -import torch -import mcubes -import trimesh -import argparse -import numpy as np -from tqdm import tqdm -import imageio.v2 as imageio -import pytorch_lightning as pl -from omegaconf import OmegaConf - -from ldm.models.diffusion.ddim import DDIMSampler -from ldm.models.diffusion.plms import PLMSSampler -from ldm.models.diffusion.dpm_solver import DPMSolverSampler - -from utility.initialize import instantiate_from_config, get_obj_from_str -from utility.triplane_renderer.eg3d_renderer import sample_from_planes, generate_planes -from utility.triplane_renderer.renderer import get_rays, to8b -from safetensors.torch import load_file -from huggingface_hub import hf_hub_download - -import warnings -warnings.filterwarnings("ignore", category=UserWarning) -warnings.filterwarnings("ignore", category=DeprecationWarning) - -def add_text(rgb, caption): - font = cv2.FONT_HERSHEY_SIMPLEX - # org - gap = 30 - org = (gap, gap) - # fontScale - fontScale = 0.6 - # Blue color in BGR - color = (255, 0, 0) - # Line thickness of 2 px - thickness = 1 - break_caption = [] - for i in range(len(caption) // 30 + 1): - break_caption_i = caption[i*30:(i+1)*30] - break_caption.append(break_caption_i) - for i, bci in enumerate(break_caption): - cv2.putText(rgb, bci, (gap, gap*(i+1)), font, fontScale, color, thickness, cv2.LINE_AA) - return rgb - -def main(): - parser = argparse.ArgumentParser() - parser.add_argument("--config", type=str, default='configs/default.yaml') - parser.add_argument("--ckpt", type=str, default=None) - parser.add_argument("--test_folder", type=str, default="stage1") - parser.add_argument("--seed", type=int, default=None) - parser.add_argument("--sampler", type=str, default="ddpm") - parser.add_argument("--samples", type=int, default=1) - parser.add_argument("--batch_size", type=int, default=1) - parser.add_argument("--steps", type=int, default=1000) - parser.add_argument("--text", nargs='+', default='a robot') - parser.add_argument("--text_file", type=str, default=None) - parser.add_argument("--no_video", action='store_true', default=False) - parser.add_argument("--render_res", type=int, default=128) - parser.add_argument("--no_mcubes", action='store_true', default=False) - parser.add_argument("--mcubes_res", type=int, default=128) - parser.add_argument("--cfg_scale", type=float, default=1) - args = parser.parse_args() - - if args.text is not None: - text = [' '.join(args.text),] - elif args.text_file is not None: - if args.text_file.endswith('.json'): - with open(args.text_file, 'r') as f: - json_file = json.load(f) - text = json_file - text = [l.strip('.') for l in text] - else: - with open(args.text_file, 'r') as f: - text = f.readlines() - text = [l.strip() for l in text] - else: - raise NotImplementedError - - print(text) - - configs = OmegaConf.load(args.config) - if args.seed is not None: - pl.seed_everything(args.seed) - - log_dir = os.path.join('results', args.config.split('/')[-1].split('.')[0], args.test_folder) - os.makedirs(log_dir, exist_ok=True) - - if args.ckpt == None: - ckpt = hf_hub_download(repo_id="hongfz16/3DTopia", filename="model.safetensors") - else: - ckpt = args.ckpt - - if ckpt.endswith(".ckpt"): - model = get_obj_from_str(configs.model["target"]).load_from_checkpoint(ckpt, map_location='cpu', strict=False, **configs.model.params) - elif ckpt.endswith(".safetensors"): - model = get_obj_from_str(configs.model["target"])(**configs.model.params) - model_ckpt = load_file(ckpt) - model.load_state_dict(model_ckpt) - else: - raise NotImplementedError - device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") - model = model.to(device) - - class DummySampler: - def __init__(self, model): - self.model = model - - def sample(self, S, batch_size, shape, verbose, conditioning=None, *args, **kwargs): - return self.model.sample( - conditioning, batch_size, shape=[batch_size, ] + shape, *args, **kwargs - ), None - - if args.sampler == 'dpm': - raise NotImplementedError - # sampler = DPMSolverSampler(model) - elif args.sampler == 'plms': - raise NotImplementedError - # sampler = PLMSSampler(model) - elif args.sampler == 'ddim': - sampler = DDIMSampler(model) - elif args.sampler == 'ddpm': - sampler = DummySampler(model) - else: - raise NotImplementedError - - img_size = configs.model.params.unet_config.params.image_size - channels = configs.model.params.unet_config.params.in_channels - shape = [channels, img_size, img_size * 3] - plane_axes = generate_planes() - - pose_folder = 'assets/sample_data/pose' - poses_fname = sorted([os.path.join(pose_folder, f) for f in os.listdir(pose_folder)]) - batch_rays_list = [] - H = args.render_res - ratio = 512 // H - for p in poses_fname: - c2w = np.loadtxt(p).reshape(4, 4) - c2w[:3, 3] *= 2.2 - c2w = np.array([ - [1, 0, 0, 0], - [0, 0, -1, 0], - [0, 1, 0, 0], - [0, 0, 0, 1] - ]) @ c2w - - k = np.array([ - [560 / ratio, 0, H * 0.5], - [0, 560 / ratio, H * 0.5], - [0, 0, 1] - ]) - - rays_o, rays_d = get_rays(H, H, torch.Tensor(k), torch.Tensor(c2w[:3, :4])) - coords = torch.stack(torch.meshgrid(torch.linspace(0, H-1, H), torch.linspace(0, H-1, H), indexing='ij'), -1) - coords = torch.reshape(coords, [-1,2]).long() - rays_o = rays_o[coords[:, 0], coords[:, 1]] - rays_d = rays_d[coords[:, 0], coords[:, 1]] - batch_rays = torch.stack([rays_o, rays_d], 0) - batch_rays_list.append(batch_rays) - batch_rays_list = torch.stack(batch_rays_list, 0) - - for text_idx, text_i in enumerate(text): - text_connect = '_'.join(text_i.split(' ')) - for s in range(args.samples): - batch_size = args.batch_size - with torch.no_grad(): - # with model.ema_scope(): - noise = None - c = model.get_learned_conditioning([text_i]) - unconditional_c = torch.zeros_like(c) - if args.cfg_scale != 1: - assert args.sampler == 'ddim' - sample, _ = sampler.sample( - S=args.steps, - batch_size=batch_size, - shape=shape, - verbose=False, - x_T = noise, - conditioning = c.repeat(batch_size, 1, 1), - unconditional_guidance_scale=args.cfg_scale, - unconditional_conditioning=unconditional_c.repeat(batch_size, 1, 1) - ) - else: - sample, _ = sampler.sample( - S=args.steps, - batch_size=batch_size, - shape=shape, - verbose=False, - x_T = noise, - conditioning = c.repeat(batch_size, 1, 1), - ) - decode_res = model.decode_first_stage(sample) - - for b in range(batch_size): - def render_img(v): - rgb_sample, _ = model.first_stage_model.render_triplane_eg3d_decoder( - decode_res[b:b+1], batch_rays_list[v:v+1].to(device), torch.zeros(1, H, H, 3).to(device), - ) - rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0] - rgb_sample = np.stack( - [rgb_sample[..., 2], rgb_sample[..., 1], rgb_sample[..., 0]], -1 - ) - # rgb_sample = add_text(rgb_sample, text_i) - return rgb_sample - - if not args.no_mcubes: - # prepare volumn for marching cube - res = args.mcubes_res - c_list = torch.linspace(-1.2, 1.2, steps=res) - grid_x, grid_y, grid_z = torch.meshgrid( - c_list, c_list, c_list, indexing='ij' - ) - coords = torch.stack([grid_x, grid_y, grid_z], -1).to(device) - plane_axes = generate_planes() - feats = sample_from_planes( - plane_axes, decode_res[b:b+1].reshape(1, 3, -1, 256, 256), coords.reshape(1, -1, 3), padding_mode='zeros', box_warp=2.4 - ) - fake_dirs = torch.zeros_like(coords) - fake_dirs[..., 0] = 1 - out = model.first_stage_model.triplane_decoder.decoder(feats, fake_dirs) - u = out['sigma'].reshape(res, res, res).detach().cpu().numpy() - del out - - # marching cube - vertices, triangles = mcubes.marching_cubes(u, 10) - min_bound = np.array([-1.2, -1.2, -1.2]) - max_bound = np.array([1.2, 1.2, 1.2]) - vertices = vertices / (res - 1) * (max_bound - min_bound)[None, :] + min_bound[None, :] - pt_vertices = torch.from_numpy(vertices).to(device) - - # extract vertices color - res_triplane = 256 - render_kwargs = { - 'depth_resolution': 128, - 'disparity_space_sampling': False, - 'box_warp': 2.4, - 'depth_resolution_importance': 128, - 'clamp_mode': 'softplus', - 'white_back': True, - 'det': True - } - rays_o_list = [ - np.array([0, 0, 2]), - np.array([0, 0, -2]), - np.array([0, 2, 0]), - np.array([0, -2, 0]), - np.array([2, 0, 0]), - np.array([-2, 0, 0]), - ] - rgb_final = None - diff_final = None - for rays_o in tqdm(rays_o_list): - rays_o = torch.from_numpy(rays_o.reshape(1, 3)).repeat(vertices.shape[0], 1).float().to(device) - rays_d = pt_vertices.reshape(-1, 3) - rays_o - rays_d = rays_d / torch.norm(rays_d, dim=-1).reshape(-1, 1) - dist = torch.norm(pt_vertices.reshape(-1, 3) - rays_o, dim=-1).cpu().numpy().reshape(-1) - - render_out = model.first_stage_model.triplane_decoder( - decode_res[b:b+1].reshape(1, 3, -1, res_triplane, res_triplane), - rays_o.unsqueeze(0), rays_d.unsqueeze(0), render_kwargs, - whole_img=False, tvloss=False - ) - rgb = render_out['rgb_marched'].reshape(-1, 3).detach().cpu().numpy() - depth = render_out['depth_final'].reshape(-1).detach().cpu().numpy() - depth_diff = np.abs(dist - depth) - - if rgb_final is None: - rgb_final = rgb.copy() - diff_final = depth_diff.copy() - - else: - ind = diff_final > depth_diff - rgb_final[ind] = rgb[ind] - diff_final[ind] = depth_diff[ind] - - - # bgr to rgb - rgb_final = np.stack([ - rgb_final[:, 2], rgb_final[:, 1], rgb_final[:, 0] - ], -1) - - # export to ply - mesh = trimesh.Trimesh(vertices, triangles, vertex_colors=(rgb_final * 255).astype(np.uint8)) - trimesh.exchange.export.export_mesh(mesh, os.path.join(log_dir, f"{text_connect}_{s}_{b}.ply"), file_type='ply') - - if not args.no_video: - view_num = len(batch_rays_list) - video_list = [] - for v in tqdm(range(view_num//4, view_num//4 * 3, 2)): - rgb_sample = render_img(v) - video_list.append(rgb_sample) - imageio.mimwrite(os.path.join(log_dir, "{}_{}_{}.mp4".format(text_connect, s, b)), np.stack(video_list, 0)) - else: - rgb_sample = render_img(104) - imageio.imwrite(os.path.join(log_dir, "{}_{}_{}.jpg".format(text_connect, s, b)), rgb_sample) - -if __name__ == '__main__': - main() diff --git a/3DTopia/taming/data/ade20k.py b/3DTopia/taming/data/ade20k.py deleted file mode 100644 index 366dae97207dbb8356598d636e14ad084d45bc76..0000000000000000000000000000000000000000 --- a/3DTopia/taming/data/ade20k.py +++ /dev/null @@ -1,124 +0,0 @@ -import os -import numpy as np -import cv2 -import albumentations -from PIL import Image -from torch.utils.data import Dataset - -from taming.data.sflckr import SegmentationBase # for examples included in repo - - -class Examples(SegmentationBase): - def __init__(self, size=256, random_crop=False, interpolation="bicubic"): - super().__init__(data_csv="data/ade20k_examples.txt", - data_root="data/ade20k_images", - segmentation_root="data/ade20k_segmentations", - size=size, random_crop=random_crop, - interpolation=interpolation, - n_labels=151, shift_segmentation=False) - - -# With semantic map and scene label -class ADE20kBase(Dataset): - def __init__(self, config=None, size=None, random_crop=False, interpolation="bicubic", crop_size=None): - self.split = self.get_split() - self.n_labels = 151 # unknown + 150 - self.data_csv = {"train": "data/ade20k_train.txt", - "validation": "data/ade20k_test.txt"}[self.split] - self.data_root = "data/ade20k_root" - with open(os.path.join(self.data_root, "sceneCategories.txt"), "r") as f: - self.scene_categories = f.read().splitlines() - self.scene_categories = dict(line.split() for line in self.scene_categories) - with open(self.data_csv, "r") as f: - self.image_paths = f.read().splitlines() - self._length = len(self.image_paths) - self.labels = { - "relative_file_path_": [l for l in self.image_paths], - "file_path_": [os.path.join(self.data_root, "images", l) - for l in self.image_paths], - "relative_segmentation_path_": [l.replace(".jpg", ".png") - for l in self.image_paths], - "segmentation_path_": [os.path.join(self.data_root, "annotations", - l.replace(".jpg", ".png")) - for l in self.image_paths], - "scene_category": [self.scene_categories[l.split("/")[1].replace(".jpg", "")] - for l in self.image_paths], - } - - size = None if size is not None and size<=0 else size - self.size = size - if crop_size is None: - self.crop_size = size if size is not None else None - else: - self.crop_size = crop_size - if self.size is not None: - self.interpolation = interpolation - self.interpolation = { - "nearest": cv2.INTER_NEAREST, - "bilinear": cv2.INTER_LINEAR, - "bicubic": cv2.INTER_CUBIC, - "area": cv2.INTER_AREA, - "lanczos": cv2.INTER_LANCZOS4}[self.interpolation] - self.image_rescaler = albumentations.SmallestMaxSize(max_size=self.size, - interpolation=self.interpolation) - self.segmentation_rescaler = albumentations.SmallestMaxSize(max_size=self.size, - interpolation=cv2.INTER_NEAREST) - - if crop_size is not None: - self.center_crop = not random_crop - if self.center_crop: - self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size) - else: - self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size) - self.preprocessor = self.cropper - - def __len__(self): - return self._length - - def __getitem__(self, i): - example = dict((k, self.labels[k][i]) for k in self.labels) - image = Image.open(example["file_path_"]) - if not image.mode == "RGB": - image = image.convert("RGB") - image = np.array(image).astype(np.uint8) - if self.size is not None: - image = self.image_rescaler(image=image)["image"] - segmentation = Image.open(example["segmentation_path_"]) - segmentation = np.array(segmentation).astype(np.uint8) - if self.size is not None: - segmentation = self.segmentation_rescaler(image=segmentation)["image"] - if self.size is not None: - processed = self.preprocessor(image=image, mask=segmentation) - else: - processed = {"image": image, "mask": segmentation} - example["image"] = (processed["image"]/127.5 - 1.0).astype(np.float32) - segmentation = processed["mask"] - onehot = np.eye(self.n_labels)[segmentation] - example["segmentation"] = onehot - return example - - -class ADE20kTrain(ADE20kBase): - # default to random_crop=True - def __init__(self, config=None, size=None, random_crop=True, interpolation="bicubic", crop_size=None): - super().__init__(config=config, size=size, random_crop=random_crop, - interpolation=interpolation, crop_size=crop_size) - - def get_split(self): - return "train" - - -class ADE20kValidation(ADE20kBase): - def get_split(self): - return "validation" - - -if __name__ == "__main__": - dset = ADE20kValidation() - ex = dset[0] - for k in ["image", "scene_category", "segmentation"]: - print(type(ex[k])) - try: - print(ex[k].shape) - except: - print(ex[k]) diff --git a/3DTopia/taming/data/annotated_objects_coco.py b/3DTopia/taming/data/annotated_objects_coco.py deleted file mode 100644 index af000ecd943d7b8a85d7eb70195c9ecd10ab5edc..0000000000000000000000000000000000000000 --- a/3DTopia/taming/data/annotated_objects_coco.py +++ /dev/null @@ -1,139 +0,0 @@ -import json -from itertools import chain -from pathlib import Path -from typing import Iterable, Dict, List, Callable, Any -from collections import defaultdict - -from tqdm import tqdm - -from taming.data.annotated_objects_dataset import AnnotatedObjectsDataset -from taming.data.helper_types import Annotation, ImageDescription, Category - -COCO_PATH_STRUCTURE = { - 'train': { - 'top_level': '', - 'instances_annotations': 'annotations/instances_train2017.json', - 'stuff_annotations': 'annotations/stuff_train2017.json', - 'files': 'train2017' - }, - 'validation': { - 'top_level': '', - 'instances_annotations': 'annotations/instances_val2017.json', - 'stuff_annotations': 'annotations/stuff_val2017.json', - 'files': 'val2017' - } -} - - -def load_image_descriptions(description_json: List[Dict]) -> Dict[str, ImageDescription]: - return { - str(img['id']): ImageDescription( - id=img['id'], - license=img.get('license'), - file_name=img['file_name'], - coco_url=img['coco_url'], - original_size=(img['width'], img['height']), - date_captured=img.get('date_captured'), - flickr_url=img.get('flickr_url') - ) - for img in description_json - } - - -def load_categories(category_json: Iterable) -> Dict[str, Category]: - return {str(cat['id']): Category(id=str(cat['id']), super_category=cat['supercategory'], name=cat['name']) - for cat in category_json if cat['name'] != 'other'} - - -def load_annotations(annotations_json: List[Dict], image_descriptions: Dict[str, ImageDescription], - category_no_for_id: Callable[[str], int], split: str) -> Dict[str, List[Annotation]]: - annotations = defaultdict(list) - total = sum(len(a) for a in annotations_json) - for ann in tqdm(chain(*annotations_json), f'Loading {split} annotations', total=total): - image_id = str(ann['image_id']) - if image_id not in image_descriptions: - raise ValueError(f'image_id [{image_id}] has no image description.') - category_id = ann['category_id'] - try: - category_no = category_no_for_id(str(category_id)) - except KeyError: - continue - - width, height = image_descriptions[image_id].original_size - bbox = (ann['bbox'][0] / width, ann['bbox'][1] / height, ann['bbox'][2] / width, ann['bbox'][3] / height) - - annotations[image_id].append( - Annotation( - id=ann['id'], - area=bbox[2]*bbox[3], # use bbox area - is_group_of=ann['iscrowd'], - image_id=ann['image_id'], - bbox=bbox, - category_id=str(category_id), - category_no=category_no - ) - ) - return dict(annotations) - - -class AnnotatedObjectsCoco(AnnotatedObjectsDataset): - def __init__(self, use_things: bool = True, use_stuff: bool = True, **kwargs): - """ - @param data_path: is the path to the following folder structure: - coco/ - ├── annotations - │ ├── instances_train2017.json - │ ├── instances_val2017.json - │ ├── stuff_train2017.json - │ └── stuff_val2017.json - ├── train2017 - │ ├── 000000000009.jpg - │ ├── 000000000025.jpg - │ └── ... - ├── val2017 - │ ├── 000000000139.jpg - │ ├── 000000000285.jpg - │ └── ... - @param: split: one of 'train' or 'validation' - @param: desired image size (give square images) - """ - super().__init__(**kwargs) - self.use_things = use_things - self.use_stuff = use_stuff - - with open(self.paths['instances_annotations']) as f: - inst_data_json = json.load(f) - with open(self.paths['stuff_annotations']) as f: - stuff_data_json = json.load(f) - - category_jsons = [] - annotation_jsons = [] - if self.use_things: - category_jsons.append(inst_data_json['categories']) - annotation_jsons.append(inst_data_json['annotations']) - if self.use_stuff: - category_jsons.append(stuff_data_json['categories']) - annotation_jsons.append(stuff_data_json['annotations']) - - self.categories = load_categories(chain(*category_jsons)) - self.filter_categories() - self.setup_category_id_and_number() - - self.image_descriptions = load_image_descriptions(inst_data_json['images']) - annotations = load_annotations(annotation_jsons, self.image_descriptions, self.get_category_number, self.split) - self.annotations = self.filter_object_number(annotations, self.min_object_area, - self.min_objects_per_image, self.max_objects_per_image) - self.image_ids = list(self.annotations.keys()) - self.clean_up_annotations_and_image_descriptions() - - def get_path_structure(self) -> Dict[str, str]: - if self.split not in COCO_PATH_STRUCTURE: - raise ValueError(f'Split [{self.split} does not exist for COCO data.]') - return COCO_PATH_STRUCTURE[self.split] - - def get_image_path(self, image_id: str) -> Path: - return self.paths['files'].joinpath(self.image_descriptions[str(image_id)].file_name) - - def get_image_description(self, image_id: str) -> Dict[str, Any]: - # noinspection PyProtectedMember - return self.image_descriptions[image_id]._asdict() diff --git a/3DTopia/taming/data/annotated_objects_dataset.py b/3DTopia/taming/data/annotated_objects_dataset.py deleted file mode 100644 index 53cc346a1c76289a4964d7dc8a29582172f33dc0..0000000000000000000000000000000000000000 --- a/3DTopia/taming/data/annotated_objects_dataset.py +++ /dev/null @@ -1,218 +0,0 @@ -from pathlib import Path -from typing import Optional, List, Callable, Dict, Any, Union -import warnings - -import PIL.Image as pil_image -from torch import Tensor -from torch.utils.data import Dataset -from torchvision import transforms - -from taming.data.conditional_builder.objects_bbox import ObjectsBoundingBoxConditionalBuilder -from taming.data.conditional_builder.objects_center_points import ObjectsCenterPointsConditionalBuilder -from taming.data.conditional_builder.utils import load_object_from_string -from taming.data.helper_types import BoundingBox, CropMethodType, Image, Annotation, SplitType -from taming.data.image_transforms import CenterCropReturnCoordinates, RandomCrop1dReturnCoordinates, \ - Random2dCropReturnCoordinates, RandomHorizontalFlipReturn, convert_pil_to_tensor - - -class AnnotatedObjectsDataset(Dataset): - def __init__(self, data_path: Union[str, Path], split: SplitType, keys: List[str], target_image_size: int, - min_object_area: float, min_objects_per_image: int, max_objects_per_image: int, - crop_method: CropMethodType, random_flip: bool, no_tokens: int, use_group_parameter: bool, - encode_crop: bool, category_allow_list_target: str = "", category_mapping_target: str = "", - no_object_classes: Optional[int] = None): - self.data_path = data_path - self.split = split - self.keys = keys - self.target_image_size = target_image_size - self.min_object_area = min_object_area - self.min_objects_per_image = min_objects_per_image - self.max_objects_per_image = max_objects_per_image - self.crop_method = crop_method - self.random_flip = random_flip - self.no_tokens = no_tokens - self.use_group_parameter = use_group_parameter - self.encode_crop = encode_crop - - self.annotations = None - self.image_descriptions = None - self.categories = None - self.category_ids = None - self.category_number = None - self.image_ids = None - self.transform_functions: List[Callable] = self.setup_transform(target_image_size, crop_method, random_flip) - self.paths = self.build_paths(self.data_path) - self._conditional_builders = None - self.category_allow_list = None - if category_allow_list_target: - allow_list = load_object_from_string(category_allow_list_target) - self.category_allow_list = {name for name, _ in allow_list} - self.category_mapping = {} - if category_mapping_target: - self.category_mapping = load_object_from_string(category_mapping_target) - self.no_object_classes = no_object_classes - - def build_paths(self, top_level: Union[str, Path]) -> Dict[str, Path]: - top_level = Path(top_level) - sub_paths = {name: top_level.joinpath(sub_path) for name, sub_path in self.get_path_structure().items()} - for path in sub_paths.values(): - if not path.exists(): - raise FileNotFoundError(f'{type(self).__name__} data structure error: [{path}] does not exist.') - return sub_paths - - @staticmethod - def load_image_from_disk(path: Path) -> Image: - return pil_image.open(path).convert('RGB') - - @staticmethod - def setup_transform(target_image_size: int, crop_method: CropMethodType, random_flip: bool): - transform_functions = [] - if crop_method == 'none': - transform_functions.append(transforms.Resize((target_image_size, target_image_size))) - elif crop_method == 'center': - transform_functions.extend([ - transforms.Resize(target_image_size), - CenterCropReturnCoordinates(target_image_size) - ]) - elif crop_method == 'random-1d': - transform_functions.extend([ - transforms.Resize(target_image_size), - RandomCrop1dReturnCoordinates(target_image_size) - ]) - elif crop_method == 'random-2d': - transform_functions.extend([ - Random2dCropReturnCoordinates(target_image_size), - transforms.Resize(target_image_size) - ]) - elif crop_method is None: - return None - else: - raise ValueError(f'Received invalid crop method [{crop_method}].') - if random_flip: - transform_functions.append(RandomHorizontalFlipReturn()) - transform_functions.append(transforms.Lambda(lambda x: x / 127.5 - 1.)) - return transform_functions - - def image_transform(self, x: Tensor) -> (Optional[BoundingBox], Optional[bool], Tensor): - crop_bbox = None - flipped = None - for t in self.transform_functions: - if isinstance(t, (RandomCrop1dReturnCoordinates, CenterCropReturnCoordinates, Random2dCropReturnCoordinates)): - crop_bbox, x = t(x) - elif isinstance(t, RandomHorizontalFlipReturn): - flipped, x = t(x) - else: - x = t(x) - return crop_bbox, flipped, x - - @property - def no_classes(self) -> int: - return self.no_object_classes if self.no_object_classes else len(self.categories) - - @property - def conditional_builders(self) -> ObjectsCenterPointsConditionalBuilder: - # cannot set this up in init because no_classes is only known after loading data in init of superclass - if self._conditional_builders is None: - self._conditional_builders = { - 'objects_center_points': ObjectsCenterPointsConditionalBuilder( - self.no_classes, - self.max_objects_per_image, - self.no_tokens, - self.encode_crop, - self.use_group_parameter, - getattr(self, 'use_additional_parameters', False) - ), - 'objects_bbox': ObjectsBoundingBoxConditionalBuilder( - self.no_classes, - self.max_objects_per_image, - self.no_tokens, - self.encode_crop, - self.use_group_parameter, - getattr(self, 'use_additional_parameters', False) - ) - } - return self._conditional_builders - - def filter_categories(self) -> None: - if self.category_allow_list: - self.categories = {id_: cat for id_, cat in self.categories.items() if cat.name in self.category_allow_list} - if self.category_mapping: - self.categories = {id_: cat for id_, cat in self.categories.items() if cat.id not in self.category_mapping} - - def setup_category_id_and_number(self) -> None: - self.category_ids = list(self.categories.keys()) - self.category_ids.sort() - if '/m/01s55n' in self.category_ids: - self.category_ids.remove('/m/01s55n') - self.category_ids.append('/m/01s55n') - self.category_number = {category_id: i for i, category_id in enumerate(self.category_ids)} - if self.category_allow_list is not None and self.category_mapping is None \ - and len(self.category_ids) != len(self.category_allow_list): - warnings.warn('Unexpected number of categories: Mismatch with category_allow_list. ' - 'Make sure all names in category_allow_list exist.') - - def clean_up_annotations_and_image_descriptions(self) -> None: - image_id_set = set(self.image_ids) - self.annotations = {k: v for k, v in self.annotations.items() if k in image_id_set} - self.image_descriptions = {k: v for k, v in self.image_descriptions.items() if k in image_id_set} - - @staticmethod - def filter_object_number(all_annotations: Dict[str, List[Annotation]], min_object_area: float, - min_objects_per_image: int, max_objects_per_image: int) -> Dict[str, List[Annotation]]: - filtered = {} - for image_id, annotations in all_annotations.items(): - annotations_with_min_area = [a for a in annotations if a.area > min_object_area] - if min_objects_per_image <= len(annotations_with_min_area) <= max_objects_per_image: - filtered[image_id] = annotations_with_min_area - return filtered - - def __len__(self): - return len(self.image_ids) - - def __getitem__(self, n: int) -> Dict[str, Any]: - image_id = self.get_image_id(n) - sample = self.get_image_description(image_id) - sample['annotations'] = self.get_annotation(image_id) - - if 'image' in self.keys: - sample['image_path'] = str(self.get_image_path(image_id)) - sample['image'] = self.load_image_from_disk(sample['image_path']) - sample['image'] = convert_pil_to_tensor(sample['image']) - sample['crop_bbox'], sample['flipped'], sample['image'] = self.image_transform(sample['image']) - sample['image'] = sample['image'].permute(1, 2, 0) - - for conditional, builder in self.conditional_builders.items(): - if conditional in self.keys: - sample[conditional] = builder.build(sample['annotations'], sample['crop_bbox'], sample['flipped']) - - if self.keys: - # only return specified keys - sample = {key: sample[key] for key in self.keys} - return sample - - def get_image_id(self, no: int) -> str: - return self.image_ids[no] - - def get_annotation(self, image_id: str) -> str: - return self.annotations[image_id] - - def get_textual_label_for_category_id(self, category_id: str) -> str: - return self.categories[category_id].name - - def get_textual_label_for_category_no(self, category_no: int) -> str: - return self.categories[self.get_category_id(category_no)].name - - def get_category_number(self, category_id: str) -> int: - return self.category_number[category_id] - - def get_category_id(self, category_no: int) -> str: - return self.category_ids[category_no] - - def get_image_description(self, image_id: str) -> Dict[str, Any]: - raise NotImplementedError() - - def get_path_structure(self): - raise NotImplementedError - - def get_image_path(self, image_id: str) -> Path: - raise NotImplementedError diff --git a/3DTopia/taming/data/annotated_objects_open_images.py b/3DTopia/taming/data/annotated_objects_open_images.py deleted file mode 100644 index aede6803d2cef7a74ca784e7907d35fba6c71239..0000000000000000000000000000000000000000 --- a/3DTopia/taming/data/annotated_objects_open_images.py +++ /dev/null @@ -1,137 +0,0 @@ -from collections import defaultdict -from csv import DictReader, reader as TupleReader -from pathlib import Path -from typing import Dict, List, Any -import warnings - -from taming.data.annotated_objects_dataset import AnnotatedObjectsDataset -from taming.data.helper_types import Annotation, Category -from tqdm import tqdm - -OPEN_IMAGES_STRUCTURE = { - 'train': { - 'top_level': '', - 'class_descriptions': 'class-descriptions-boxable.csv', - 'annotations': 'oidv6-train-annotations-bbox.csv', - 'file_list': 'train-images-boxable.csv', - 'files': 'train' - }, - 'validation': { - 'top_level': '', - 'class_descriptions': 'class-descriptions-boxable.csv', - 'annotations': 'validation-annotations-bbox.csv', - 'file_list': 'validation-images.csv', - 'files': 'validation' - }, - 'test': { - 'top_level': '', - 'class_descriptions': 'class-descriptions-boxable.csv', - 'annotations': 'test-annotations-bbox.csv', - 'file_list': 'test-images.csv', - 'files': 'test' - } -} - - -def load_annotations(descriptor_path: Path, min_object_area: float, category_mapping: Dict[str, str], - category_no_for_id: Dict[str, int]) -> Dict[str, List[Annotation]]: - annotations: Dict[str, List[Annotation]] = defaultdict(list) - with open(descriptor_path) as file: - reader = DictReader(file) - for i, row in tqdm(enumerate(reader), total=14620000, desc='Loading OpenImages annotations'): - width = float(row['XMax']) - float(row['XMin']) - height = float(row['YMax']) - float(row['YMin']) - area = width * height - category_id = row['LabelName'] - if category_id in category_mapping: - category_id = category_mapping[category_id] - if area >= min_object_area and category_id in category_no_for_id: - annotations[row['ImageID']].append( - Annotation( - id=i, - image_id=row['ImageID'], - source=row['Source'], - category_id=category_id, - category_no=category_no_for_id[category_id], - confidence=float(row['Confidence']), - bbox=(float(row['XMin']), float(row['YMin']), width, height), - area=area, - is_occluded=bool(int(row['IsOccluded'])), - is_truncated=bool(int(row['IsTruncated'])), - is_group_of=bool(int(row['IsGroupOf'])), - is_depiction=bool(int(row['IsDepiction'])), - is_inside=bool(int(row['IsInside'])) - ) - ) - if 'train' in str(descriptor_path) and i < 14000000: - warnings.warn(f'Running with subset of Open Images. Train dataset has length [{len(annotations)}].') - return dict(annotations) - - -def load_image_ids(csv_path: Path) -> List[str]: - with open(csv_path) as file: - reader = DictReader(file) - return [row['image_name'] for row in reader] - - -def load_categories(csv_path: Path) -> Dict[str, Category]: - with open(csv_path) as file: - reader = TupleReader(file) - return {row[0]: Category(id=row[0], name=row[1], super_category=None) for row in reader} - - -class AnnotatedObjectsOpenImages(AnnotatedObjectsDataset): - def __init__(self, use_additional_parameters: bool, **kwargs): - """ - @param data_path: is the path to the following folder structure: - open_images/ - │ oidv6-train-annotations-bbox.csv - ├── class-descriptions-boxable.csv - ├── oidv6-train-annotations-bbox.csv - ├── test - │ ├── 000026e7ee790996.jpg - │ ├── 000062a39995e348.jpg - │ └── ... - ├── test-annotations-bbox.csv - ├── test-images.csv - ├── train - │ ├── 000002b66c9c498e.jpg - │ ├── 000002b97e5471a0.jpg - │ └── ... - ├── train-images-boxable.csv - ├── validation - │ ├── 0001eeaf4aed83f9.jpg - │ ├── 0004886b7d043cfd.jpg - │ └── ... - ├── validation-annotations-bbox.csv - └── validation-images.csv - @param: split: one of 'train', 'validation' or 'test' - @param: desired image size (returns square images) - """ - - super().__init__(**kwargs) - self.use_additional_parameters = use_additional_parameters - - self.categories = load_categories(self.paths['class_descriptions']) - self.filter_categories() - self.setup_category_id_and_number() - - self.image_descriptions = {} - annotations = load_annotations(self.paths['annotations'], self.min_object_area, self.category_mapping, - self.category_number) - self.annotations = self.filter_object_number(annotations, self.min_object_area, self.min_objects_per_image, - self.max_objects_per_image) - self.image_ids = list(self.annotations.keys()) - self.clean_up_annotations_and_image_descriptions() - - def get_path_structure(self) -> Dict[str, str]: - if self.split not in OPEN_IMAGES_STRUCTURE: - raise ValueError(f'Split [{self.split} does not exist for Open Images data.]') - return OPEN_IMAGES_STRUCTURE[self.split] - - def get_image_path(self, image_id: str) -> Path: - return self.paths['files'].joinpath(f'{image_id:0>16}.jpg') - - def get_image_description(self, image_id: str) -> Dict[str, Any]: - image_path = self.get_image_path(image_id) - return {'file_path': str(image_path), 'file_name': image_path.name} diff --git a/3DTopia/taming/data/base.py b/3DTopia/taming/data/base.py deleted file mode 100644 index e21667df4ce4baa6bb6aad9f8679bd756e2ffdb7..0000000000000000000000000000000000000000 --- a/3DTopia/taming/data/base.py +++ /dev/null @@ -1,70 +0,0 @@ -import bisect -import numpy as np -import albumentations -from PIL import Image -from torch.utils.data import Dataset, ConcatDataset - - -class ConcatDatasetWithIndex(ConcatDataset): - """Modified from original pytorch code to return dataset idx""" - def __getitem__(self, idx): - if idx < 0: - if -idx > len(self): - raise ValueError("absolute value of index should not exceed dataset length") - idx = len(self) + idx - dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx) - if dataset_idx == 0: - sample_idx = idx - else: - sample_idx = idx - self.cumulative_sizes[dataset_idx - 1] - return self.datasets[dataset_idx][sample_idx], dataset_idx - - -class ImagePaths(Dataset): - def __init__(self, paths, size=None, random_crop=False, labels=None): - self.size = size - self.random_crop = random_crop - - self.labels = dict() if labels is None else labels - self.labels["file_path_"] = paths - self._length = len(paths) - - if self.size is not None and self.size > 0: - self.rescaler = albumentations.SmallestMaxSize(max_size = self.size) - if not self.random_crop: - self.cropper = albumentations.CenterCrop(height=self.size,width=self.size) - else: - self.cropper = albumentations.RandomCrop(height=self.size,width=self.size) - self.preprocessor = albumentations.Compose([self.rescaler, self.cropper]) - else: - self.preprocessor = lambda **kwargs: kwargs - - def __len__(self): - return self._length - - def preprocess_image(self, image_path): - image = Image.open(image_path) - if not image.mode == "RGB": - image = image.convert("RGB") - image = np.array(image).astype(np.uint8) - image = self.preprocessor(image=image)["image"] - image = (image/127.5 - 1.0).astype(np.float32) - return image - - def __getitem__(self, i): - example = dict() - example["image"] = self.preprocess_image(self.labels["file_path_"][i]) - for k in self.labels: - example[k] = self.labels[k][i] - return example - - -class NumpyPaths(ImagePaths): - def preprocess_image(self, image_path): - image = np.load(image_path).squeeze(0) # 3 x 1024 x 1024 - image = np.transpose(image, (1,2,0)) - image = Image.fromarray(image, mode="RGB") - image = np.array(image).astype(np.uint8) - image = self.preprocessor(image=image)["image"] - image = (image/127.5 - 1.0).astype(np.float32) - return image diff --git a/3DTopia/taming/data/coco.py b/3DTopia/taming/data/coco.py deleted file mode 100644 index 2b2f7838448cb63dcf96daffe9470d58566d975a..0000000000000000000000000000000000000000 --- a/3DTopia/taming/data/coco.py +++ /dev/null @@ -1,176 +0,0 @@ -import os -import json -import albumentations -import numpy as np -from PIL import Image -from tqdm import tqdm -from torch.utils.data import Dataset - -from taming.data.sflckr import SegmentationBase # for examples included in repo - - -class Examples(SegmentationBase): - def __init__(self, size=256, random_crop=False, interpolation="bicubic"): - super().__init__(data_csv="data/coco_examples.txt", - data_root="data/coco_images", - segmentation_root="data/coco_segmentations", - size=size, random_crop=random_crop, - interpolation=interpolation, - n_labels=183, shift_segmentation=True) - - -class CocoBase(Dataset): - """needed for (image, caption, segmentation) pairs""" - def __init__(self, size=None, dataroot="", datajson="", onehot_segmentation=False, use_stuffthing=False, - crop_size=None, force_no_crop=False, given_files=None): - self.split = self.get_split() - self.size = size - if crop_size is None: - self.crop_size = size - else: - self.crop_size = crop_size - - self.onehot = onehot_segmentation # return segmentation as rgb or one hot - self.stuffthing = use_stuffthing # include thing in segmentation - if self.onehot and not self.stuffthing: - raise NotImplemented("One hot mode is only supported for the " - "stuffthings version because labels are stored " - "a bit different.") - - data_json = datajson - with open(data_json) as json_file: - self.json_data = json.load(json_file) - self.img_id_to_captions = dict() - self.img_id_to_filepath = dict() - self.img_id_to_segmentation_filepath = dict() - - assert data_json.split("/")[-1] in ["captions_train2017.json", - "captions_val2017.json"] - if self.stuffthing: - self.segmentation_prefix = ( - "data/cocostuffthings/val2017" if - data_json.endswith("captions_val2017.json") else - "data/cocostuffthings/train2017") - else: - self.segmentation_prefix = ( - "data/coco/annotations/stuff_val2017_pixelmaps" if - data_json.endswith("captions_val2017.json") else - "data/coco/annotations/stuff_train2017_pixelmaps") - - imagedirs = self.json_data["images"] - self.labels = {"image_ids": list()} - for imgdir in tqdm(imagedirs, desc="ImgToPath"): - self.img_id_to_filepath[imgdir["id"]] = os.path.join(dataroot, imgdir["file_name"]) - self.img_id_to_captions[imgdir["id"]] = list() - pngfilename = imgdir["file_name"].replace("jpg", "png") - self.img_id_to_segmentation_filepath[imgdir["id"]] = os.path.join( - self.segmentation_prefix, pngfilename) - if given_files is not None: - if pngfilename in given_files: - self.labels["image_ids"].append(imgdir["id"]) - else: - self.labels["image_ids"].append(imgdir["id"]) - - capdirs = self.json_data["annotations"] - for capdir in tqdm(capdirs, desc="ImgToCaptions"): - # there are in average 5 captions per image - self.img_id_to_captions[capdir["image_id"]].append(np.array([capdir["caption"]])) - - self.rescaler = albumentations.SmallestMaxSize(max_size=self.size) - if self.split=="validation": - self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size) - else: - self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size) - self.preprocessor = albumentations.Compose( - [self.rescaler, self.cropper], - additional_targets={"segmentation": "image"}) - if force_no_crop: - self.rescaler = albumentations.Resize(height=self.size, width=self.size) - self.preprocessor = albumentations.Compose( - [self.rescaler], - additional_targets={"segmentation": "image"}) - - def __len__(self): - return len(self.labels["image_ids"]) - - def preprocess_image(self, image_path, segmentation_path): - image = Image.open(image_path) - if not image.mode == "RGB": - image = image.convert("RGB") - image = np.array(image).astype(np.uint8) - - segmentation = Image.open(segmentation_path) - if not self.onehot and not segmentation.mode == "RGB": - segmentation = segmentation.convert("RGB") - segmentation = np.array(segmentation).astype(np.uint8) - if self.onehot: - assert self.stuffthing - # stored in caffe format: unlabeled==255. stuff and thing from - # 0-181. to be compatible with the labels in - # https://github.com/nightrome/cocostuff/blob/master/labels.txt - # we shift stuffthing one to the right and put unlabeled in zero - # as long as segmentation is uint8 shifting to right handles the - # latter too - assert segmentation.dtype == np.uint8 - segmentation = segmentation + 1 - - processed = self.preprocessor(image=image, segmentation=segmentation) - image, segmentation = processed["image"], processed["segmentation"] - image = (image / 127.5 - 1.0).astype(np.float32) - - if self.onehot: - assert segmentation.dtype == np.uint8 - # make it one hot - n_labels = 183 - flatseg = np.ravel(segmentation) - onehot = np.zeros((flatseg.size, n_labels), dtype=np.bool) - onehot[np.arange(flatseg.size), flatseg] = True - onehot = onehot.reshape(segmentation.shape + (n_labels,)).astype(int) - segmentation = onehot - else: - segmentation = (segmentation / 127.5 - 1.0).astype(np.float32) - return image, segmentation - - def __getitem__(self, i): - img_path = self.img_id_to_filepath[self.labels["image_ids"][i]] - seg_path = self.img_id_to_segmentation_filepath[self.labels["image_ids"][i]] - image, segmentation = self.preprocess_image(img_path, seg_path) - captions = self.img_id_to_captions[self.labels["image_ids"][i]] - # randomly draw one of all available captions per image - caption = captions[np.random.randint(0, len(captions))] - example = {"image": image, - "caption": [str(caption[0])], - "segmentation": segmentation, - "img_path": img_path, - "seg_path": seg_path, - "filename_": img_path.split(os.sep)[-1] - } - return example - - -class CocoImagesAndCaptionsTrain(CocoBase): - """returns a pair of (image, caption)""" - def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False): - super().__init__(size=size, - dataroot="data/coco/train2017", - datajson="data/coco/annotations/captions_train2017.json", - onehot_segmentation=onehot_segmentation, - use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop) - - def get_split(self): - return "train" - - -class CocoImagesAndCaptionsValidation(CocoBase): - """returns a pair of (image, caption)""" - def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False, - given_files=None): - super().__init__(size=size, - dataroot="data/coco/val2017", - datajson="data/coco/annotations/captions_val2017.json", - onehot_segmentation=onehot_segmentation, - use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop, - given_files=given_files) - - def get_split(self): - return "validation" diff --git a/3DTopia/taming/data/conditional_builder/objects_bbox.py b/3DTopia/taming/data/conditional_builder/objects_bbox.py deleted file mode 100644 index 15881e76b7ab2a914df8f2dfe08ae4f0c6c511b5..0000000000000000000000000000000000000000 --- a/3DTopia/taming/data/conditional_builder/objects_bbox.py +++ /dev/null @@ -1,60 +0,0 @@ -from itertools import cycle -from typing import List, Tuple, Callable, Optional - -from PIL import Image as pil_image, ImageDraw as pil_img_draw, ImageFont -from more_itertools.recipes import grouper -from taming.data.image_transforms import convert_pil_to_tensor -from torch import LongTensor, Tensor - -from taming.data.helper_types import BoundingBox, Annotation -from taming.data.conditional_builder.objects_center_points import ObjectsCenterPointsConditionalBuilder -from taming.data.conditional_builder.utils import COLOR_PALETTE, WHITE, GRAY_75, BLACK, additional_parameters_string, \ - pad_list, get_plot_font_size, absolute_bbox - - -class ObjectsBoundingBoxConditionalBuilder(ObjectsCenterPointsConditionalBuilder): - @property - def object_descriptor_length(self) -> int: - return 3 - - def _make_object_descriptors(self, annotations: List[Annotation]) -> List[Tuple[int, ...]]: - object_triples = [ - (self.object_representation(ann), *self.token_pair_from_bbox(ann.bbox)) - for ann in annotations - ] - empty_triple = (self.none, self.none, self.none) - object_triples = pad_list(object_triples, empty_triple, self.no_max_objects) - return object_triples - - def inverse_build(self, conditional: LongTensor) -> Tuple[List[Tuple[int, BoundingBox]], Optional[BoundingBox]]: - conditional_list = conditional.tolist() - crop_coordinates = None - if self.encode_crop: - crop_coordinates = self.bbox_from_token_pair(conditional_list[-2], conditional_list[-1]) - conditional_list = conditional_list[:-2] - object_triples = grouper(conditional_list, 3) - assert conditional.shape[0] == self.embedding_dim - return [ - (object_triple[0], self.bbox_from_token_pair(object_triple[1], object_triple[2])) - for object_triple in object_triples if object_triple[0] != self.none - ], crop_coordinates - - def plot(self, conditional: LongTensor, label_for_category_no: Callable[[int], str], figure_size: Tuple[int, int], - line_width: int = 3, font_size: Optional[int] = None) -> Tensor: - plot = pil_image.new('RGB', figure_size, WHITE) - draw = pil_img_draw.Draw(plot) - font = ImageFont.truetype( - "/usr/share/fonts/truetype/lato/Lato-Regular.ttf", - size=get_plot_font_size(font_size, figure_size) - ) - width, height = plot.size - description, crop_coordinates = self.inverse_build(conditional) - for (representation, bbox), color in zip(description, cycle(COLOR_PALETTE)): - annotation = self.representation_to_annotation(representation) - class_label = label_for_category_no(annotation.category_no) + ' ' + additional_parameters_string(annotation) - bbox = absolute_bbox(bbox, width, height) - draw.rectangle(bbox, outline=color, width=line_width) - draw.text((bbox[0] + line_width, bbox[1] + line_width), class_label, anchor='la', fill=BLACK, font=font) - if crop_coordinates is not None: - draw.rectangle(absolute_bbox(crop_coordinates, width, height), outline=GRAY_75, width=line_width) - return convert_pil_to_tensor(plot) / 127.5 - 1. diff --git a/3DTopia/taming/data/conditional_builder/objects_center_points.py b/3DTopia/taming/data/conditional_builder/objects_center_points.py deleted file mode 100644 index 9a480329cc47fb38a7b8729d424e092b77d40749..0000000000000000000000000000000000000000 --- a/3DTopia/taming/data/conditional_builder/objects_center_points.py +++ /dev/null @@ -1,168 +0,0 @@ -import math -import random -import warnings -from itertools import cycle -from typing import List, Optional, Tuple, Callable - -from PIL import Image as pil_image, ImageDraw as pil_img_draw, ImageFont -from more_itertools.recipes import grouper -from taming.data.conditional_builder.utils import COLOR_PALETTE, WHITE, GRAY_75, BLACK, FULL_CROP, filter_annotations, \ - additional_parameters_string, horizontally_flip_bbox, pad_list, get_circle_size, get_plot_font_size, \ - absolute_bbox, rescale_annotations -from taming.data.helper_types import BoundingBox, Annotation -from taming.data.image_transforms import convert_pil_to_tensor -from torch import LongTensor, Tensor - - -class ObjectsCenterPointsConditionalBuilder: - def __init__(self, no_object_classes: int, no_max_objects: int, no_tokens: int, encode_crop: bool, - use_group_parameter: bool, use_additional_parameters: bool): - self.no_object_classes = no_object_classes - self.no_max_objects = no_max_objects - self.no_tokens = no_tokens - self.encode_crop = encode_crop - self.no_sections = int(math.sqrt(self.no_tokens)) - self.use_group_parameter = use_group_parameter - self.use_additional_parameters = use_additional_parameters - - @property - def none(self) -> int: - return self.no_tokens - 1 - - @property - def object_descriptor_length(self) -> int: - return 2 - - @property - def embedding_dim(self) -> int: - extra_length = 2 if self.encode_crop else 0 - return self.no_max_objects * self.object_descriptor_length + extra_length - - def tokenize_coordinates(self, x: float, y: float) -> int: - """ - Express 2d coordinates with one number. - Example: assume self.no_tokens = 16, then no_sections = 4: - 0 0 0 0 - 0 0 # 0 - 0 0 0 0 - 0 0 0 x - Then the # position corresponds to token 6, the x position to token 15. - @param x: float in [0, 1] - @param y: float in [0, 1] - @return: discrete tokenized coordinate - """ - x_discrete = int(round(x * (self.no_sections - 1))) - y_discrete = int(round(y * (self.no_sections - 1))) - return y_discrete * self.no_sections + x_discrete - - def coordinates_from_token(self, token: int) -> (float, float): - x = token % self.no_sections - y = token // self.no_sections - return x / (self.no_sections - 1), y / (self.no_sections - 1) - - def bbox_from_token_pair(self, token1: int, token2: int) -> BoundingBox: - x0, y0 = self.coordinates_from_token(token1) - x1, y1 = self.coordinates_from_token(token2) - return x0, y0, x1 - x0, y1 - y0 - - def token_pair_from_bbox(self, bbox: BoundingBox) -> Tuple[int, int]: - return self.tokenize_coordinates(bbox[0], bbox[1]), \ - self.tokenize_coordinates(bbox[0] + bbox[2], bbox[1] + bbox[3]) - - def inverse_build(self, conditional: LongTensor) \ - -> Tuple[List[Tuple[int, Tuple[float, float]]], Optional[BoundingBox]]: - conditional_list = conditional.tolist() - crop_coordinates = None - if self.encode_crop: - crop_coordinates = self.bbox_from_token_pair(conditional_list[-2], conditional_list[-1]) - conditional_list = conditional_list[:-2] - table_of_content = grouper(conditional_list, self.object_descriptor_length) - assert conditional.shape[0] == self.embedding_dim - return [ - (object_tuple[0], self.coordinates_from_token(object_tuple[1])) - for object_tuple in table_of_content if object_tuple[0] != self.none - ], crop_coordinates - - def plot(self, conditional: LongTensor, label_for_category_no: Callable[[int], str], figure_size: Tuple[int, int], - line_width: int = 3, font_size: Optional[int] = None) -> Tensor: - plot = pil_image.new('RGB', figure_size, WHITE) - draw = pil_img_draw.Draw(plot) - circle_size = get_circle_size(figure_size) - font = ImageFont.truetype('/usr/share/fonts/truetype/lato/Lato-Regular.ttf', - size=get_plot_font_size(font_size, figure_size)) - width, height = plot.size - description, crop_coordinates = self.inverse_build(conditional) - for (representation, (x, y)), color in zip(description, cycle(COLOR_PALETTE)): - x_abs, y_abs = x * width, y * height - ann = self.representation_to_annotation(representation) - label = label_for_category_no(ann.category_no) + ' ' + additional_parameters_string(ann) - ellipse_bbox = [x_abs - circle_size, y_abs - circle_size, x_abs + circle_size, y_abs + circle_size] - draw.ellipse(ellipse_bbox, fill=color, width=0) - draw.text((x_abs, y_abs), label, anchor='md', fill=BLACK, font=font) - if crop_coordinates is not None: - draw.rectangle(absolute_bbox(crop_coordinates, width, height), outline=GRAY_75, width=line_width) - return convert_pil_to_tensor(plot) / 127.5 - 1. - - def object_representation(self, annotation: Annotation) -> int: - modifier = 0 - if self.use_group_parameter: - modifier |= 1 * (annotation.is_group_of is True) - if self.use_additional_parameters: - modifier |= 2 * (annotation.is_occluded is True) - modifier |= 4 * (annotation.is_depiction is True) - modifier |= 8 * (annotation.is_inside is True) - return annotation.category_no + self.no_object_classes * modifier - - def representation_to_annotation(self, representation: int) -> Annotation: - category_no = representation % self.no_object_classes - modifier = representation // self.no_object_classes - # noinspection PyTypeChecker - return Annotation( - area=None, image_id=None, bbox=None, category_id=None, id=None, source=None, confidence=None, - category_no=category_no, - is_group_of=bool((modifier & 1) * self.use_group_parameter), - is_occluded=bool((modifier & 2) * self.use_additional_parameters), - is_depiction=bool((modifier & 4) * self.use_additional_parameters), - is_inside=bool((modifier & 8) * self.use_additional_parameters) - ) - - def _crop_encoder(self, crop_coordinates: BoundingBox) -> List[int]: - return list(self.token_pair_from_bbox(crop_coordinates)) - - def _make_object_descriptors(self, annotations: List[Annotation]) -> List[Tuple[int, ...]]: - object_tuples = [ - (self.object_representation(a), - self.tokenize_coordinates(a.bbox[0] + a.bbox[2] / 2, a.bbox[1] + a.bbox[3] / 2)) - for a in annotations - ] - empty_tuple = (self.none, self.none) - object_tuples = pad_list(object_tuples, empty_tuple, self.no_max_objects) - return object_tuples - - def build(self, annotations: List, crop_coordinates: Optional[BoundingBox] = None, horizontal_flip: bool = False) \ - -> LongTensor: - if len(annotations) == 0: - warnings.warn('Did not receive any annotations.') - if len(annotations) > self.no_max_objects: - warnings.warn('Received more annotations than allowed.') - annotations = annotations[:self.no_max_objects] - - if not crop_coordinates: - crop_coordinates = FULL_CROP - - random.shuffle(annotations) - annotations = filter_annotations(annotations, crop_coordinates) - if self.encode_crop: - annotations = rescale_annotations(annotations, FULL_CROP, horizontal_flip) - if horizontal_flip: - crop_coordinates = horizontally_flip_bbox(crop_coordinates) - extra = self._crop_encoder(crop_coordinates) - else: - annotations = rescale_annotations(annotations, crop_coordinates, horizontal_flip) - extra = [] - - object_tuples = self._make_object_descriptors(annotations) - flattened = [token for tuple_ in object_tuples for token in tuple_] + extra - assert len(flattened) == self.embedding_dim - assert all(0 <= value < self.no_tokens for value in flattened) - return LongTensor(flattened) diff --git a/3DTopia/taming/data/conditional_builder/utils.py b/3DTopia/taming/data/conditional_builder/utils.py deleted file mode 100644 index d0ee175f2e05a80dbc71c22acbecb22dddadbb42..0000000000000000000000000000000000000000 --- a/3DTopia/taming/data/conditional_builder/utils.py +++ /dev/null @@ -1,105 +0,0 @@ -import importlib -from typing import List, Any, Tuple, Optional - -from taming.data.helper_types import BoundingBox, Annotation - -# source: seaborn, color palette tab10 -COLOR_PALETTE = [(30, 118, 179), (255, 126, 13), (43, 159, 43), (213, 38, 39), (147, 102, 188), - (139, 85, 74), (226, 118, 193), (126, 126, 126), (187, 188, 33), (22, 189, 206)] -BLACK = (0, 0, 0) -GRAY_75 = (63, 63, 63) -GRAY_50 = (127, 127, 127) -GRAY_25 = (191, 191, 191) -WHITE = (255, 255, 255) -FULL_CROP = (0., 0., 1., 1.) - - -def intersection_area(rectangle1: BoundingBox, rectangle2: BoundingBox) -> float: - """ - Give intersection area of two rectangles. - @param rectangle1: (x0, y0, w, h) of first rectangle - @param rectangle2: (x0, y0, w, h) of second rectangle - """ - rectangle1 = rectangle1[0], rectangle1[1], rectangle1[0] + rectangle1[2], rectangle1[1] + rectangle1[3] - rectangle2 = rectangle2[0], rectangle2[1], rectangle2[0] + rectangle2[2], rectangle2[1] + rectangle2[3] - x_overlap = max(0., min(rectangle1[2], rectangle2[2]) - max(rectangle1[0], rectangle2[0])) - y_overlap = max(0., min(rectangle1[3], rectangle2[3]) - max(rectangle1[1], rectangle2[1])) - return x_overlap * y_overlap - - -def horizontally_flip_bbox(bbox: BoundingBox) -> BoundingBox: - return 1 - (bbox[0] + bbox[2]), bbox[1], bbox[2], bbox[3] - - -def absolute_bbox(relative_bbox: BoundingBox, width: int, height: int) -> Tuple[int, int, int, int]: - bbox = relative_bbox - bbox = bbox[0] * width, bbox[1] * height, (bbox[0] + bbox[2]) * width, (bbox[1] + bbox[3]) * height - return int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3]) - - -def pad_list(list_: List, pad_element: Any, pad_to_length: int) -> List: - return list_ + [pad_element for _ in range(pad_to_length - len(list_))] - - -def rescale_annotations(annotations: List[Annotation], crop_coordinates: BoundingBox, flip: bool) -> \ - List[Annotation]: - def clamp(x: float): - return max(min(x, 1.), 0.) - - def rescale_bbox(bbox: BoundingBox) -> BoundingBox: - x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) - y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) - w = min(bbox[2] / crop_coordinates[2], 1 - x0) - h = min(bbox[3] / crop_coordinates[3], 1 - y0) - if flip: - x0 = 1 - (x0 + w) - return x0, y0, w, h - - return [a._replace(bbox=rescale_bbox(a.bbox)) for a in annotations] - - -def filter_annotations(annotations: List[Annotation], crop_coordinates: BoundingBox) -> List: - return [a for a in annotations if intersection_area(a.bbox, crop_coordinates) > 0.0] - - -def additional_parameters_string(annotation: Annotation, short: bool = True) -> str: - sl = slice(1) if short else slice(None) - string = '' - if not (annotation.is_group_of or annotation.is_occluded or annotation.is_depiction or annotation.is_inside): - return string - if annotation.is_group_of: - string += 'group'[sl] + ',' - if annotation.is_occluded: - string += 'occluded'[sl] + ',' - if annotation.is_depiction: - string += 'depiction'[sl] + ',' - if annotation.is_inside: - string += 'inside'[sl] - return '(' + string.strip(",") + ')' - - -def get_plot_font_size(font_size: Optional[int], figure_size: Tuple[int, int]) -> int: - if font_size is None: - font_size = 10 - if max(figure_size) >= 256: - font_size = 12 - if max(figure_size) >= 512: - font_size = 15 - return font_size - - -def get_circle_size(figure_size: Tuple[int, int]) -> int: - circle_size = 2 - if max(figure_size) >= 256: - circle_size = 3 - if max(figure_size) >= 512: - circle_size = 4 - return circle_size - - -def load_object_from_string(object_string: str) -> Any: - """ - Source: https://stackoverflow.com/a/10773699 - """ - module_name, class_name = object_string.rsplit(".", 1) - return getattr(importlib.import_module(module_name), class_name) diff --git a/3DTopia/taming/data/custom.py b/3DTopia/taming/data/custom.py deleted file mode 100644 index 33f302a4b55ba1e8ec282ec3292b6263c06dfb91..0000000000000000000000000000000000000000 --- a/3DTopia/taming/data/custom.py +++ /dev/null @@ -1,38 +0,0 @@ -import os -import numpy as np -import albumentations -from torch.utils.data import Dataset - -from taming.data.base import ImagePaths, NumpyPaths, ConcatDatasetWithIndex - - -class CustomBase(Dataset): - def __init__(self, *args, **kwargs): - super().__init__() - self.data = None - - def __len__(self): - return len(self.data) - - def __getitem__(self, i): - example = self.data[i] - return example - - - -class CustomTrain(CustomBase): - def __init__(self, size, training_images_list_file): - super().__init__() - with open(training_images_list_file, "r") as f: - paths = f.read().splitlines() - self.data = ImagePaths(paths=paths, size=size, random_crop=False) - - -class CustomTest(CustomBase): - def __init__(self, size, test_images_list_file): - super().__init__() - with open(test_images_list_file, "r") as f: - paths = f.read().splitlines() - self.data = ImagePaths(paths=paths, size=size, random_crop=False) - - diff --git a/3DTopia/taming/data/faceshq.py b/3DTopia/taming/data/faceshq.py deleted file mode 100644 index 6912d04b66a6d464c1078e4b51d5da290f5e767e..0000000000000000000000000000000000000000 --- a/3DTopia/taming/data/faceshq.py +++ /dev/null @@ -1,134 +0,0 @@ -import os -import numpy as np -import albumentations -from torch.utils.data import Dataset - -from taming.data.base import ImagePaths, NumpyPaths, ConcatDatasetWithIndex - - -class FacesBase(Dataset): - def __init__(self, *args, **kwargs): - super().__init__() - self.data = None - self.keys = None - - def __len__(self): - return len(self.data) - - def __getitem__(self, i): - example = self.data[i] - ex = {} - if self.keys is not None: - for k in self.keys: - ex[k] = example[k] - else: - ex = example - return ex - - -class CelebAHQTrain(FacesBase): - def __init__(self, size, keys=None): - super().__init__() - root = "data/celebahq" - with open("data/celebahqtrain.txt", "r") as f: - relpaths = f.read().splitlines() - paths = [os.path.join(root, relpath) for relpath in relpaths] - self.data = NumpyPaths(paths=paths, size=size, random_crop=False) - self.keys = keys - - -class CelebAHQValidation(FacesBase): - def __init__(self, size, keys=None): - super().__init__() - root = "data/celebahq" - with open("data/celebahqvalidation.txt", "r") as f: - relpaths = f.read().splitlines() - paths = [os.path.join(root, relpath) for relpath in relpaths] - self.data = NumpyPaths(paths=paths, size=size, random_crop=False) - self.keys = keys - - -class FFHQTrain(FacesBase): - def __init__(self, size, keys=None): - super().__init__() - root = "data/ffhq" - with open("data/ffhqtrain.txt", "r") as f: - relpaths = f.read().splitlines() - paths = [os.path.join(root, relpath) for relpath in relpaths] - self.data = ImagePaths(paths=paths, size=size, random_crop=False) - self.keys = keys - - -class FFHQValidation(FacesBase): - def __init__(self, size, keys=None): - super().__init__() - root = "data/ffhq" - with open("data/ffhqvalidation.txt", "r") as f: - relpaths = f.read().splitlines() - paths = [os.path.join(root, relpath) for relpath in relpaths] - self.data = ImagePaths(paths=paths, size=size, random_crop=False) - self.keys = keys - - -class FacesHQTrain(Dataset): - # CelebAHQ [0] + FFHQ [1] - def __init__(self, size, keys=None, crop_size=None, coord=False): - d1 = CelebAHQTrain(size=size, keys=keys) - d2 = FFHQTrain(size=size, keys=keys) - self.data = ConcatDatasetWithIndex([d1, d2]) - self.coord = coord - if crop_size is not None: - self.cropper = albumentations.RandomCrop(height=crop_size,width=crop_size) - if self.coord: - self.cropper = albumentations.Compose([self.cropper], - additional_targets={"coord": "image"}) - - def __len__(self): - return len(self.data) - - def __getitem__(self, i): - ex, y = self.data[i] - if hasattr(self, "cropper"): - if not self.coord: - out = self.cropper(image=ex["image"]) - ex["image"] = out["image"] - else: - h,w,_ = ex["image"].shape - coord = np.arange(h*w).reshape(h,w,1)/(h*w) - out = self.cropper(image=ex["image"], coord=coord) - ex["image"] = out["image"] - ex["coord"] = out["coord"] - ex["class"] = y - return ex - - -class FacesHQValidation(Dataset): - # CelebAHQ [0] + FFHQ [1] - def __init__(self, size, keys=None, crop_size=None, coord=False): - d1 = CelebAHQValidation(size=size, keys=keys) - d2 = FFHQValidation(size=size, keys=keys) - self.data = ConcatDatasetWithIndex([d1, d2]) - self.coord = coord - if crop_size is not None: - self.cropper = albumentations.CenterCrop(height=crop_size,width=crop_size) - if self.coord: - self.cropper = albumentations.Compose([self.cropper], - additional_targets={"coord": "image"}) - - def __len__(self): - return len(self.data) - - def __getitem__(self, i): - ex, y = self.data[i] - if hasattr(self, "cropper"): - if not self.coord: - out = self.cropper(image=ex["image"]) - ex["image"] = out["image"] - else: - h,w,_ = ex["image"].shape - coord = np.arange(h*w).reshape(h,w,1)/(h*w) - out = self.cropper(image=ex["image"], coord=coord) - ex["image"] = out["image"] - ex["coord"] = out["coord"] - ex["class"] = y - return ex diff --git a/3DTopia/taming/data/helper_types.py b/3DTopia/taming/data/helper_types.py deleted file mode 100644 index fb51e301da08602cfead5961c4f7e1d89f6aba79..0000000000000000000000000000000000000000 --- a/3DTopia/taming/data/helper_types.py +++ /dev/null @@ -1,49 +0,0 @@ -from typing import Dict, Tuple, Optional, NamedTuple, Union -from PIL.Image import Image as pil_image -from torch import Tensor - -try: - from typing import Literal -except ImportError: - from typing_extensions import Literal - -Image = Union[Tensor, pil_image] -BoundingBox = Tuple[float, float, float, float] # x0, y0, w, h -CropMethodType = Literal['none', 'random', 'center', 'random-2d'] -SplitType = Literal['train', 'validation', 'test'] - - -class ImageDescription(NamedTuple): - id: int - file_name: str - original_size: Tuple[int, int] # w, h - url: Optional[str] = None - license: Optional[int] = None - coco_url: Optional[str] = None - date_captured: Optional[str] = None - flickr_url: Optional[str] = None - flickr_id: Optional[str] = None - coco_id: Optional[str] = None - - -class Category(NamedTuple): - id: str - super_category: Optional[str] - name: str - - -class Annotation(NamedTuple): - area: float - image_id: str - bbox: BoundingBox - category_no: int - category_id: str - id: Optional[int] = None - source: Optional[str] = None - confidence: Optional[float] = None - is_group_of: Optional[bool] = None - is_truncated: Optional[bool] = None - is_occluded: Optional[bool] = None - is_depiction: Optional[bool] = None - is_inside: Optional[bool] = None - segmentation: Optional[Dict] = None diff --git a/3DTopia/taming/data/image_transforms.py b/3DTopia/taming/data/image_transforms.py deleted file mode 100644 index 657ac332174e0ac72f68315271ffbd757b771a0f..0000000000000000000000000000000000000000 --- a/3DTopia/taming/data/image_transforms.py +++ /dev/null @@ -1,132 +0,0 @@ -import random -import warnings -from typing import Union - -import torch -from torch import Tensor -from torchvision.transforms import RandomCrop, functional as F, CenterCrop, RandomHorizontalFlip, PILToTensor -from torchvision.transforms.functional import _get_image_size as get_image_size - -from taming.data.helper_types import BoundingBox, Image - -pil_to_tensor = PILToTensor() - - -def convert_pil_to_tensor(image: Image) -> Tensor: - with warnings.catch_warnings(): - # to filter PyTorch UserWarning as described here: https://github.com/pytorch/vision/issues/2194 - warnings.simplefilter("ignore") - return pil_to_tensor(image) - - -class RandomCrop1dReturnCoordinates(RandomCrop): - def forward(self, img: Image) -> (BoundingBox, Image): - """ - Additionally to cropping, returns the relative coordinates of the crop bounding box. - Args: - img (PIL Image or Tensor): Image to be cropped. - - Returns: - Bounding box: x0, y0, w, h - PIL Image or Tensor: Cropped image. - - Based on: - torchvision.transforms.RandomCrop, torchvision 1.7.0 - """ - if self.padding is not None: - img = F.pad(img, self.padding, self.fill, self.padding_mode) - - width, height = get_image_size(img) - # pad the width if needed - if self.pad_if_needed and width < self.size[1]: - padding = [self.size[1] - width, 0] - img = F.pad(img, padding, self.fill, self.padding_mode) - # pad the height if needed - if self.pad_if_needed and height < self.size[0]: - padding = [0, self.size[0] - height] - img = F.pad(img, padding, self.fill, self.padding_mode) - - i, j, h, w = self.get_params(img, self.size) - bbox = (j / width, i / height, w / width, h / height) # x0, y0, w, h - return bbox, F.crop(img, i, j, h, w) - - -class Random2dCropReturnCoordinates(torch.nn.Module): - """ - Additionally to cropping, returns the relative coordinates of the crop bounding box. - Args: - img (PIL Image or Tensor): Image to be cropped. - - Returns: - Bounding box: x0, y0, w, h - PIL Image or Tensor: Cropped image. - - Based on: - torchvision.transforms.RandomCrop, torchvision 1.7.0 - """ - - def __init__(self, min_size: int): - super().__init__() - self.min_size = min_size - - def forward(self, img: Image) -> (BoundingBox, Image): - width, height = get_image_size(img) - max_size = min(width, height) - if max_size <= self.min_size: - size = max_size - else: - size = random.randint(self.min_size, max_size) - top = random.randint(0, height - size) - left = random.randint(0, width - size) - bbox = left / width, top / height, size / width, size / height - return bbox, F.crop(img, top, left, size, size) - - -class CenterCropReturnCoordinates(CenterCrop): - @staticmethod - def get_bbox_of_center_crop(width: int, height: int) -> BoundingBox: - if width > height: - w = height / width - h = 1.0 - x0 = 0.5 - w / 2 - y0 = 0. - else: - w = 1.0 - h = width / height - x0 = 0. - y0 = 0.5 - h / 2 - return x0, y0, w, h - - def forward(self, img: Union[Image, Tensor]) -> (BoundingBox, Union[Image, Tensor]): - """ - Additionally to cropping, returns the relative coordinates of the crop bounding box. - Args: - img (PIL Image or Tensor): Image to be cropped. - - Returns: - Bounding box: x0, y0, w, h - PIL Image or Tensor: Cropped image. - Based on: - torchvision.transforms.RandomHorizontalFlip (version 1.7.0) - """ - width, height = get_image_size(img) - return self.get_bbox_of_center_crop(width, height), F.center_crop(img, self.size) - - -class RandomHorizontalFlipReturn(RandomHorizontalFlip): - def forward(self, img: Image) -> (bool, Image): - """ - Additionally to flipping, returns a boolean whether it was flipped or not. - Args: - img (PIL Image or Tensor): Image to be flipped. - - Returns: - flipped: whether the image was flipped or not - PIL Image or Tensor: Randomly flipped image. - - Based on: - torchvision.transforms.RandomHorizontalFlip (version 1.7.0) - """ - if torch.rand(1) < self.p: - return True, F.hflip(img) - return False, img diff --git a/3DTopia/taming/data/imagenet.py b/3DTopia/taming/data/imagenet.py deleted file mode 100644 index 9a02ec44ba4af9e993f58c91fa43482a4ecbe54c..0000000000000000000000000000000000000000 --- a/3DTopia/taming/data/imagenet.py +++ /dev/null @@ -1,558 +0,0 @@ -import os, tarfile, glob, shutil -import yaml -import numpy as np -from tqdm import tqdm -from PIL import Image -import albumentations -from omegaconf import OmegaConf -from torch.utils.data import Dataset - -from taming.data.base import ImagePaths -from taming.util import download, retrieve -import taming.data.utils as bdu - - -def give_synsets_from_indices(indices, path_to_yaml="data/imagenet_idx_to_synset.yaml"): - synsets = [] - with open(path_to_yaml) as f: - di2s = yaml.load(f) - for idx in indices: - synsets.append(str(di2s[idx])) - print("Using {} different synsets for construction of Restriced Imagenet.".format(len(synsets))) - return synsets - - -def str_to_indices(string): - """Expects a string in the format '32-123, 256, 280-321'""" - assert not string.endswith(","), "provided string '{}' ends with a comma, pls remove it".format(string) - subs = string.split(",") - indices = [] - for sub in subs: - subsubs = sub.split("-") - assert len(subsubs) > 0 - if len(subsubs) == 1: - indices.append(int(subsubs[0])) - else: - rang = [j for j in range(int(subsubs[0]), int(subsubs[1]))] - indices.extend(rang) - return sorted(indices) - - -class ImageNetBase(Dataset): - def __init__(self, config=None): - self.config = config or OmegaConf.create() - if not type(self.config)==dict: - self.config = OmegaConf.to_container(self.config) - self._prepare() - self._prepare_synset_to_human() - self._prepare_idx_to_synset() - self._load() - - def __len__(self): - return len(self.data) - - def __getitem__(self, i): - return self.data[i] - - def _prepare(self): - raise NotImplementedError() - - def _filter_relpaths(self, relpaths): - ignore = set([ - "n06596364_9591.JPEG", - ]) - relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore] - if "sub_indices" in self.config: - indices = str_to_indices(self.config["sub_indices"]) - synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings - files = [] - for rpath in relpaths: - syn = rpath.split("/")[0] - if syn in synsets: - files.append(rpath) - return files - else: - return relpaths - - def _prepare_synset_to_human(self): - SIZE = 2655750 - URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1" - self.human_dict = os.path.join(self.root, "synset_human.txt") - if (not os.path.exists(self.human_dict) or - not os.path.getsize(self.human_dict)==SIZE): - download(URL, self.human_dict) - - def _prepare_idx_to_synset(self): - URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1" - self.idx2syn = os.path.join(self.root, "index_synset.yaml") - if (not os.path.exists(self.idx2syn)): - download(URL, self.idx2syn) - - def _load(self): - with open(self.txt_filelist, "r") as f: - self.relpaths = f.read().splitlines() - l1 = len(self.relpaths) - self.relpaths = self._filter_relpaths(self.relpaths) - print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths))) - - self.synsets = [p.split("/")[0] for p in self.relpaths] - self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths] - - unique_synsets = np.unique(self.synsets) - class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets)) - self.class_labels = [class_dict[s] for s in self.synsets] - - with open(self.human_dict, "r") as f: - human_dict = f.read().splitlines() - human_dict = dict(line.split(maxsplit=1) for line in human_dict) - - self.human_labels = [human_dict[s] for s in self.synsets] - - labels = { - "relpath": np.array(self.relpaths), - "synsets": np.array(self.synsets), - "class_label": np.array(self.class_labels), - "human_label": np.array(self.human_labels), - } - self.data = ImagePaths(self.abspaths, - labels=labels, - size=retrieve(self.config, "size", default=0), - random_crop=self.random_crop) - - -class ImageNetTrain(ImageNetBase): - NAME = "ILSVRC2012_train" - URL = "http://www.image-net.org/challenges/LSVRC/2012/" - AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2" - FILES = [ - "ILSVRC2012_img_train.tar", - ] - SIZES = [ - 147897477120, - ] - - def _prepare(self): - self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop", - default=True) - cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache")) - self.root = os.path.join(cachedir, "autoencoders/data", self.NAME) - self.datadir = os.path.join(self.root, "data") - self.txt_filelist = os.path.join(self.root, "filelist.txt") - self.expected_length = 1281167 - if not bdu.is_prepared(self.root): - # prep - print("Preparing dataset {} in {}".format(self.NAME, self.root)) - - datadir = self.datadir - if not os.path.exists(datadir): - path = os.path.join(self.root, self.FILES[0]) - if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]: - import academictorrents as at - atpath = at.get(self.AT_HASH, datastore=self.root) - assert atpath == path - - print("Extracting {} to {}".format(path, datadir)) - os.makedirs(datadir, exist_ok=True) - with tarfile.open(path, "r:") as tar: - tar.extractall(path=datadir) - - print("Extracting sub-tars.") - subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar"))) - for subpath in tqdm(subpaths): - subdir = subpath[:-len(".tar")] - os.makedirs(subdir, exist_ok=True) - with tarfile.open(subpath, "r:") as tar: - tar.extractall(path=subdir) - - - filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG")) - filelist = [os.path.relpath(p, start=datadir) for p in filelist] - filelist = sorted(filelist) - filelist = "\n".join(filelist)+"\n" - with open(self.txt_filelist, "w") as f: - f.write(filelist) - - bdu.mark_prepared(self.root) - - -class ImageNetValidation(ImageNetBase): - NAME = "ILSVRC2012_validation" - URL = "http://www.image-net.org/challenges/LSVRC/2012/" - AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5" - VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1" - FILES = [ - "ILSVRC2012_img_val.tar", - "validation_synset.txt", - ] - SIZES = [ - 6744924160, - 1950000, - ] - - def _prepare(self): - self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop", - default=False) - cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache")) - self.root = os.path.join(cachedir, "autoencoders/data", self.NAME) - self.datadir = os.path.join(self.root, "data") - self.txt_filelist = os.path.join(self.root, "filelist.txt") - self.expected_length = 50000 - if not bdu.is_prepared(self.root): - # prep - print("Preparing dataset {} in {}".format(self.NAME, self.root)) - - datadir = self.datadir - if not os.path.exists(datadir): - path = os.path.join(self.root, self.FILES[0]) - if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]: - import academictorrents as at - atpath = at.get(self.AT_HASH, datastore=self.root) - assert atpath == path - - print("Extracting {} to {}".format(path, datadir)) - os.makedirs(datadir, exist_ok=True) - with tarfile.open(path, "r:") as tar: - tar.extractall(path=datadir) - - vspath = os.path.join(self.root, self.FILES[1]) - if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]: - download(self.VS_URL, vspath) - - with open(vspath, "r") as f: - synset_dict = f.read().splitlines() - synset_dict = dict(line.split() for line in synset_dict) - - print("Reorganizing into synset folders") - synsets = np.unique(list(synset_dict.values())) - for s in synsets: - os.makedirs(os.path.join(datadir, s), exist_ok=True) - for k, v in synset_dict.items(): - src = os.path.join(datadir, k) - dst = os.path.join(datadir, v) - shutil.move(src, dst) - - filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG")) - filelist = [os.path.relpath(p, start=datadir) for p in filelist] - filelist = sorted(filelist) - filelist = "\n".join(filelist)+"\n" - with open(self.txt_filelist, "w") as f: - f.write(filelist) - - bdu.mark_prepared(self.root) - - -def get_preprocessor(size=None, random_crop=False, additional_targets=None, - crop_size=None): - if size is not None and size > 0: - transforms = list() - rescaler = albumentations.SmallestMaxSize(max_size = size) - transforms.append(rescaler) - if not random_crop: - cropper = albumentations.CenterCrop(height=size,width=size) - transforms.append(cropper) - else: - cropper = albumentations.RandomCrop(height=size,width=size) - transforms.append(cropper) - flipper = albumentations.HorizontalFlip() - transforms.append(flipper) - preprocessor = albumentations.Compose(transforms, - additional_targets=additional_targets) - elif crop_size is not None and crop_size > 0: - if not random_crop: - cropper = albumentations.CenterCrop(height=crop_size,width=crop_size) - else: - cropper = albumentations.RandomCrop(height=crop_size,width=crop_size) - transforms = [cropper] - preprocessor = albumentations.Compose(transforms, - additional_targets=additional_targets) - else: - preprocessor = lambda **kwargs: kwargs - return preprocessor - - -def rgba_to_depth(x): - assert x.dtype == np.uint8 - assert len(x.shape) == 3 and x.shape[2] == 4 - y = x.copy() - y.dtype = np.float32 - y = y.reshape(x.shape[:2]) - return np.ascontiguousarray(y) - - -class BaseWithDepth(Dataset): - DEFAULT_DEPTH_ROOT="data/imagenet_depth" - - def __init__(self, config=None, size=None, random_crop=False, - crop_size=None, root=None): - self.config = config - self.base_dset = self.get_base_dset() - self.preprocessor = get_preprocessor( - size=size, - crop_size=crop_size, - random_crop=random_crop, - additional_targets={"depth": "image"}) - self.crop_size = crop_size - if self.crop_size is not None: - self.rescaler = albumentations.Compose( - [albumentations.SmallestMaxSize(max_size = self.crop_size)], - additional_targets={"depth": "image"}) - if root is not None: - self.DEFAULT_DEPTH_ROOT = root - - def __len__(self): - return len(self.base_dset) - - def preprocess_depth(self, path): - rgba = np.array(Image.open(path)) - depth = rgba_to_depth(rgba) - depth = (depth - depth.min())/max(1e-8, depth.max()-depth.min()) - depth = 2.0*depth-1.0 - return depth - - def __getitem__(self, i): - e = self.base_dset[i] - e["depth"] = self.preprocess_depth(self.get_depth_path(e)) - # up if necessary - h,w,c = e["image"].shape - if self.crop_size and min(h,w) < self.crop_size: - # have to upscale to be able to crop - this just uses bilinear - out = self.rescaler(image=e["image"], depth=e["depth"]) - e["image"] = out["image"] - e["depth"] = out["depth"] - transformed = self.preprocessor(image=e["image"], depth=e["depth"]) - e["image"] = transformed["image"] - e["depth"] = transformed["depth"] - return e - - -class ImageNetTrainWithDepth(BaseWithDepth): - # default to random_crop=True - def __init__(self, random_crop=True, sub_indices=None, **kwargs): - self.sub_indices = sub_indices - super().__init__(random_crop=random_crop, **kwargs) - - def get_base_dset(self): - if self.sub_indices is None: - return ImageNetTrain() - else: - return ImageNetTrain({"sub_indices": self.sub_indices}) - - def get_depth_path(self, e): - fid = os.path.splitext(e["relpath"])[0]+".png" - fid = os.path.join(self.DEFAULT_DEPTH_ROOT, "train", fid) - return fid - - -class ImageNetValidationWithDepth(BaseWithDepth): - def __init__(self, sub_indices=None, **kwargs): - self.sub_indices = sub_indices - super().__init__(**kwargs) - - def get_base_dset(self): - if self.sub_indices is None: - return ImageNetValidation() - else: - return ImageNetValidation({"sub_indices": self.sub_indices}) - - def get_depth_path(self, e): - fid = os.path.splitext(e["relpath"])[0]+".png" - fid = os.path.join(self.DEFAULT_DEPTH_ROOT, "val", fid) - return fid - - -class RINTrainWithDepth(ImageNetTrainWithDepth): - def __init__(self, config=None, size=None, random_crop=True, crop_size=None): - sub_indices = "30-32, 33-37, 151-268, 281-285, 80-100, 365-382, 389-397, 118-121, 300-319" - super().__init__(config=config, size=size, random_crop=random_crop, - sub_indices=sub_indices, crop_size=crop_size) - - -class RINValidationWithDepth(ImageNetValidationWithDepth): - def __init__(self, config=None, size=None, random_crop=False, crop_size=None): - sub_indices = "30-32, 33-37, 151-268, 281-285, 80-100, 365-382, 389-397, 118-121, 300-319" - super().__init__(config=config, size=size, random_crop=random_crop, - sub_indices=sub_indices, crop_size=crop_size) - - -class DRINExamples(Dataset): - def __init__(self): - self.preprocessor = get_preprocessor(size=256, additional_targets={"depth": "image"}) - with open("data/drin_examples.txt", "r") as f: - relpaths = f.read().splitlines() - self.image_paths = [os.path.join("data/drin_images", - relpath) for relpath in relpaths] - self.depth_paths = [os.path.join("data/drin_depth", - relpath.replace(".JPEG", ".png")) for relpath in relpaths] - - def __len__(self): - return len(self.image_paths) - - def preprocess_image(self, image_path): - image = Image.open(image_path) - if not image.mode == "RGB": - image = image.convert("RGB") - image = np.array(image).astype(np.uint8) - image = self.preprocessor(image=image)["image"] - image = (image/127.5 - 1.0).astype(np.float32) - return image - - def preprocess_depth(self, path): - rgba = np.array(Image.open(path)) - depth = rgba_to_depth(rgba) - depth = (depth - depth.min())/max(1e-8, depth.max()-depth.min()) - depth = 2.0*depth-1.0 - return depth - - def __getitem__(self, i): - e = dict() - e["image"] = self.preprocess_image(self.image_paths[i]) - e["depth"] = self.preprocess_depth(self.depth_paths[i]) - transformed = self.preprocessor(image=e["image"], depth=e["depth"]) - e["image"] = transformed["image"] - e["depth"] = transformed["depth"] - return e - - -def imscale(x, factor, keepshapes=False, keepmode="bicubic"): - if factor is None or factor==1: - return x - - dtype = x.dtype - assert dtype in [np.float32, np.float64] - assert x.min() >= -1 - assert x.max() <= 1 - - keepmode = {"nearest": Image.NEAREST, "bilinear": Image.BILINEAR, - "bicubic": Image.BICUBIC}[keepmode] - - lr = (x+1.0)*127.5 - lr = lr.clip(0,255).astype(np.uint8) - lr = Image.fromarray(lr) - - h, w, _ = x.shape - nh = h//factor - nw = w//factor - assert nh > 0 and nw > 0, (nh, nw) - - lr = lr.resize((nw,nh), Image.BICUBIC) - if keepshapes: - lr = lr.resize((w,h), keepmode) - lr = np.array(lr)/127.5-1.0 - lr = lr.astype(dtype) - - return lr - - -class ImageNetScale(Dataset): - def __init__(self, size=None, crop_size=None, random_crop=False, - up_factor=None, hr_factor=None, keep_mode="bicubic"): - self.base = self.get_base() - - self.size = size - self.crop_size = crop_size if crop_size is not None else self.size - self.random_crop = random_crop - self.up_factor = up_factor - self.hr_factor = hr_factor - self.keep_mode = keep_mode - - transforms = list() - - if self.size is not None and self.size > 0: - rescaler = albumentations.SmallestMaxSize(max_size = self.size) - self.rescaler = rescaler - transforms.append(rescaler) - - if self.crop_size is not None and self.crop_size > 0: - if len(transforms) == 0: - self.rescaler = albumentations.SmallestMaxSize(max_size = self.crop_size) - - if not self.random_crop: - cropper = albumentations.CenterCrop(height=self.crop_size,width=self.crop_size) - else: - cropper = albumentations.RandomCrop(height=self.crop_size,width=self.crop_size) - transforms.append(cropper) - - if len(transforms) > 0: - if self.up_factor is not None: - additional_targets = {"lr": "image"} - else: - additional_targets = None - self.preprocessor = albumentations.Compose(transforms, - additional_targets=additional_targets) - else: - self.preprocessor = lambda **kwargs: kwargs - - def __len__(self): - return len(self.base) - - def __getitem__(self, i): - example = self.base[i] - image = example["image"] - # adjust resolution - image = imscale(image, self.hr_factor, keepshapes=False) - h,w,c = image.shape - if self.crop_size and min(h,w) < self.crop_size: - # have to upscale to be able to crop - this just uses bilinear - image = self.rescaler(image=image)["image"] - if self.up_factor is None: - image = self.preprocessor(image=image)["image"] - example["image"] = image - else: - lr = imscale(image, self.up_factor, keepshapes=True, - keepmode=self.keep_mode) - - out = self.preprocessor(image=image, lr=lr) - example["image"] = out["image"] - example["lr"] = out["lr"] - - return example - -class ImageNetScaleTrain(ImageNetScale): - def __init__(self, random_crop=True, **kwargs): - super().__init__(random_crop=random_crop, **kwargs) - - def get_base(self): - return ImageNetTrain() - -class ImageNetScaleValidation(ImageNetScale): - def get_base(self): - return ImageNetValidation() - - -from skimage.feature import canny -from skimage.color import rgb2gray - - -class ImageNetEdges(ImageNetScale): - def __init__(self, up_factor=1, **kwargs): - super().__init__(up_factor=1, **kwargs) - - def __getitem__(self, i): - example = self.base[i] - image = example["image"] - h,w,c = image.shape - if self.crop_size and min(h,w) < self.crop_size: - # have to upscale to be able to crop - this just uses bilinear - image = self.rescaler(image=image)["image"] - - lr = canny(rgb2gray(image), sigma=2) - lr = lr.astype(np.float32) - lr = lr[:,:,None][:,:,[0,0,0]] - - out = self.preprocessor(image=image, lr=lr) - example["image"] = out["image"] - example["lr"] = out["lr"] - - return example - - -class ImageNetEdgesTrain(ImageNetEdges): - def __init__(self, random_crop=True, **kwargs): - super().__init__(random_crop=random_crop, **kwargs) - - def get_base(self): - return ImageNetTrain() - -class ImageNetEdgesValidation(ImageNetEdges): - def get_base(self): - return ImageNetValidation() diff --git a/3DTopia/taming/data/open_images_helper.py b/3DTopia/taming/data/open_images_helper.py deleted file mode 100644 index 8feb7c6e705fc165d2983303192aaa88f579b243..0000000000000000000000000000000000000000 --- a/3DTopia/taming/data/open_images_helper.py +++ /dev/null @@ -1,379 +0,0 @@ -open_images_unify_categories_for_coco = { - '/m/03bt1vf': '/m/01g317', - '/m/04yx4': '/m/01g317', - '/m/05r655': '/m/01g317', - '/m/01bl7v': '/m/01g317', - '/m/0cnyhnx': '/m/01xq0k1', - '/m/01226z': '/m/018xm', - '/m/05ctyq': '/m/018xm', - '/m/058qzx': '/m/04ctx', - '/m/06pcq': '/m/0l515', - '/m/03m3pdh': '/m/02crq1', - '/m/046dlr': '/m/01x3z', - '/m/0h8mzrc': '/m/01x3z', -} - - -top_300_classes_plus_coco_compatibility = [ - ('Man', 1060962), - ('Clothing', 986610), - ('Tree', 748162), - ('Woman', 611896), - ('Person', 610294), - ('Human face', 442948), - ('Girl', 175399), - ('Building', 162147), - ('Car', 159135), - ('Plant', 155704), - ('Human body', 137073), - ('Flower', 133128), - ('Window', 127485), - ('Human arm', 118380), - ('House', 114365), - ('Wheel', 111684), - ('Suit', 99054), - ('Human hair', 98089), - ('Human head', 92763), - ('Chair', 88624), - ('Boy', 79849), - ('Table', 73699), - ('Jeans', 57200), - ('Tire', 55725), - ('Skyscraper', 53321), - ('Food', 52400), - ('Footwear', 50335), - ('Dress', 50236), - ('Human leg', 47124), - ('Toy', 46636), - ('Tower', 45605), - ('Boat', 43486), - ('Land vehicle', 40541), - ('Bicycle wheel', 34646), - ('Palm tree', 33729), - ('Fashion accessory', 32914), - ('Glasses', 31940), - ('Bicycle', 31409), - ('Furniture', 30656), - ('Sculpture', 29643), - ('Bottle', 27558), - ('Dog', 26980), - ('Snack', 26796), - ('Human hand', 26664), - ('Bird', 25791), - ('Book', 25415), - ('Guitar', 24386), - ('Jacket', 23998), - ('Poster', 22192), - ('Dessert', 21284), - ('Baked goods', 20657), - ('Drink', 19754), - ('Flag', 18588), - ('Houseplant', 18205), - ('Tableware', 17613), - ('Airplane', 17218), - ('Door', 17195), - ('Sports uniform', 17068), - ('Shelf', 16865), - ('Drum', 16612), - ('Vehicle', 16542), - ('Microphone', 15269), - ('Street light', 14957), - ('Cat', 14879), - ('Fruit', 13684), - ('Fast food', 13536), - ('Animal', 12932), - ('Vegetable', 12534), - ('Train', 12358), - ('Horse', 11948), - ('Flowerpot', 11728), - ('Motorcycle', 11621), - ('Fish', 11517), - ('Desk', 11405), - ('Helmet', 10996), - ('Truck', 10915), - ('Bus', 10695), - ('Hat', 10532), - ('Auto part', 10488), - ('Musical instrument', 10303), - ('Sunglasses', 10207), - ('Picture frame', 10096), - ('Sports equipment', 10015), - ('Shorts', 9999), - ('Wine glass', 9632), - ('Duck', 9242), - ('Wine', 9032), - ('Rose', 8781), - ('Tie', 8693), - ('Butterfly', 8436), - ('Beer', 7978), - ('Cabinetry', 7956), - ('Laptop', 7907), - ('Insect', 7497), - ('Goggles', 7363), - ('Shirt', 7098), - ('Dairy Product', 7021), - ('Marine invertebrates', 7014), - ('Cattle', 7006), - ('Trousers', 6903), - ('Van', 6843), - ('Billboard', 6777), - ('Balloon', 6367), - ('Human nose', 6103), - ('Tent', 6073), - ('Camera', 6014), - ('Doll', 6002), - ('Coat', 5951), - ('Mobile phone', 5758), - ('Swimwear', 5729), - ('Strawberry', 5691), - ('Stairs', 5643), - ('Goose', 5599), - ('Umbrella', 5536), - ('Cake', 5508), - ('Sun hat', 5475), - ('Bench', 5310), - ('Bookcase', 5163), - ('Bee', 5140), - ('Computer monitor', 5078), - ('Hiking equipment', 4983), - ('Office building', 4981), - ('Coffee cup', 4748), - ('Curtain', 4685), - ('Plate', 4651), - ('Box', 4621), - ('Tomato', 4595), - ('Coffee table', 4529), - ('Office supplies', 4473), - ('Maple', 4416), - ('Muffin', 4365), - ('Cocktail', 4234), - ('Castle', 4197), - ('Couch', 4134), - ('Pumpkin', 3983), - ('Computer keyboard', 3960), - ('Human mouth', 3926), - ('Christmas tree', 3893), - ('Mushroom', 3883), - ('Swimming pool', 3809), - ('Pastry', 3799), - ('Lavender (Plant)', 3769), - ('Football helmet', 3732), - ('Bread', 3648), - ('Traffic sign', 3628), - ('Common sunflower', 3597), - ('Television', 3550), - ('Bed', 3525), - ('Cookie', 3485), - ('Fountain', 3484), - ('Paddle', 3447), - ('Bicycle helmet', 3429), - ('Porch', 3420), - ('Deer', 3387), - ('Fedora', 3339), - ('Canoe', 3338), - ('Carnivore', 3266), - ('Bowl', 3202), - ('Human eye', 3166), - ('Ball', 3118), - ('Pillow', 3077), - ('Salad', 3061), - ('Beetle', 3060), - ('Orange', 3050), - ('Drawer', 2958), - ('Platter', 2937), - ('Elephant', 2921), - ('Seafood', 2921), - ('Monkey', 2915), - ('Countertop', 2879), - ('Watercraft', 2831), - ('Helicopter', 2805), - ('Kitchen appliance', 2797), - ('Personal flotation device', 2781), - ('Swan', 2739), - ('Lamp', 2711), - ('Boot', 2695), - ('Bronze sculpture', 2693), - ('Chicken', 2677), - ('Taxi', 2643), - ('Juice', 2615), - ('Cowboy hat', 2604), - ('Apple', 2600), - ('Tin can', 2590), - ('Necklace', 2564), - ('Ice cream', 2560), - ('Human beard', 2539), - ('Coin', 2536), - ('Candle', 2515), - ('Cart', 2512), - ('High heels', 2441), - ('Weapon', 2433), - ('Handbag', 2406), - ('Penguin', 2396), - ('Rifle', 2352), - ('Violin', 2336), - ('Skull', 2304), - ('Lantern', 2285), - ('Scarf', 2269), - ('Saucer', 2225), - ('Sheep', 2215), - ('Vase', 2189), - ('Lily', 2180), - ('Mug', 2154), - ('Parrot', 2140), - ('Human ear', 2137), - ('Sandal', 2115), - ('Lizard', 2100), - ('Kitchen & dining room table', 2063), - ('Spider', 1977), - ('Coffee', 1974), - ('Goat', 1926), - ('Squirrel', 1922), - ('Cello', 1913), - ('Sushi', 1881), - ('Tortoise', 1876), - ('Pizza', 1870), - ('Studio couch', 1864), - ('Barrel', 1862), - ('Cosmetics', 1841), - ('Moths and butterflies', 1841), - ('Convenience store', 1817), - ('Watch', 1792), - ('Home appliance', 1786), - ('Harbor seal', 1780), - ('Luggage and bags', 1756), - ('Vehicle registration plate', 1754), - ('Shrimp', 1751), - ('Jellyfish', 1730), - ('French fries', 1723), - ('Egg (Food)', 1698), - ('Football', 1697), - ('Musical keyboard', 1683), - ('Falcon', 1674), - ('Candy', 1660), - ('Medical equipment', 1654), - ('Eagle', 1651), - ('Dinosaur', 1634), - ('Surfboard', 1630), - ('Tank', 1628), - ('Grape', 1624), - ('Lion', 1624), - ('Owl', 1622), - ('Ski', 1613), - ('Waste container', 1606), - ('Frog', 1591), - ('Sparrow', 1585), - ('Rabbit', 1581), - ('Pen', 1546), - ('Sea lion', 1537), - ('Spoon', 1521), - ('Sink', 1512), - ('Teddy bear', 1507), - ('Bull', 1495), - ('Sofa bed', 1490), - ('Dragonfly', 1479), - ('Brassiere', 1478), - ('Chest of drawers', 1472), - ('Aircraft', 1466), - ('Human foot', 1463), - ('Pig', 1455), - ('Fork', 1454), - ('Antelope', 1438), - ('Tripod', 1427), - ('Tool', 1424), - ('Cheese', 1422), - ('Lemon', 1397), - ('Hamburger', 1393), - ('Dolphin', 1390), - ('Mirror', 1390), - ('Marine mammal', 1387), - ('Giraffe', 1385), - ('Snake', 1368), - ('Gondola', 1364), - ('Wheelchair', 1360), - ('Piano', 1358), - ('Cupboard', 1348), - ('Banana', 1345), - ('Trumpet', 1335), - ('Lighthouse', 1333), - ('Invertebrate', 1317), - ('Carrot', 1268), - ('Sock', 1260), - ('Tiger', 1241), - ('Camel', 1224), - ('Parachute', 1224), - ('Bathroom accessory', 1223), - ('Earrings', 1221), - ('Headphones', 1218), - ('Skirt', 1198), - ('Skateboard', 1190), - ('Sandwich', 1148), - ('Saxophone', 1141), - ('Goldfish', 1136), - ('Stool', 1104), - ('Traffic light', 1097), - ('Shellfish', 1081), - ('Backpack', 1079), - ('Sea turtle', 1078), - ('Cucumber', 1075), - ('Tea', 1051), - ('Toilet', 1047), - ('Roller skates', 1040), - ('Mule', 1039), - ('Bust', 1031), - ('Broccoli', 1030), - ('Crab', 1020), - ('Oyster', 1019), - ('Cannon', 1012), - ('Zebra', 1012), - ('French horn', 1008), - ('Grapefruit', 998), - ('Whiteboard', 997), - ('Zucchini', 997), - ('Crocodile', 992), - - ('Clock', 960), - ('Wall clock', 958), - - ('Doughnut', 869), - ('Snail', 868), - - ('Baseball glove', 859), - - ('Panda', 830), - ('Tennis racket', 830), - - ('Pear', 652), - - ('Bagel', 617), - ('Oven', 616), - ('Ladybug', 615), - ('Shark', 615), - ('Polar bear', 614), - ('Ostrich', 609), - - ('Hot dog', 473), - ('Microwave oven', 467), - ('Fire hydrant', 20), - ('Stop sign', 20), - ('Parking meter', 20), - ('Bear', 20), - ('Flying disc', 20), - ('Snowboard', 20), - ('Tennis ball', 20), - ('Kite', 20), - ('Baseball bat', 20), - ('Kitchen knife', 20), - ('Knife', 20), - ('Submarine sandwich', 20), - ('Computer mouse', 20), - ('Remote control', 20), - ('Toaster', 20), - ('Sink', 20), - ('Refrigerator', 20), - ('Alarm clock', 20), - ('Wall clock', 20), - ('Scissors', 20), - ('Hair dryer', 20), - ('Toothbrush', 20), - ('Suitcase', 20) -] diff --git a/3DTopia/taming/data/sflckr.py b/3DTopia/taming/data/sflckr.py deleted file mode 100644 index 91101be5953b113f1e58376af637e43f366b3dee..0000000000000000000000000000000000000000 --- a/3DTopia/taming/data/sflckr.py +++ /dev/null @@ -1,91 +0,0 @@ -import os -import numpy as np -import cv2 -import albumentations -from PIL import Image -from torch.utils.data import Dataset - - -class SegmentationBase(Dataset): - def __init__(self, - data_csv, data_root, segmentation_root, - size=None, random_crop=False, interpolation="bicubic", - n_labels=182, shift_segmentation=False, - ): - self.n_labels = n_labels - self.shift_segmentation = shift_segmentation - self.data_csv = data_csv - self.data_root = data_root - self.segmentation_root = segmentation_root - with open(self.data_csv, "r") as f: - self.image_paths = f.read().splitlines() - self._length = len(self.image_paths) - self.labels = { - "relative_file_path_": [l for l in self.image_paths], - "file_path_": [os.path.join(self.data_root, l) - for l in self.image_paths], - "segmentation_path_": [os.path.join(self.segmentation_root, l.replace(".jpg", ".png")) - for l in self.image_paths] - } - - size = None if size is not None and size<=0 else size - self.size = size - if self.size is not None: - self.interpolation = interpolation - self.interpolation = { - "nearest": cv2.INTER_NEAREST, - "bilinear": cv2.INTER_LINEAR, - "bicubic": cv2.INTER_CUBIC, - "area": cv2.INTER_AREA, - "lanczos": cv2.INTER_LANCZOS4}[self.interpolation] - self.image_rescaler = albumentations.SmallestMaxSize(max_size=self.size, - interpolation=self.interpolation) - self.segmentation_rescaler = albumentations.SmallestMaxSize(max_size=self.size, - interpolation=cv2.INTER_NEAREST) - self.center_crop = not random_crop - if self.center_crop: - self.cropper = albumentations.CenterCrop(height=self.size, width=self.size) - else: - self.cropper = albumentations.RandomCrop(height=self.size, width=self.size) - self.preprocessor = self.cropper - - def __len__(self): - return self._length - - def __getitem__(self, i): - example = dict((k, self.labels[k][i]) for k in self.labels) - image = Image.open(example["file_path_"]) - if not image.mode == "RGB": - image = image.convert("RGB") - image = np.array(image).astype(np.uint8) - if self.size is not None: - image = self.image_rescaler(image=image)["image"] - segmentation = Image.open(example["segmentation_path_"]) - assert segmentation.mode == "L", segmentation.mode - segmentation = np.array(segmentation).astype(np.uint8) - if self.shift_segmentation: - # used to support segmentations containing unlabeled==255 label - segmentation = segmentation+1 - if self.size is not None: - segmentation = self.segmentation_rescaler(image=segmentation)["image"] - if self.size is not None: - processed = self.preprocessor(image=image, - mask=segmentation - ) - else: - processed = {"image": image, - "mask": segmentation - } - example["image"] = (processed["image"]/127.5 - 1.0).astype(np.float32) - segmentation = processed["mask"] - onehot = np.eye(self.n_labels)[segmentation] - example["segmentation"] = onehot - return example - - -class Examples(SegmentationBase): - def __init__(self, size=None, random_crop=False, interpolation="bicubic"): - super().__init__(data_csv="data/sflckr_examples.txt", - data_root="data/sflckr_images", - segmentation_root="data/sflckr_segmentations", - size=size, random_crop=random_crop, interpolation=interpolation) diff --git a/3DTopia/taming/data/utils.py b/3DTopia/taming/data/utils.py deleted file mode 100644 index 2b3c3d53cd2b6c72b481b59834cf809d3735b394..0000000000000000000000000000000000000000 --- a/3DTopia/taming/data/utils.py +++ /dev/null @@ -1,169 +0,0 @@ -import collections -import os -import tarfile -import urllib -import zipfile -from pathlib import Path - -import numpy as np -import torch -from taming.data.helper_types import Annotation -from torch._six import string_classes -from torch.utils.data._utils.collate import np_str_obj_array_pattern, default_collate_err_msg_format -from tqdm import tqdm - - -def unpack(path): - if path.endswith("tar.gz"): - with tarfile.open(path, "r:gz") as tar: - tar.extractall(path=os.path.split(path)[0]) - elif path.endswith("tar"): - with tarfile.open(path, "r:") as tar: - tar.extractall(path=os.path.split(path)[0]) - elif path.endswith("zip"): - with zipfile.ZipFile(path, "r") as f: - f.extractall(path=os.path.split(path)[0]) - else: - raise NotImplementedError( - "Unknown file extension: {}".format(os.path.splitext(path)[1]) - ) - - -def reporthook(bar): - """tqdm progress bar for downloads.""" - - def hook(b=1, bsize=1, tsize=None): - if tsize is not None: - bar.total = tsize - bar.update(b * bsize - bar.n) - - return hook - - -def get_root(name): - base = "data/" - root = os.path.join(base, name) - os.makedirs(root, exist_ok=True) - return root - - -def is_prepared(root): - return Path(root).joinpath(".ready").exists() - - -def mark_prepared(root): - Path(root).joinpath(".ready").touch() - - -def prompt_download(file_, source, target_dir, content_dir=None): - targetpath = os.path.join(target_dir, file_) - while not os.path.exists(targetpath): - if content_dir is not None and os.path.exists( - os.path.join(target_dir, content_dir) - ): - break - print( - "Please download '{}' from '{}' to '{}'.".format(file_, source, targetpath) - ) - if content_dir is not None: - print( - "Or place its content into '{}'.".format( - os.path.join(target_dir, content_dir) - ) - ) - input("Press Enter when done...") - return targetpath - - -def download_url(file_, url, target_dir): - targetpath = os.path.join(target_dir, file_) - os.makedirs(target_dir, exist_ok=True) - with tqdm( - unit="B", unit_scale=True, unit_divisor=1024, miniters=1, desc=file_ - ) as bar: - urllib.request.urlretrieve(url, targetpath, reporthook=reporthook(bar)) - return targetpath - - -def download_urls(urls, target_dir): - paths = dict() - for fname, url in urls.items(): - outpath = download_url(fname, url, target_dir) - paths[fname] = outpath - return paths - - -def quadratic_crop(x, bbox, alpha=1.0): - """bbox is xmin, ymin, xmax, ymax""" - im_h, im_w = x.shape[:2] - bbox = np.array(bbox, dtype=np.float32) - bbox = np.clip(bbox, 0, max(im_h, im_w)) - center = 0.5 * (bbox[0] + bbox[2]), 0.5 * (bbox[1] + bbox[3]) - w = bbox[2] - bbox[0] - h = bbox[3] - bbox[1] - l = int(alpha * max(w, h)) - l = max(l, 2) - - required_padding = -1 * min( - center[0] - l, center[1] - l, im_w - (center[0] + l), im_h - (center[1] + l) - ) - required_padding = int(np.ceil(required_padding)) - if required_padding > 0: - padding = [ - [required_padding, required_padding], - [required_padding, required_padding], - ] - padding += [[0, 0]] * (len(x.shape) - 2) - x = np.pad(x, padding, "reflect") - center = center[0] + required_padding, center[1] + required_padding - xmin = int(center[0] - l / 2) - ymin = int(center[1] - l / 2) - return np.array(x[ymin : ymin + l, xmin : xmin + l, ...]) - - -def custom_collate(batch): - r"""source: pytorch 1.9.0, only one modification to original code """ - - elem = batch[0] - elem_type = type(elem) - if isinstance(elem, torch.Tensor): - out = None - if torch.utils.data.get_worker_info() is not None: - # If we're in a background process, concatenate directly into a - # shared memory tensor to avoid an extra copy - numel = sum([x.numel() for x in batch]) - storage = elem.storage()._new_shared(numel) - out = elem.new(storage) - return torch.stack(batch, 0, out=out) - elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \ - and elem_type.__name__ != 'string_': - if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap': - # array of string classes and object - if np_str_obj_array_pattern.search(elem.dtype.str) is not None: - raise TypeError(default_collate_err_msg_format.format(elem.dtype)) - - return custom_collate([torch.as_tensor(b) for b in batch]) - elif elem.shape == (): # scalars - return torch.as_tensor(batch) - elif isinstance(elem, float): - return torch.tensor(batch, dtype=torch.float64) - elif isinstance(elem, int): - return torch.tensor(batch) - elif isinstance(elem, string_classes): - return batch - elif isinstance(elem, collections.abc.Mapping): - return {key: custom_collate([d[key] for d in batch]) for key in elem} - elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple - return elem_type(*(custom_collate(samples) for samples in zip(*batch))) - if isinstance(elem, collections.abc.Sequence) and isinstance(elem[0], Annotation): # added - return batch # added - elif isinstance(elem, collections.abc.Sequence): - # check to make sure that the elements in batch have consistent size - it = iter(batch) - elem_size = len(next(it)) - if not all(len(elem) == elem_size for elem in it): - raise RuntimeError('each element in list of batch should be of equal size') - transposed = zip(*batch) - return [custom_collate(samples) for samples in transposed] - - raise TypeError(default_collate_err_msg_format.format(elem_type)) diff --git a/3DTopia/taming/lr_scheduler.py b/3DTopia/taming/lr_scheduler.py deleted file mode 100644 index e598ed120159c53da6820a55ad86b89f5c70c82d..0000000000000000000000000000000000000000 --- a/3DTopia/taming/lr_scheduler.py +++ /dev/null @@ -1,34 +0,0 @@ -import numpy as np - - -class LambdaWarmUpCosineScheduler: - """ - note: use with a base_lr of 1.0 - """ - def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0): - self.lr_warm_up_steps = warm_up_steps - self.lr_start = lr_start - self.lr_min = lr_min - self.lr_max = lr_max - self.lr_max_decay_steps = max_decay_steps - self.last_lr = 0. - self.verbosity_interval = verbosity_interval - - def schedule(self, n): - if self.verbosity_interval > 0: - if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}") - if n < self.lr_warm_up_steps: - lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start - self.last_lr = lr - return lr - else: - t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps) - t = min(t, 1.0) - lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * ( - 1 + np.cos(t * np.pi)) - self.last_lr = lr - return lr - - def __call__(self, n): - return self.schedule(n) - diff --git a/3DTopia/taming/models/cond_transformer.py b/3DTopia/taming/models/cond_transformer.py deleted file mode 100644 index e4c63730fa86ac1b92b37af14c14fb696595b1ab..0000000000000000000000000000000000000000 --- a/3DTopia/taming/models/cond_transformer.py +++ /dev/null @@ -1,352 +0,0 @@ -import os, math -import torch -import torch.nn.functional as F -import pytorch_lightning as pl - -from main import instantiate_from_config -from taming.modules.util import SOSProvider - - -def disabled_train(self, mode=True): - """Overwrite model.train with this function to make sure train/eval mode - does not change anymore.""" - return self - - -class Net2NetTransformer(pl.LightningModule): - def __init__(self, - transformer_config, - first_stage_config, - cond_stage_config, - permuter_config=None, - ckpt_path=None, - ignore_keys=[], - first_stage_key="image", - cond_stage_key="depth", - downsample_cond_size=-1, - pkeep=1.0, - sos_token=0, - unconditional=False, - ): - super().__init__() - self.be_unconditional = unconditional - self.sos_token = sos_token - self.first_stage_key = first_stage_key - self.cond_stage_key = cond_stage_key - self.init_first_stage_from_ckpt(first_stage_config) - self.init_cond_stage_from_ckpt(cond_stage_config) - if permuter_config is None: - permuter_config = {"target": "taming.modules.transformer.permuter.Identity"} - self.permuter = instantiate_from_config(config=permuter_config) - self.transformer = instantiate_from_config(config=transformer_config) - - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) - self.downsample_cond_size = downsample_cond_size - self.pkeep = pkeep - - def init_from_ckpt(self, path, ignore_keys=list()): - sd = torch.load(path, map_location="cpu")["state_dict"] - for k in sd.keys(): - for ik in ignore_keys: - if k.startswith(ik): - self.print("Deleting key {} from state_dict.".format(k)) - del sd[k] - self.load_state_dict(sd, strict=False) - print(f"Restored from {path}") - - def init_first_stage_from_ckpt(self, config): - model = instantiate_from_config(config) - model = model.eval() - model.train = disabled_train - self.first_stage_model = model - - def init_cond_stage_from_ckpt(self, config): - if config == "__is_first_stage__": - print("Using first stage also as cond stage.") - self.cond_stage_model = self.first_stage_model - elif config == "__is_unconditional__" or self.be_unconditional: - print(f"Using no cond stage. Assuming the training is intended to be unconditional. " - f"Prepending {self.sos_token} as a sos token.") - self.be_unconditional = True - self.cond_stage_key = self.first_stage_key - self.cond_stage_model = SOSProvider(self.sos_token) - else: - model = instantiate_from_config(config) - model = model.eval() - model.train = disabled_train - self.cond_stage_model = model - - def forward(self, x, c): - # one step to produce the logits - _, z_indices = self.encode_to_z(x) - _, c_indices = self.encode_to_c(c) - - if self.training and self.pkeep < 1.0: - mask = torch.bernoulli(self.pkeep*torch.ones(z_indices.shape, - device=z_indices.device)) - mask = mask.round().to(dtype=torch.int64) - r_indices = torch.randint_like(z_indices, self.transformer.config.vocab_size) - a_indices = mask*z_indices+(1-mask)*r_indices - else: - a_indices = z_indices - - cz_indices = torch.cat((c_indices, a_indices), dim=1) - - # target includes all sequence elements (no need to handle first one - # differently because we are conditioning) - target = z_indices - # make the prediction - logits, _ = self.transformer(cz_indices[:, :-1]) - # cut off conditioning outputs - output i corresponds to p(z_i | z_{ -1: - c = F.interpolate(c, size=(self.downsample_cond_size, self.downsample_cond_size)) - quant_c, _, [_,_,indices] = self.cond_stage_model.encode(c) - if len(indices.shape) > 2: - indices = indices.view(c.shape[0], -1) - return quant_c, indices - - @torch.no_grad() - def decode_to_img(self, index, zshape): - index = self.permuter(index, reverse=True) - bhwc = (zshape[0],zshape[2],zshape[3],zshape[1]) - quant_z = self.first_stage_model.quantize.get_codebook_entry( - index.reshape(-1), shape=bhwc) - x = self.first_stage_model.decode(quant_z) - return x - - @torch.no_grad() - def log_images(self, batch, temperature=None, top_k=None, callback=None, lr_interface=False, **kwargs): - log = dict() - - N = 4 - if lr_interface: - x, c = self.get_xc(batch, N, diffuse=False, upsample_factor=8) - else: - x, c = self.get_xc(batch, N) - x = x.to(device=self.device) - c = c.to(device=self.device) - - quant_z, z_indices = self.encode_to_z(x) - quant_c, c_indices = self.encode_to_c(c) - - # create a "half"" sample - z_start_indices = z_indices[:,:z_indices.shape[1]//2] - index_sample = self.sample(z_start_indices, c_indices, - steps=z_indices.shape[1]-z_start_indices.shape[1], - temperature=temperature if temperature is not None else 1.0, - sample=True, - top_k=top_k if top_k is not None else 100, - callback=callback if callback is not None else lambda k: None) - x_sample = self.decode_to_img(index_sample, quant_z.shape) - - # sample - z_start_indices = z_indices[:, :0] - index_sample = self.sample(z_start_indices, c_indices, - steps=z_indices.shape[1], - temperature=temperature if temperature is not None else 1.0, - sample=True, - top_k=top_k if top_k is not None else 100, - callback=callback if callback is not None else lambda k: None) - x_sample_nopix = self.decode_to_img(index_sample, quant_z.shape) - - # det sample - z_start_indices = z_indices[:, :0] - index_sample = self.sample(z_start_indices, c_indices, - steps=z_indices.shape[1], - sample=False, - callback=callback if callback is not None else lambda k: None) - x_sample_det = self.decode_to_img(index_sample, quant_z.shape) - - # reconstruction - x_rec = self.decode_to_img(z_indices, quant_z.shape) - - log["inputs"] = x - log["reconstructions"] = x_rec - - if self.cond_stage_key in ["objects_bbox", "objects_center_points"]: - figure_size = (x_rec.shape[2], x_rec.shape[3]) - dataset = kwargs["pl_module"].trainer.datamodule.datasets["validation"] - label_for_category_no = dataset.get_textual_label_for_category_no - plotter = dataset.conditional_builders[self.cond_stage_key].plot - log["conditioning"] = torch.zeros_like(log["reconstructions"]) - for i in range(quant_c.shape[0]): - log["conditioning"][i] = plotter(quant_c[i], label_for_category_no, figure_size) - log["conditioning_rec"] = log["conditioning"] - elif self.cond_stage_key != "image": - cond_rec = self.cond_stage_model.decode(quant_c) - if self.cond_stage_key == "segmentation": - # get image from segmentation mask - num_classes = cond_rec.shape[1] - - c = torch.argmax(c, dim=1, keepdim=True) - c = F.one_hot(c, num_classes=num_classes) - c = c.squeeze(1).permute(0, 3, 1, 2).float() - c = self.cond_stage_model.to_rgb(c) - - cond_rec = torch.argmax(cond_rec, dim=1, keepdim=True) - cond_rec = F.one_hot(cond_rec, num_classes=num_classes) - cond_rec = cond_rec.squeeze(1).permute(0, 3, 1, 2).float() - cond_rec = self.cond_stage_model.to_rgb(cond_rec) - log["conditioning_rec"] = cond_rec - log["conditioning"] = c - - log["samples_half"] = x_sample - log["samples_nopix"] = x_sample_nopix - log["samples_det"] = x_sample_det - return log - - def get_input(self, key, batch): - x = batch[key] - if len(x.shape) == 3: - x = x[..., None] - if len(x.shape) == 4: - x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format) - if x.dtype == torch.double: - x = x.float() - return x - - def get_xc(self, batch, N=None): - x = self.get_input(self.first_stage_key, batch) - c = self.get_input(self.cond_stage_key, batch) - if N is not None: - x = x[:N] - c = c[:N] - return x, c - - def shared_step(self, batch, batch_idx): - x, c = self.get_xc(batch) - logits, target = self(x, c) - loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), target.reshape(-1)) - return loss - - def training_step(self, batch, batch_idx): - loss = self.shared_step(batch, batch_idx) - self.log("train/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True) - return loss - - def validation_step(self, batch, batch_idx): - loss = self.shared_step(batch, batch_idx) - self.log("val/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True) - return loss - - def configure_optimizers(self): - """ - Following minGPT: - This long function is unfortunately doing something very simple and is being very defensive: - We are separating out all parameters of the model into two buckets: those that will experience - weight decay for regularization and those that won't (biases, and layernorm/embedding weights). - We are then returning the PyTorch optimizer object. - """ - # separate out all parameters to those that will and won't experience regularizing weight decay - decay = set() - no_decay = set() - whitelist_weight_modules = (torch.nn.Linear, ) - blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding) - for mn, m in self.transformer.named_modules(): - for pn, p in m.named_parameters(): - fpn = '%s.%s' % (mn, pn) if mn else pn # full param name - - if pn.endswith('bias'): - # all biases will not be decayed - no_decay.add(fpn) - elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules): - # weights of whitelist modules will be weight decayed - decay.add(fpn) - elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules): - # weights of blacklist modules will NOT be weight decayed - no_decay.add(fpn) - - # special case the position embedding parameter in the root GPT module as not decayed - no_decay.add('pos_emb') - - # validate that we considered every parameter - param_dict = {pn: p for pn, p in self.transformer.named_parameters()} - inter_params = decay & no_decay - union_params = decay | no_decay - assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), ) - assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \ - % (str(param_dict.keys() - union_params), ) - - # create the pytorch optimizer object - optim_groups = [ - {"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": 0.01}, - {"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0}, - ] - optimizer = torch.optim.AdamW(optim_groups, lr=self.learning_rate, betas=(0.9, 0.95)) - return optimizer diff --git a/3DTopia/taming/models/dummy_cond_stage.py b/3DTopia/taming/models/dummy_cond_stage.py deleted file mode 100644 index 6e19938078752e09b926a3e749907ee99a258ca0..0000000000000000000000000000000000000000 --- a/3DTopia/taming/models/dummy_cond_stage.py +++ /dev/null @@ -1,22 +0,0 @@ -from torch import Tensor - - -class DummyCondStage: - def __init__(self, conditional_key): - self.conditional_key = conditional_key - self.train = None - - def eval(self): - return self - - @staticmethod - def encode(c: Tensor): - return c, None, (None, None, c) - - @staticmethod - def decode(c: Tensor): - return c - - @staticmethod - def to_rgb(c: Tensor): - return c diff --git a/3DTopia/taming/models/vqgan.py b/3DTopia/taming/models/vqgan.py deleted file mode 100644 index a6950baa5f739111cd64c17235dca8be3a5f8037..0000000000000000000000000000000000000000 --- a/3DTopia/taming/models/vqgan.py +++ /dev/null @@ -1,404 +0,0 @@ -import torch -import torch.nn.functional as F -import pytorch_lightning as pl - -from main import instantiate_from_config - -from taming.modules.diffusionmodules.model import Encoder, Decoder -from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer -from taming.modules.vqvae.quantize import GumbelQuantize -from taming.modules.vqvae.quantize import EMAVectorQuantizer - -class VQModel(pl.LightningModule): - def __init__(self, - ddconfig, - lossconfig, - n_embed, - embed_dim, - ckpt_path=None, - ignore_keys=[], - image_key="image", - colorize_nlabels=None, - monitor=None, - remap=None, - sane_index_shape=False, # tell vector quantizer to return indices as bhw - ): - super().__init__() - self.image_key = image_key - self.encoder = Encoder(**ddconfig) - self.decoder = Decoder(**ddconfig) - self.loss = instantiate_from_config(lossconfig) - self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, - remap=remap, sane_index_shape=sane_index_shape) - self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) - self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) - self.image_key = image_key - if colorize_nlabels is not None: - assert type(colorize_nlabels)==int - self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) - if monitor is not None: - self.monitor = monitor - - def init_from_ckpt(self, path, ignore_keys=list()): - sd = torch.load(path, map_location="cpu")["state_dict"] - keys = list(sd.keys()) - for k in keys: - for ik in ignore_keys: - if k.startswith(ik): - print("Deleting key {} from state_dict.".format(k)) - del sd[k] - self.load_state_dict(sd, strict=False) - print(f"Restored from {path}") - - def encode(self, x): - h = self.encoder(x) - h = self.quant_conv(h) - quant, emb_loss, info = self.quantize(h) - return quant, emb_loss, info - - def decode(self, quant): - quant = self.post_quant_conv(quant) - dec = self.decoder(quant) - return dec - - def decode_code(self, code_b): - quant_b = self.quantize.embed_code(code_b) - dec = self.decode(quant_b) - return dec - - def forward(self, input): - quant, diff, _ = self.encode(input) - dec = self.decode(quant) - return dec, diff - - def get_input(self, batch, k): - x = batch[k] - if len(x.shape) == 3: - x = x[..., None] - x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format) - return x.float() - - def training_step(self, batch, batch_idx, optimizer_idx): - x = self.get_input(batch, self.image_key) - xrec, qloss = self(x) - - if optimizer_idx == 0: - # autoencode - aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, - last_layer=self.get_last_layer(), split="train") - - self.log("train/aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) - self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) - return aeloss - - if optimizer_idx == 1: - # discriminator - discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, - last_layer=self.get_last_layer(), split="train") - self.log("train/discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) - self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True) - return discloss - - def validation_step(self, batch, batch_idx): - x = self.get_input(batch, self.image_key) - xrec, qloss = self(x) - aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0, self.global_step, - last_layer=self.get_last_layer(), split="val") - - discloss, log_dict_disc = self.loss(qloss, x, xrec, 1, self.global_step, - last_layer=self.get_last_layer(), split="val") - rec_loss = log_dict_ae["val/rec_loss"] - self.log("val/rec_loss", rec_loss, - prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True) - self.log("val/aeloss", aeloss, - prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True) - self.log_dict(log_dict_ae) - self.log_dict(log_dict_disc) - return self.log_dict - - def configure_optimizers(self): - lr = self.learning_rate - opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ - list(self.decoder.parameters())+ - list(self.quantize.parameters())+ - list(self.quant_conv.parameters())+ - list(self.post_quant_conv.parameters()), - lr=lr, betas=(0.5, 0.9)) - opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), - lr=lr, betas=(0.5, 0.9)) - return [opt_ae, opt_disc], [] - - def get_last_layer(self): - return self.decoder.conv_out.weight - - def log_images(self, batch, **kwargs): - log = dict() - x = self.get_input(batch, self.image_key) - x = x.to(self.device) - xrec, _ = self(x) - if x.shape[1] > 3: - # colorize with random projection - assert xrec.shape[1] > 3 - x = self.to_rgb(x) - xrec = self.to_rgb(xrec) - log["inputs"] = x - log["reconstructions"] = xrec - return log - - def to_rgb(self, x): - assert self.image_key == "segmentation" - if not hasattr(self, "colorize"): - self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) - x = F.conv2d(x, weight=self.colorize) - x = 2.*(x-x.min())/(x.max()-x.min()) - 1. - return x - - -class VQSegmentationModel(VQModel): - def __init__(self, n_labels, *args, **kwargs): - super().__init__(*args, **kwargs) - self.register_buffer("colorize", torch.randn(3, n_labels, 1, 1)) - - def configure_optimizers(self): - lr = self.learning_rate - opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ - list(self.decoder.parameters())+ - list(self.quantize.parameters())+ - list(self.quant_conv.parameters())+ - list(self.post_quant_conv.parameters()), - lr=lr, betas=(0.5, 0.9)) - return opt_ae - - def training_step(self, batch, batch_idx): - x = self.get_input(batch, self.image_key) - xrec, qloss = self(x) - aeloss, log_dict_ae = self.loss(qloss, x, xrec, split="train") - self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) - return aeloss - - def validation_step(self, batch, batch_idx): - x = self.get_input(batch, self.image_key) - xrec, qloss = self(x) - aeloss, log_dict_ae = self.loss(qloss, x, xrec, split="val") - self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) - total_loss = log_dict_ae["val/total_loss"] - self.log("val/total_loss", total_loss, - prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True) - return aeloss - - @torch.no_grad() - def log_images(self, batch, **kwargs): - log = dict() - x = self.get_input(batch, self.image_key) - x = x.to(self.device) - xrec, _ = self(x) - if x.shape[1] > 3: - # colorize with random projection - assert xrec.shape[1] > 3 - # convert logits to indices - xrec = torch.argmax(xrec, dim=1, keepdim=True) - xrec = F.one_hot(xrec, num_classes=x.shape[1]) - xrec = xrec.squeeze(1).permute(0, 3, 1, 2).float() - x = self.to_rgb(x) - xrec = self.to_rgb(xrec) - log["inputs"] = x - log["reconstructions"] = xrec - return log - - -class VQNoDiscModel(VQModel): - def __init__(self, - ddconfig, - lossconfig, - n_embed, - embed_dim, - ckpt_path=None, - ignore_keys=[], - image_key="image", - colorize_nlabels=None - ): - super().__init__(ddconfig=ddconfig, lossconfig=lossconfig, n_embed=n_embed, embed_dim=embed_dim, - ckpt_path=ckpt_path, ignore_keys=ignore_keys, image_key=image_key, - colorize_nlabels=colorize_nlabels) - - def training_step(self, batch, batch_idx): - x = self.get_input(batch, self.image_key) - xrec, qloss = self(x) - # autoencode - aeloss, log_dict_ae = self.loss(qloss, x, xrec, self.global_step, split="train") - output = pl.TrainResult(minimize=aeloss) - output.log("train/aeloss", aeloss, - prog_bar=True, logger=True, on_step=True, on_epoch=True) - output.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) - return output - - def validation_step(self, batch, batch_idx): - x = self.get_input(batch, self.image_key) - xrec, qloss = self(x) - aeloss, log_dict_ae = self.loss(qloss, x, xrec, self.global_step, split="val") - rec_loss = log_dict_ae["val/rec_loss"] - output = pl.EvalResult(checkpoint_on=rec_loss) - output.log("val/rec_loss", rec_loss, - prog_bar=True, logger=True, on_step=True, on_epoch=True) - output.log("val/aeloss", aeloss, - prog_bar=True, logger=True, on_step=True, on_epoch=True) - output.log_dict(log_dict_ae) - - return output - - def configure_optimizers(self): - optimizer = torch.optim.Adam(list(self.encoder.parameters())+ - list(self.decoder.parameters())+ - list(self.quantize.parameters())+ - list(self.quant_conv.parameters())+ - list(self.post_quant_conv.parameters()), - lr=self.learning_rate, betas=(0.5, 0.9)) - return optimizer - - -class GumbelVQ(VQModel): - def __init__(self, - ddconfig, - lossconfig, - n_embed, - embed_dim, - temperature_scheduler_config, - ckpt_path=None, - ignore_keys=[], - image_key="image", - colorize_nlabels=None, - monitor=None, - kl_weight=1e-8, - remap=None, - ): - - z_channels = ddconfig["z_channels"] - super().__init__(ddconfig, - lossconfig, - n_embed, - embed_dim, - ckpt_path=None, - ignore_keys=ignore_keys, - image_key=image_key, - colorize_nlabels=colorize_nlabels, - monitor=monitor, - ) - - self.loss.n_classes = n_embed - self.vocab_size = n_embed - - self.quantize = GumbelQuantize(z_channels, embed_dim, - n_embed=n_embed, - kl_weight=kl_weight, temp_init=1.0, - remap=remap) - - self.temperature_scheduler = instantiate_from_config(temperature_scheduler_config) # annealing of temp - - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) - - def temperature_scheduling(self): - self.quantize.temperature = self.temperature_scheduler(self.global_step) - - def encode_to_prequant(self, x): - h = self.encoder(x) - h = self.quant_conv(h) - return h - - def decode_code(self, code_b): - raise NotImplementedError - - def training_step(self, batch, batch_idx, optimizer_idx): - self.temperature_scheduling() - x = self.get_input(batch, self.image_key) - xrec, qloss = self(x) - - if optimizer_idx == 0: - # autoencode - aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, - last_layer=self.get_last_layer(), split="train") - - self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) - self.log("temperature", self.quantize.temperature, prog_bar=False, logger=True, on_step=True, on_epoch=True) - return aeloss - - if optimizer_idx == 1: - # discriminator - discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, - last_layer=self.get_last_layer(), split="train") - self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True) - return discloss - - def validation_step(self, batch, batch_idx): - x = self.get_input(batch, self.image_key) - xrec, qloss = self(x, return_pred_indices=True) - aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0, self.global_step, - last_layer=self.get_last_layer(), split="val") - - discloss, log_dict_disc = self.loss(qloss, x, xrec, 1, self.global_step, - last_layer=self.get_last_layer(), split="val") - rec_loss = log_dict_ae["val/rec_loss"] - self.log("val/rec_loss", rec_loss, - prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True) - self.log("val/aeloss", aeloss, - prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True) - self.log_dict(log_dict_ae) - self.log_dict(log_dict_disc) - return self.log_dict - - def log_images(self, batch, **kwargs): - log = dict() - x = self.get_input(batch, self.image_key) - x = x.to(self.device) - # encode - h = self.encoder(x) - h = self.quant_conv(h) - quant, _, _ = self.quantize(h) - # decode - x_rec = self.decode(quant) - log["inputs"] = x - log["reconstructions"] = x_rec - return log - - -class EMAVQ(VQModel): - def __init__(self, - ddconfig, - lossconfig, - n_embed, - embed_dim, - ckpt_path=None, - ignore_keys=[], - image_key="image", - colorize_nlabels=None, - monitor=None, - remap=None, - sane_index_shape=False, # tell vector quantizer to return indices as bhw - ): - super().__init__(ddconfig, - lossconfig, - n_embed, - embed_dim, - ckpt_path=None, - ignore_keys=ignore_keys, - image_key=image_key, - colorize_nlabels=colorize_nlabels, - monitor=monitor, - ) - self.quantize = EMAVectorQuantizer(n_embed=n_embed, - embedding_dim=embed_dim, - beta=0.25, - remap=remap) - def configure_optimizers(self): - lr = self.learning_rate - #Remove self.quantize from parameter list since it is updated via EMA - opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ - list(self.decoder.parameters())+ - list(self.quant_conv.parameters())+ - list(self.post_quant_conv.parameters()), - lr=lr, betas=(0.5, 0.9)) - opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), - lr=lr, betas=(0.5, 0.9)) - return [opt_ae, opt_disc], [] \ No newline at end of file diff --git a/3DTopia/taming/modules/diffusionmodules/model.py b/3DTopia/taming/modules/diffusionmodules/model.py deleted file mode 100644 index d3a5db6aa2ef915e270f1ae135e4a9918fdd884c..0000000000000000000000000000000000000000 --- a/3DTopia/taming/modules/diffusionmodules/model.py +++ /dev/null @@ -1,776 +0,0 @@ -# pytorch_diffusion + derived encoder decoder -import math -import torch -import torch.nn as nn -import numpy as np - - -def get_timestep_embedding(timesteps, embedding_dim): - """ - This matches the implementation in Denoising Diffusion Probabilistic Models: - From Fairseq. - Build sinusoidal embeddings. - This matches the implementation in tensor2tensor, but differs slightly - from the description in Section 3.5 of "Attention Is All You Need". - """ - assert len(timesteps.shape) == 1 - - half_dim = embedding_dim // 2 - emb = math.log(10000) / (half_dim - 1) - emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) - emb = emb.to(device=timesteps.device) - emb = timesteps.float()[:, None] * emb[None, :] - emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) - if embedding_dim % 2 == 1: # zero pad - emb = torch.nn.functional.pad(emb, (0,1,0,0)) - return emb - - -def nonlinearity(x): - # swish - return x*torch.sigmoid(x) - - -def Normalize(in_channels): - return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) - - -class Upsample(nn.Module): - def __init__(self, in_channels, with_conv): - super().__init__() - self.with_conv = with_conv - if self.with_conv: - self.conv = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") - if self.with_conv: - x = self.conv(x) - return x - - -class Downsample(nn.Module): - def __init__(self, in_channels, with_conv): - super().__init__() - self.with_conv = with_conv - if self.with_conv: - # no asymmetric padding in torch conv, must do it ourselves - self.conv = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=3, - stride=2, - padding=0) - - def forward(self, x): - if self.with_conv: - pad = (0,1,0,1) - x = torch.nn.functional.pad(x, pad, mode="constant", value=0) - x = self.conv(x) - else: - x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) - return x - - -class ResnetBlock(nn.Module): - def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, - dropout, temb_channels=512): - super().__init__() - self.in_channels = in_channels - out_channels = in_channels if out_channels is None else out_channels - self.out_channels = out_channels - self.use_conv_shortcut = conv_shortcut - - self.norm1 = Normalize(in_channels) - self.conv1 = torch.nn.Conv2d(in_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - if temb_channels > 0: - self.temb_proj = torch.nn.Linear(temb_channels, - out_channels) - self.norm2 = Normalize(out_channels) - self.dropout = torch.nn.Dropout(dropout) - self.conv2 = torch.nn.Conv2d(out_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - self.conv_shortcut = torch.nn.Conv2d(in_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - else: - self.nin_shortcut = torch.nn.Conv2d(in_channels, - out_channels, - kernel_size=1, - stride=1, - padding=0) - - def forward(self, x, temb): - h = x - h = self.norm1(h) - h = nonlinearity(h) - h = self.conv1(h) - - if temb is not None: - h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] - - h = self.norm2(h) - h = nonlinearity(h) - h = self.dropout(h) - h = self.conv2(h) - - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - x = self.conv_shortcut(x) - else: - x = self.nin_shortcut(x) - - return x+h - - -class AttnBlock(nn.Module): - def __init__(self, in_channels): - super().__init__() - self.in_channels = in_channels - - self.norm = Normalize(in_channels) - self.q = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.k = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.v = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - self.proj_out = torch.nn.Conv2d(in_channels, - in_channels, - kernel_size=1, - stride=1, - padding=0) - - - def forward(self, x): - h_ = x - h_ = self.norm(h_) - q = self.q(h_) - k = self.k(h_) - v = self.v(h_) - - # compute attention - b,c,h,w = q.shape - q = q.reshape(b,c,h*w) - q = q.permute(0,2,1) # b,hw,c - k = k.reshape(b,c,h*w) # b,c,hw - w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] - w_ = w_ * (int(c)**(-0.5)) - w_ = torch.nn.functional.softmax(w_, dim=2) - - # attend to values - v = v.reshape(b,c,h*w) - w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q) - h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] - h_ = h_.reshape(b,c,h,w) - - h_ = self.proj_out(h_) - - return x+h_ - - -class Model(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, use_timestep=True): - super().__init__() - self.ch = ch - self.temb_ch = self.ch*4 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - - self.use_timestep = use_timestep - if self.use_timestep: - # timestep embedding - self.temb = nn.Module() - self.temb.dense = nn.ModuleList([ - torch.nn.Linear(self.ch, - self.temb_ch), - torch.nn.Linear(self.temb_ch, - self.temb_ch), - ]) - - # downsampling - self.conv_in = torch.nn.Conv2d(in_channels, - self.ch, - kernel_size=3, - stride=1, - padding=1) - - curr_res = resolution - in_ch_mult = (1,)+tuple(ch_mult) - self.down = nn.ModuleList() - for i_level in range(self.num_resolutions): - block = nn.ModuleList() - attn = nn.ModuleList() - block_in = ch*in_ch_mult[i_level] - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks): - block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(AttnBlock(block_in)) - down = nn.Module() - down.block = block - down.attn = attn - if i_level != self.num_resolutions-1: - down.downsample = Downsample(block_in, resamp_with_conv) - curr_res = curr_res // 2 - self.down.append(down) - - # middle - self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = AttnBlock(block_in) - self.mid.block_2 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # upsampling - self.up = nn.ModuleList() - for i_level in reversed(range(self.num_resolutions)): - block = nn.ModuleList() - attn = nn.ModuleList() - block_out = ch*ch_mult[i_level] - skip_in = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks+1): - if i_block == self.num_res_blocks: - skip_in = ch*in_ch_mult[i_level] - block.append(ResnetBlock(in_channels=block_in+skip_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(AttnBlock(block_in)) - up = nn.Module() - up.block = block - up.attn = attn - if i_level != 0: - up.upsample = Upsample(block_in, resamp_with_conv) - curr_res = curr_res * 2 - self.up.insert(0, up) # prepend to get consistent order - - # end - self.norm_out = Normalize(block_in) - self.conv_out = torch.nn.Conv2d(block_in, - out_ch, - kernel_size=3, - stride=1, - padding=1) - - - def forward(self, x, t=None): - #assert x.shape[2] == x.shape[3] == self.resolution - - if self.use_timestep: - # timestep embedding - assert t is not None - temb = get_timestep_embedding(t, self.ch) - temb = self.temb.dense[0](temb) - temb = nonlinearity(temb) - temb = self.temb.dense[1](temb) - else: - temb = None - - # downsampling - hs = [self.conv_in(x)] - for i_level in range(self.num_resolutions): - for i_block in range(self.num_res_blocks): - h = self.down[i_level].block[i_block](hs[-1], temb) - if len(self.down[i_level].attn) > 0: - h = self.down[i_level].attn[i_block](h) - hs.append(h) - if i_level != self.num_resolutions-1: - hs.append(self.down[i_level].downsample(hs[-1])) - - # middle - h = hs[-1] - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - # upsampling - for i_level in reversed(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks+1): - h = self.up[i_level].block[i_block]( - torch.cat([h, hs.pop()], dim=1), temb) - if len(self.up[i_level].attn) > 0: - h = self.up[i_level].attn[i_block](h) - if i_level != 0: - h = self.up[i_level].upsample(h) - - # end - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - return h - - -class Encoder(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, z_channels, double_z=True, **ignore_kwargs): - super().__init__() - self.ch = ch - self.temb_ch = 0 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - - # downsampling - self.conv_in = torch.nn.Conv2d(in_channels, - self.ch, - kernel_size=3, - stride=1, - padding=1) - - curr_res = resolution - in_ch_mult = (1,)+tuple(ch_mult) - self.down = nn.ModuleList() - for i_level in range(self.num_resolutions): - block = nn.ModuleList() - attn = nn.ModuleList() - block_in = ch*in_ch_mult[i_level] - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks): - block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(AttnBlock(block_in)) - down = nn.Module() - down.block = block - down.attn = attn - if i_level != self.num_resolutions-1: - down.downsample = Downsample(block_in, resamp_with_conv) - curr_res = curr_res // 2 - self.down.append(down) - - # middle - self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = AttnBlock(block_in) - self.mid.block_2 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # end - self.norm_out = Normalize(block_in) - self.conv_out = torch.nn.Conv2d(block_in, - 2*z_channels if double_z else z_channels, - kernel_size=3, - stride=1, - padding=1) - - - def forward(self, x): - #assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution) - - # timestep embedding - temb = None - - # downsampling - hs = [self.conv_in(x)] - for i_level in range(self.num_resolutions): - for i_block in range(self.num_res_blocks): - h = self.down[i_level].block[i_block](hs[-1], temb) - if len(self.down[i_level].attn) > 0: - h = self.down[i_level].attn[i_block](h) - hs.append(h) - if i_level != self.num_resolutions-1: - hs.append(self.down[i_level].downsample(hs[-1])) - - # middle - h = hs[-1] - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - # end - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - return h - - -class Decoder(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, z_channels, give_pre_end=False, **ignorekwargs): - super().__init__() - self.ch = ch - self.temb_ch = 0 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - self.in_channels = in_channels - self.give_pre_end = give_pre_end - - # compute in_ch_mult, block_in and curr_res at lowest res - in_ch_mult = (1,)+tuple(ch_mult) - block_in = ch*ch_mult[self.num_resolutions-1] - curr_res = resolution // 2**(self.num_resolutions-1) - self.z_shape = (1,z_channels,curr_res,curr_res) - print("Working with z of shape {} = {} dimensions.".format( - self.z_shape, np.prod(self.z_shape))) - - # z to block_in - self.conv_in = torch.nn.Conv2d(z_channels, - block_in, - kernel_size=3, - stride=1, - padding=1) - - # middle - self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = AttnBlock(block_in) - self.mid.block_2 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # upsampling - self.up = nn.ModuleList() - for i_level in reversed(range(self.num_resolutions)): - block = nn.ModuleList() - attn = nn.ModuleList() - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks+1): - block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(AttnBlock(block_in)) - up = nn.Module() - up.block = block - up.attn = attn - if i_level != 0: - up.upsample = Upsample(block_in, resamp_with_conv) - curr_res = curr_res * 2 - self.up.insert(0, up) # prepend to get consistent order - - # end - self.norm_out = Normalize(block_in) - self.conv_out = torch.nn.Conv2d(block_in, - out_ch, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, z): - #assert z.shape[1:] == self.z_shape[1:] - self.last_z_shape = z.shape - - # timestep embedding - temb = None - - # z to block_in - h = self.conv_in(z) - - # middle - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - # upsampling - for i_level in reversed(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks+1): - h = self.up[i_level].block[i_block](h, temb) - if len(self.up[i_level].attn) > 0: - h = self.up[i_level].attn[i_block](h) - if i_level != 0: - h = self.up[i_level].upsample(h) - - # end - if self.give_pre_end: - return h - - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - return h - - -class VUNet(nn.Module): - def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, - attn_resolutions, dropout=0.0, resamp_with_conv=True, - in_channels, c_channels, - resolution, z_channels, use_timestep=False, **ignore_kwargs): - super().__init__() - self.ch = ch - self.temb_ch = self.ch*4 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.resolution = resolution - - self.use_timestep = use_timestep - if self.use_timestep: - # timestep embedding - self.temb = nn.Module() - self.temb.dense = nn.ModuleList([ - torch.nn.Linear(self.ch, - self.temb_ch), - torch.nn.Linear(self.temb_ch, - self.temb_ch), - ]) - - # downsampling - self.conv_in = torch.nn.Conv2d(c_channels, - self.ch, - kernel_size=3, - stride=1, - padding=1) - - curr_res = resolution - in_ch_mult = (1,)+tuple(ch_mult) - self.down = nn.ModuleList() - for i_level in range(self.num_resolutions): - block = nn.ModuleList() - attn = nn.ModuleList() - block_in = ch*in_ch_mult[i_level] - block_out = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks): - block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(AttnBlock(block_in)) - down = nn.Module() - down.block = block - down.attn = attn - if i_level != self.num_resolutions-1: - down.downsample = Downsample(block_in, resamp_with_conv) - curr_res = curr_res // 2 - self.down.append(down) - - self.z_in = torch.nn.Conv2d(z_channels, - block_in, - kernel_size=1, - stride=1, - padding=0) - # middle - self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=2*block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - self.mid.attn_1 = AttnBlock(block_in) - self.mid.block_2 = ResnetBlock(in_channels=block_in, - out_channels=block_in, - temb_channels=self.temb_ch, - dropout=dropout) - - # upsampling - self.up = nn.ModuleList() - for i_level in reversed(range(self.num_resolutions)): - block = nn.ModuleList() - attn = nn.ModuleList() - block_out = ch*ch_mult[i_level] - skip_in = ch*ch_mult[i_level] - for i_block in range(self.num_res_blocks+1): - if i_block == self.num_res_blocks: - skip_in = ch*in_ch_mult[i_level] - block.append(ResnetBlock(in_channels=block_in+skip_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - if curr_res in attn_resolutions: - attn.append(AttnBlock(block_in)) - up = nn.Module() - up.block = block - up.attn = attn - if i_level != 0: - up.upsample = Upsample(block_in, resamp_with_conv) - curr_res = curr_res * 2 - self.up.insert(0, up) # prepend to get consistent order - - # end - self.norm_out = Normalize(block_in) - self.conv_out = torch.nn.Conv2d(block_in, - out_ch, - kernel_size=3, - stride=1, - padding=1) - - - def forward(self, x, z): - #assert x.shape[2] == x.shape[3] == self.resolution - - if self.use_timestep: - # timestep embedding - assert t is not None - temb = get_timestep_embedding(t, self.ch) - temb = self.temb.dense[0](temb) - temb = nonlinearity(temb) - temb = self.temb.dense[1](temb) - else: - temb = None - - # downsampling - hs = [self.conv_in(x)] - for i_level in range(self.num_resolutions): - for i_block in range(self.num_res_blocks): - h = self.down[i_level].block[i_block](hs[-1], temb) - if len(self.down[i_level].attn) > 0: - h = self.down[i_level].attn[i_block](h) - hs.append(h) - if i_level != self.num_resolutions-1: - hs.append(self.down[i_level].downsample(hs[-1])) - - # middle - h = hs[-1] - z = self.z_in(z) - h = torch.cat((h,z),dim=1) - h = self.mid.block_1(h, temb) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb) - - # upsampling - for i_level in reversed(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks+1): - h = self.up[i_level].block[i_block]( - torch.cat([h, hs.pop()], dim=1), temb) - if len(self.up[i_level].attn) > 0: - h = self.up[i_level].attn[i_block](h) - if i_level != 0: - h = self.up[i_level].upsample(h) - - # end - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - return h - - -class SimpleDecoder(nn.Module): - def __init__(self, in_channels, out_channels, *args, **kwargs): - super().__init__() - self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1), - ResnetBlock(in_channels=in_channels, - out_channels=2 * in_channels, - temb_channels=0, dropout=0.0), - ResnetBlock(in_channels=2 * in_channels, - out_channels=4 * in_channels, - temb_channels=0, dropout=0.0), - ResnetBlock(in_channels=4 * in_channels, - out_channels=2 * in_channels, - temb_channels=0, dropout=0.0), - nn.Conv2d(2*in_channels, in_channels, 1), - Upsample(in_channels, with_conv=True)]) - # end - self.norm_out = Normalize(in_channels) - self.conv_out = torch.nn.Conv2d(in_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - for i, layer in enumerate(self.model): - if i in [1,2,3]: - x = layer(x, None) - else: - x = layer(x) - - h = self.norm_out(x) - h = nonlinearity(h) - x = self.conv_out(h) - return x - - -class UpsampleDecoder(nn.Module): - def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution, - ch_mult=(2,2), dropout=0.0): - super().__init__() - # upsampling - self.temb_ch = 0 - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - block_in = in_channels - curr_res = resolution // 2 ** (self.num_resolutions - 1) - self.res_blocks = nn.ModuleList() - self.upsample_blocks = nn.ModuleList() - for i_level in range(self.num_resolutions): - res_block = [] - block_out = ch * ch_mult[i_level] - for i_block in range(self.num_res_blocks + 1): - res_block.append(ResnetBlock(in_channels=block_in, - out_channels=block_out, - temb_channels=self.temb_ch, - dropout=dropout)) - block_in = block_out - self.res_blocks.append(nn.ModuleList(res_block)) - if i_level != self.num_resolutions - 1: - self.upsample_blocks.append(Upsample(block_in, True)) - curr_res = curr_res * 2 - - # end - self.norm_out = Normalize(block_in) - self.conv_out = torch.nn.Conv2d(block_in, - out_channels, - kernel_size=3, - stride=1, - padding=1) - - def forward(self, x): - # upsampling - h = x - for k, i_level in enumerate(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks + 1): - h = self.res_blocks[i_level][i_block](h, None) - if i_level != self.num_resolutions - 1: - h = self.upsample_blocks[k](h) - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) - return h - diff --git a/3DTopia/taming/modules/discriminator/model.py b/3DTopia/taming/modules/discriminator/model.py deleted file mode 100644 index 2aaa3110d0a7bcd05de7eca1e45101589ca5af05..0000000000000000000000000000000000000000 --- a/3DTopia/taming/modules/discriminator/model.py +++ /dev/null @@ -1,67 +0,0 @@ -import functools -import torch.nn as nn - - -from taming.modules.util import ActNorm - - -def weights_init(m): - classname = m.__class__.__name__ - if classname.find('Conv') != -1: - nn.init.normal_(m.weight.data, 0.0, 0.02) - elif classname.find('BatchNorm') != -1: - nn.init.normal_(m.weight.data, 1.0, 0.02) - nn.init.constant_(m.bias.data, 0) - - -class NLayerDiscriminator(nn.Module): - """Defines a PatchGAN discriminator as in Pix2Pix - --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py - """ - def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False): - """Construct a PatchGAN discriminator - Parameters: - input_nc (int) -- the number of channels in input images - ndf (int) -- the number of filters in the last conv layer - n_layers (int) -- the number of conv layers in the discriminator - norm_layer -- normalization layer - """ - super(NLayerDiscriminator, self).__init__() - if not use_actnorm: - norm_layer = nn.BatchNorm2d - else: - norm_layer = ActNorm - if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters - use_bias = norm_layer.func != nn.BatchNorm2d - else: - use_bias = norm_layer != nn.BatchNorm2d - - kw = 4 - padw = 1 - sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] - nf_mult = 1 - nf_mult_prev = 1 - for n in range(1, n_layers): # gradually increase the number of filters - nf_mult_prev = nf_mult - nf_mult = min(2 ** n, 8) - sequence += [ - nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), - norm_layer(ndf * nf_mult), - nn.LeakyReLU(0.2, True) - ] - - nf_mult_prev = nf_mult - nf_mult = min(2 ** n_layers, 8) - sequence += [ - nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), - norm_layer(ndf * nf_mult), - nn.LeakyReLU(0.2, True) - ] - - sequence += [ - nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map - self.main = nn.Sequential(*sequence) - - def forward(self, input): - """Standard forward.""" - return self.main(input) diff --git a/3DTopia/taming/modules/losses/__init__.py b/3DTopia/taming/modules/losses/__init__.py deleted file mode 100644 index d09caf9eb805f849a517f1b23503e1a4d6ea1ec5..0000000000000000000000000000000000000000 --- a/3DTopia/taming/modules/losses/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -from taming.modules.losses.vqperceptual import DummyLoss - diff --git a/3DTopia/taming/modules/losses/lpips.py b/3DTopia/taming/modules/losses/lpips.py deleted file mode 100644 index a7280447694ffc302a7636e7e4d6183408e0aa95..0000000000000000000000000000000000000000 --- a/3DTopia/taming/modules/losses/lpips.py +++ /dev/null @@ -1,123 +0,0 @@ -"""Stripped version of https://github.com/richzhang/PerceptualSimilarity/tree/master/models""" - -import torch -import torch.nn as nn -from torchvision import models -from collections import namedtuple - -from taming.util import get_ckpt_path - - -class LPIPS(nn.Module): - # Learned perceptual metric - def __init__(self, use_dropout=True): - super().__init__() - self.scaling_layer = ScalingLayer() - self.chns = [64, 128, 256, 512, 512] # vg16 features - self.net = vgg16(pretrained=True, requires_grad=False) - self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout) - self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout) - self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout) - self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout) - self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout) - self.load_from_pretrained() - for param in self.parameters(): - param.requires_grad = False - - def load_from_pretrained(self, name="vgg_lpips"): - ckpt = get_ckpt_path(name, "taming/modules/autoencoder/lpips") - self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False) - print("loaded pretrained LPIPS loss from {}".format(ckpt)) - - @classmethod - def from_pretrained(cls, name="vgg_lpips"): - if name != "vgg_lpips": - raise NotImplementedError - model = cls() - ckpt = get_ckpt_path(name) - model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False) - return model - - def forward(self, input, target): - in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target)) - outs0, outs1 = self.net(in0_input), self.net(in1_input) - feats0, feats1, diffs = {}, {}, {} - lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4] - for kk in range(len(self.chns)): - feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk]) - diffs[kk] = (feats0[kk] - feats1[kk]) ** 2 - - res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))] - val = res[0] - for l in range(1, len(self.chns)): - val += res[l] - return val - - -class ScalingLayer(nn.Module): - def __init__(self): - super(ScalingLayer, self).__init__() - self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None]) - self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None]) - - def forward(self, inp): - return (inp - self.shift) / self.scale - - -class NetLinLayer(nn.Module): - """ A single linear layer which does a 1x1 conv """ - def __init__(self, chn_in, chn_out=1, use_dropout=False): - super(NetLinLayer, self).__init__() - layers = [nn.Dropout(), ] if (use_dropout) else [] - layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ] - self.model = nn.Sequential(*layers) - - -class vgg16(torch.nn.Module): - def __init__(self, requires_grad=False, pretrained=True): - super(vgg16, self).__init__() - vgg_pretrained_features = models.vgg16(pretrained=pretrained).features - self.slice1 = torch.nn.Sequential() - self.slice2 = torch.nn.Sequential() - self.slice3 = torch.nn.Sequential() - self.slice4 = torch.nn.Sequential() - self.slice5 = torch.nn.Sequential() - self.N_slices = 5 - for x in range(4): - self.slice1.add_module(str(x), vgg_pretrained_features[x]) - for x in range(4, 9): - self.slice2.add_module(str(x), vgg_pretrained_features[x]) - for x in range(9, 16): - self.slice3.add_module(str(x), vgg_pretrained_features[x]) - for x in range(16, 23): - self.slice4.add_module(str(x), vgg_pretrained_features[x]) - for x in range(23, 30): - self.slice5.add_module(str(x), vgg_pretrained_features[x]) - if not requires_grad: - for param in self.parameters(): - param.requires_grad = False - - def forward(self, X): - h = self.slice1(X) - h_relu1_2 = h - h = self.slice2(h) - h_relu2_2 = h - h = self.slice3(h) - h_relu3_3 = h - h = self.slice4(h) - h_relu4_3 = h - h = self.slice5(h) - h_relu5_3 = h - vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3']) - out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3) - return out - - -def normalize_tensor(x,eps=1e-10): - norm_factor = torch.sqrt(torch.sum(x**2,dim=1,keepdim=True)) - return x/(norm_factor+eps) - - -def spatial_average(x, keepdim=True): - return x.mean([2,3],keepdim=keepdim) - diff --git a/3DTopia/taming/modules/losses/segmentation.py b/3DTopia/taming/modules/losses/segmentation.py deleted file mode 100644 index 4ba77deb5159a6307ed2acba9945e4764a4ff0a5..0000000000000000000000000000000000000000 --- a/3DTopia/taming/modules/losses/segmentation.py +++ /dev/null @@ -1,22 +0,0 @@ -import torch.nn as nn -import torch.nn.functional as F - - -class BCELoss(nn.Module): - def forward(self, prediction, target): - loss = F.binary_cross_entropy_with_logits(prediction,target) - return loss, {} - - -class BCELossWithQuant(nn.Module): - def __init__(self, codebook_weight=1.): - super().__init__() - self.codebook_weight = codebook_weight - - def forward(self, qloss, target, prediction, split): - bce_loss = F.binary_cross_entropy_with_logits(prediction,target) - loss = bce_loss + self.codebook_weight*qloss - return loss, {"{}/total_loss".format(split): loss.clone().detach().mean(), - "{}/bce_loss".format(split): bce_loss.detach().mean(), - "{}/quant_loss".format(split): qloss.detach().mean() - } diff --git a/3DTopia/taming/modules/losses/vqperceptual.py b/3DTopia/taming/modules/losses/vqperceptual.py deleted file mode 100644 index c2febd445728479d4cd9aacdb2572cb1f1af04db..0000000000000000000000000000000000000000 --- a/3DTopia/taming/modules/losses/vqperceptual.py +++ /dev/null @@ -1,136 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F - -from taming.modules.losses.lpips import LPIPS -from taming.modules.discriminator.model import NLayerDiscriminator, weights_init - - -class DummyLoss(nn.Module): - def __init__(self): - super().__init__() - - -def adopt_weight(weight, global_step, threshold=0, value=0.): - if global_step < threshold: - weight = value - return weight - - -def hinge_d_loss(logits_real, logits_fake): - loss_real = torch.mean(F.relu(1. - logits_real)) - loss_fake = torch.mean(F.relu(1. + logits_fake)) - d_loss = 0.5 * (loss_real + loss_fake) - return d_loss - - -def vanilla_d_loss(logits_real, logits_fake): - d_loss = 0.5 * ( - torch.mean(torch.nn.functional.softplus(-logits_real)) + - torch.mean(torch.nn.functional.softplus(logits_fake))) - return d_loss - - -class VQLPIPSWithDiscriminator(nn.Module): - def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0, - disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, - perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, - disc_ndf=64, disc_loss="hinge"): - super().__init__() - assert disc_loss in ["hinge", "vanilla"] - self.codebook_weight = codebook_weight - self.pixel_weight = pixelloss_weight - self.perceptual_loss = LPIPS().eval() - self.perceptual_weight = perceptual_weight - - self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels, - n_layers=disc_num_layers, - use_actnorm=use_actnorm, - ndf=disc_ndf - ).apply(weights_init) - self.discriminator_iter_start = disc_start - if disc_loss == "hinge": - self.disc_loss = hinge_d_loss - elif disc_loss == "vanilla": - self.disc_loss = vanilla_d_loss - else: - raise ValueError(f"Unknown GAN loss '{disc_loss}'.") - print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.") - self.disc_factor = disc_factor - self.discriminator_weight = disc_weight - self.disc_conditional = disc_conditional - - def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): - if last_layer is not None: - nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] - g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] - else: - nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] - g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] - - d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) - d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() - d_weight = d_weight * self.discriminator_weight - return d_weight - - def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx, - global_step, last_layer=None, cond=None, split="train"): - rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) - if self.perceptual_weight > 0: - p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous()) - rec_loss = rec_loss + self.perceptual_weight * p_loss - else: - p_loss = torch.tensor([0.0]) - - nll_loss = rec_loss - #nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] - nll_loss = torch.mean(nll_loss) - - # now the GAN part - if optimizer_idx == 0: - # generator update - if cond is None: - assert not self.disc_conditional - logits_fake = self.discriminator(reconstructions.contiguous()) - else: - assert self.disc_conditional - logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1)) - g_loss = -torch.mean(logits_fake) - - try: - d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) - except RuntimeError: - assert not self.training - d_weight = torch.tensor(0.0) - - disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) - loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean() - - log = {"{}/total_loss".format(split): loss.clone().detach().mean(), - "{}/quant_loss".format(split): codebook_loss.detach().mean(), - "{}/nll_loss".format(split): nll_loss.detach().mean(), - "{}/rec_loss".format(split): rec_loss.detach().mean(), - "{}/p_loss".format(split): p_loss.detach().mean(), - "{}/d_weight".format(split): d_weight.detach(), - "{}/disc_factor".format(split): torch.tensor(disc_factor), - "{}/g_loss".format(split): g_loss.detach().mean(), - } - return loss, log - - if optimizer_idx == 1: - # second pass for discriminator update - if cond is None: - logits_real = self.discriminator(inputs.contiguous().detach()) - logits_fake = self.discriminator(reconstructions.contiguous().detach()) - else: - logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1)) - logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1)) - - disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) - d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) - - log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(), - "{}/logits_real".format(split): logits_real.detach().mean(), - "{}/logits_fake".format(split): logits_fake.detach().mean() - } - return d_loss, log diff --git a/3DTopia/taming/modules/misc/coord.py b/3DTopia/taming/modules/misc/coord.py deleted file mode 100644 index ee69b0c897b6b382ae673622e420f55e494f5b09..0000000000000000000000000000000000000000 --- a/3DTopia/taming/modules/misc/coord.py +++ /dev/null @@ -1,31 +0,0 @@ -import torch - -class CoordStage(object): - def __init__(self, n_embed, down_factor): - self.n_embed = n_embed - self.down_factor = down_factor - - def eval(self): - return self - - def encode(self, c): - """fake vqmodel interface""" - assert 0.0 <= c.min() and c.max() <= 1.0 - b,ch,h,w = c.shape - assert ch == 1 - - c = torch.nn.functional.interpolate(c, scale_factor=1/self.down_factor, - mode="area") - c = c.clamp(0.0, 1.0) - c = self.n_embed*c - c_quant = c.round() - c_ind = c_quant.to(dtype=torch.long) - - info = None, None, c_ind - return c_quant, None, info - - def decode(self, c): - c = c/self.n_embed - c = torch.nn.functional.interpolate(c, scale_factor=self.down_factor, - mode="nearest") - return c diff --git a/3DTopia/taming/modules/transformer/mingpt.py b/3DTopia/taming/modules/transformer/mingpt.py deleted file mode 100644 index d14b7b68117f4b9f297b2929397cd4f55089334c..0000000000000000000000000000000000000000 --- a/3DTopia/taming/modules/transformer/mingpt.py +++ /dev/null @@ -1,415 +0,0 @@ -""" -taken from: https://github.com/karpathy/minGPT/ -GPT model: -- the initial stem consists of a combination of token encoding and a positional encoding -- the meat of it is a uniform sequence of Transformer blocks - - each Transformer is a sequential combination of a 1-hidden-layer MLP block and a self-attention block - - all blocks feed into a central residual pathway similar to resnets -- the final decoder is a linear projection into a vanilla Softmax classifier -""" - -import math -import logging - -import torch -import torch.nn as nn -from torch.nn import functional as F -from transformers import top_k_top_p_filtering - -logger = logging.getLogger(__name__) - - -class GPTConfig: - """ base GPT config, params common to all GPT versions """ - embd_pdrop = 0.1 - resid_pdrop = 0.1 - attn_pdrop = 0.1 - - def __init__(self, vocab_size, block_size, **kwargs): - self.vocab_size = vocab_size - self.block_size = block_size - for k,v in kwargs.items(): - setattr(self, k, v) - - -class GPT1Config(GPTConfig): - """ GPT-1 like network roughly 125M params """ - n_layer = 12 - n_head = 12 - n_embd = 768 - - -class CausalSelfAttention(nn.Module): - """ - A vanilla multi-head masked self-attention layer with a projection at the end. - It is possible to use torch.nn.MultiheadAttention here but I am including an - explicit implementation here to show that there is nothing too scary here. - """ - - def __init__(self, config): - super().__init__() - assert config.n_embd % config.n_head == 0 - # key, query, value projections for all heads - self.key = nn.Linear(config.n_embd, config.n_embd) - self.query = nn.Linear(config.n_embd, config.n_embd) - self.value = nn.Linear(config.n_embd, config.n_embd) - # regularization - self.attn_drop = nn.Dropout(config.attn_pdrop) - self.resid_drop = nn.Dropout(config.resid_pdrop) - # output projection - self.proj = nn.Linear(config.n_embd, config.n_embd) - # causal mask to ensure that attention is only applied to the left in the input sequence - mask = torch.tril(torch.ones(config.block_size, - config.block_size)) - if hasattr(config, "n_unmasked"): - mask[:config.n_unmasked, :config.n_unmasked] = 1 - self.register_buffer("mask", mask.view(1, 1, config.block_size, config.block_size)) - self.n_head = config.n_head - - def forward(self, x, layer_past=None): - B, T, C = x.size() - - # calculate query, key, values for all heads in batch and move head forward to be the batch dim - k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) - q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) - v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) - - present = torch.stack((k, v)) - if layer_past is not None: - past_key, past_value = layer_past - k = torch.cat((past_key, k), dim=-2) - v = torch.cat((past_value, v), dim=-2) - - # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) - att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) - if layer_past is None: - att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf')) - - att = F.softmax(att, dim=-1) - att = self.attn_drop(att) - y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) - y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side - - # output projection - y = self.resid_drop(self.proj(y)) - return y, present # TODO: check that this does not break anything - - -class Block(nn.Module): - """ an unassuming Transformer block """ - def __init__(self, config): - super().__init__() - self.ln1 = nn.LayerNorm(config.n_embd) - self.ln2 = nn.LayerNorm(config.n_embd) - self.attn = CausalSelfAttention(config) - self.mlp = nn.Sequential( - nn.Linear(config.n_embd, 4 * config.n_embd), - nn.GELU(), # nice - nn.Linear(4 * config.n_embd, config.n_embd), - nn.Dropout(config.resid_pdrop), - ) - - def forward(self, x, layer_past=None, return_present=False): - # TODO: check that training still works - if return_present: assert not self.training - # layer past: tuple of length two with B, nh, T, hs - attn, present = self.attn(self.ln1(x), layer_past=layer_past) - - x = x + attn - x = x + self.mlp(self.ln2(x)) - if layer_past is not None or return_present: - return x, present - return x - - -class GPT(nn.Module): - """ the full GPT language model, with a context size of block_size """ - def __init__(self, vocab_size, block_size, n_layer=12, n_head=8, n_embd=256, - embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0): - super().__init__() - config = GPTConfig(vocab_size=vocab_size, block_size=block_size, - embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop, - n_layer=n_layer, n_head=n_head, n_embd=n_embd, - n_unmasked=n_unmasked) - # input embedding stem - self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd) - self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) - self.drop = nn.Dropout(config.embd_pdrop) - # transformer - self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) - # decoder head - self.ln_f = nn.LayerNorm(config.n_embd) - self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) - self.block_size = config.block_size - self.apply(self._init_weights) - self.config = config - logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) - - def get_block_size(self): - return self.block_size - - def _init_weights(self, module): - if isinstance(module, (nn.Linear, nn.Embedding)): - module.weight.data.normal_(mean=0.0, std=0.02) - if isinstance(module, nn.Linear) and module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.LayerNorm): - module.bias.data.zero_() - module.weight.data.fill_(1.0) - - def forward(self, idx, embeddings=None, targets=None): - # forward the GPT model - token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector - - if embeddings is not None: # prepend explicit embeddings - token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) - - t = token_embeddings.shape[1] - assert t <= self.block_size, "Cannot forward, model block size is exhausted." - position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector - x = self.drop(token_embeddings + position_embeddings) - x = self.blocks(x) - x = self.ln_f(x) - logits = self.head(x) - - # if we are given some desired targets also calculate the loss - loss = None - if targets is not None: - loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) - - return logits, loss - - def forward_with_past(self, idx, embeddings=None, targets=None, past=None, past_length=None): - # inference only - assert not self.training - token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector - if embeddings is not None: # prepend explicit embeddings - token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) - - if past is not None: - assert past_length is not None - past = torch.cat(past, dim=-2) # n_layer, 2, b, nh, len_past, dim_head - past_shape = list(past.shape) - expected_shape = [self.config.n_layer, 2, idx.shape[0], self.config.n_head, past_length, self.config.n_embd//self.config.n_head] - assert past_shape == expected_shape, f"{past_shape} =/= {expected_shape}" - position_embeddings = self.pos_emb[:, past_length, :] # each position maps to a (learnable) vector - else: - position_embeddings = self.pos_emb[:, :token_embeddings.shape[1], :] - - x = self.drop(token_embeddings + position_embeddings) - presents = [] # accumulate over layers - for i, block in enumerate(self.blocks): - x, present = block(x, layer_past=past[i, ...] if past is not None else None, return_present=True) - presents.append(present) - - x = self.ln_f(x) - logits = self.head(x) - # if we are given some desired targets also calculate the loss - loss = None - if targets is not None: - loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) - - return logits, loss, torch.stack(presents) # _, _, n_layer, 2, b, nh, 1, dim_head - - -class DummyGPT(nn.Module): - # for debugging - def __init__(self, add_value=1): - super().__init__() - self.add_value = add_value - - def forward(self, idx): - return idx + self.add_value, None - - -class CodeGPT(nn.Module): - """Takes in semi-embeddings""" - def __init__(self, vocab_size, block_size, in_channels, n_layer=12, n_head=8, n_embd=256, - embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0): - super().__init__() - config = GPTConfig(vocab_size=vocab_size, block_size=block_size, - embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop, - n_layer=n_layer, n_head=n_head, n_embd=n_embd, - n_unmasked=n_unmasked) - # input embedding stem - self.tok_emb = nn.Linear(in_channels, config.n_embd) - self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) - self.drop = nn.Dropout(config.embd_pdrop) - # transformer - self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) - # decoder head - self.ln_f = nn.LayerNorm(config.n_embd) - self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) - self.block_size = config.block_size - self.apply(self._init_weights) - self.config = config - logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) - - def get_block_size(self): - return self.block_size - - def _init_weights(self, module): - if isinstance(module, (nn.Linear, nn.Embedding)): - module.weight.data.normal_(mean=0.0, std=0.02) - if isinstance(module, nn.Linear) and module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.LayerNorm): - module.bias.data.zero_() - module.weight.data.fill_(1.0) - - def forward(self, idx, embeddings=None, targets=None): - # forward the GPT model - token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector - - if embeddings is not None: # prepend explicit embeddings - token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) - - t = token_embeddings.shape[1] - assert t <= self.block_size, "Cannot forward, model block size is exhausted." - position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector - x = self.drop(token_embeddings + position_embeddings) - x = self.blocks(x) - x = self.taming_cinln_f(x) - logits = self.head(x) - - # if we are given some desired targets also calculate the loss - loss = None - if targets is not None: - loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) - - return logits, loss - - - -#### sampling utils - -def top_k_logits(logits, k): - v, ix = torch.topk(logits, k) - out = logits.clone() - out[out < v[:, [-1]]] = -float('Inf') - return out - -@torch.no_grad() -def sample(model, x, steps, temperature=1.0, sample=False, top_k=None): - """ - take a conditioning sequence of indices in x (of shape (b,t)) and predict the next token in - the sequence, feeding the predictions back into the model each time. Clearly the sampling - has quadratic complexity unlike an RNN that is only linear, and has a finite context window - of block_size, unlike an RNN that has an infinite context window. - """ - block_size = model.get_block_size() - model.eval() - for k in range(steps): - x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed - logits, _ = model(x_cond) - # pluck the logits at the final step and scale by temperature - logits = logits[:, -1, :] / temperature - # optionally crop probabilities to only the top k options - if top_k is not None: - logits = top_k_logits(logits, top_k) - # apply softmax to convert to probabilities - probs = F.softmax(logits, dim=-1) - # sample from the distribution or take the most likely - if sample: - ix = torch.multinomial(probs, num_samples=1) - else: - _, ix = torch.topk(probs, k=1, dim=-1) - # append to the sequence and continue - x = torch.cat((x, ix), dim=1) - - return x - - -@torch.no_grad() -def sample_with_past(x, model, steps, temperature=1., sample_logits=True, - top_k=None, top_p=None, callback=None): - # x is conditioning - sample = x - cond_len = x.shape[1] - past = None - for n in range(steps): - if callback is not None: - callback(n) - logits, _, present = model.forward_with_past(x, past=past, past_length=(n+cond_len-1)) - if past is None: - past = [present] - else: - past.append(present) - logits = logits[:, -1, :] / temperature - if top_k is not None: - logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) - - probs = F.softmax(logits, dim=-1) - if not sample_logits: - _, x = torch.topk(probs, k=1, dim=-1) - else: - x = torch.multinomial(probs, num_samples=1) - # append to the sequence and continue - sample = torch.cat((sample, x), dim=1) - del past - sample = sample[:, cond_len:] # cut conditioning off - return sample - - -#### clustering utils - -class KMeans(nn.Module): - def __init__(self, ncluster=512, nc=3, niter=10): - super().__init__() - self.ncluster = ncluster - self.nc = nc - self.niter = niter - self.shape = (3,32,32) - self.register_buffer("C", torch.zeros(self.ncluster,nc)) - self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8)) - - def is_initialized(self): - return self.initialized.item() == 1 - - @torch.no_grad() - def initialize(self, x): - N, D = x.shape - assert D == self.nc, D - c = x[torch.randperm(N)[:self.ncluster]] # init clusters at random - for i in range(self.niter): - # assign all pixels to the closest codebook element - a = ((x[:, None, :] - c[None, :, :])**2).sum(-1).argmin(1) - # move each codebook element to be the mean of the pixels that assigned to it - c = torch.stack([x[a==k].mean(0) for k in range(self.ncluster)]) - # re-assign any poorly positioned codebook elements - nanix = torch.any(torch.isnan(c), dim=1) - ndead = nanix.sum().item() - print('done step %d/%d, re-initialized %d dead clusters' % (i+1, self.niter, ndead)) - c[nanix] = x[torch.randperm(N)[:ndead]] # re-init dead clusters - - self.C.copy_(c) - self.initialized.fill_(1) - - - def forward(self, x, reverse=False, shape=None): - if not reverse: - # flatten - bs,c,h,w = x.shape - assert c == self.nc - x = x.reshape(bs,c,h*w,1) - C = self.C.permute(1,0) - C = C.reshape(1,c,1,self.ncluster) - a = ((x-C)**2).sum(1).argmin(-1) # bs, h*w indices - return a - else: - # flatten - bs, HW = x.shape - """ - c = self.C.reshape( 1, self.nc, 1, self.ncluster) - c = c[bs*[0],:,:,:] - c = c[:,:,HW*[0],:] - x = x.reshape(bs, 1, HW, 1) - x = x[:,3*[0],:,:] - x = torch.gather(c, dim=3, index=x) - """ - x = self.C[x] - x = x.permute(0,2,1) - shape = shape if shape is not None else self.shape - x = x.reshape(bs, *shape) - - return x diff --git a/3DTopia/taming/modules/transformer/permuter.py b/3DTopia/taming/modules/transformer/permuter.py deleted file mode 100644 index 0d43bb135adde38d94bf18a7e5edaa4523cd95cf..0000000000000000000000000000000000000000 --- a/3DTopia/taming/modules/transformer/permuter.py +++ /dev/null @@ -1,248 +0,0 @@ -import torch -import torch.nn as nn -import numpy as np - - -class AbstractPermuter(nn.Module): - def __init__(self, *args, **kwargs): - super().__init__() - def forward(self, x, reverse=False): - raise NotImplementedError - - -class Identity(AbstractPermuter): - def __init__(self): - super().__init__() - - def forward(self, x, reverse=False): - return x - - -class Subsample(AbstractPermuter): - def __init__(self, H, W): - super().__init__() - C = 1 - indices = np.arange(H*W).reshape(C,H,W) - while min(H, W) > 1: - indices = indices.reshape(C,H//2,2,W//2,2) - indices = indices.transpose(0,2,4,1,3) - indices = indices.reshape(C*4,H//2, W//2) - H = H//2 - W = W//2 - C = C*4 - assert H == W == 1 - idx = torch.tensor(indices.ravel()) - self.register_buffer('forward_shuffle_idx', - nn.Parameter(idx, requires_grad=False)) - self.register_buffer('backward_shuffle_idx', - nn.Parameter(torch.argsort(idx), requires_grad=False)) - - def forward(self, x, reverse=False): - if not reverse: - return x[:, self.forward_shuffle_idx] - else: - return x[:, self.backward_shuffle_idx] - - -def mortonify(i, j): - """(i,j) index to linear morton code""" - i = np.uint64(i) - j = np.uint64(j) - - z = np.uint(0) - - for pos in range(32): - z = (z | - ((j & (np.uint64(1) << np.uint64(pos))) << np.uint64(pos)) | - ((i & (np.uint64(1) << np.uint64(pos))) << np.uint64(pos+1)) - ) - return z - - -class ZCurve(AbstractPermuter): - def __init__(self, H, W): - super().__init__() - reverseidx = [np.int64(mortonify(i,j)) for i in range(H) for j in range(W)] - idx = np.argsort(reverseidx) - idx = torch.tensor(idx) - reverseidx = torch.tensor(reverseidx) - self.register_buffer('forward_shuffle_idx', - idx) - self.register_buffer('backward_shuffle_idx', - reverseidx) - - def forward(self, x, reverse=False): - if not reverse: - return x[:, self.forward_shuffle_idx] - else: - return x[:, self.backward_shuffle_idx] - - -class SpiralOut(AbstractPermuter): - def __init__(self, H, W): - super().__init__() - assert H == W - size = W - indices = np.arange(size*size).reshape(size,size) - - i0 = size//2 - j0 = size//2-1 - - i = i0 - j = j0 - - idx = [indices[i0, j0]] - step_mult = 0 - for c in range(1, size//2+1): - step_mult += 1 - # steps left - for k in range(step_mult): - i = i - 1 - j = j - idx.append(indices[i, j]) - - # step down - for k in range(step_mult): - i = i - j = j + 1 - idx.append(indices[i, j]) - - step_mult += 1 - if c < size//2: - # step right - for k in range(step_mult): - i = i + 1 - j = j - idx.append(indices[i, j]) - - # step up - for k in range(step_mult): - i = i - j = j - 1 - idx.append(indices[i, j]) - else: - # end reached - for k in range(step_mult-1): - i = i + 1 - idx.append(indices[i, j]) - - assert len(idx) == size*size - idx = torch.tensor(idx) - self.register_buffer('forward_shuffle_idx', idx) - self.register_buffer('backward_shuffle_idx', torch.argsort(idx)) - - def forward(self, x, reverse=False): - if not reverse: - return x[:, self.forward_shuffle_idx] - else: - return x[:, self.backward_shuffle_idx] - - -class SpiralIn(AbstractPermuter): - def __init__(self, H, W): - super().__init__() - assert H == W - size = W - indices = np.arange(size*size).reshape(size,size) - - i0 = size//2 - j0 = size//2-1 - - i = i0 - j = j0 - - idx = [indices[i0, j0]] - step_mult = 0 - for c in range(1, size//2+1): - step_mult += 1 - # steps left - for k in range(step_mult): - i = i - 1 - j = j - idx.append(indices[i, j]) - - # step down - for k in range(step_mult): - i = i - j = j + 1 - idx.append(indices[i, j]) - - step_mult += 1 - if c < size//2: - # step right - for k in range(step_mult): - i = i + 1 - j = j - idx.append(indices[i, j]) - - # step up - for k in range(step_mult): - i = i - j = j - 1 - idx.append(indices[i, j]) - else: - # end reached - for k in range(step_mult-1): - i = i + 1 - idx.append(indices[i, j]) - - assert len(idx) == size*size - idx = idx[::-1] - idx = torch.tensor(idx) - self.register_buffer('forward_shuffle_idx', idx) - self.register_buffer('backward_shuffle_idx', torch.argsort(idx)) - - def forward(self, x, reverse=False): - if not reverse: - return x[:, self.forward_shuffle_idx] - else: - return x[:, self.backward_shuffle_idx] - - -class Random(nn.Module): - def __init__(self, H, W): - super().__init__() - indices = np.random.RandomState(1).permutation(H*W) - idx = torch.tensor(indices.ravel()) - self.register_buffer('forward_shuffle_idx', idx) - self.register_buffer('backward_shuffle_idx', torch.argsort(idx)) - - def forward(self, x, reverse=False): - if not reverse: - return x[:, self.forward_shuffle_idx] - else: - return x[:, self.backward_shuffle_idx] - - -class AlternateParsing(AbstractPermuter): - def __init__(self, H, W): - super().__init__() - indices = np.arange(W*H).reshape(H,W) - for i in range(1, H, 2): - indices[i, :] = indices[i, ::-1] - idx = indices.flatten() - assert len(idx) == H*W - idx = torch.tensor(idx) - self.register_buffer('forward_shuffle_idx', idx) - self.register_buffer('backward_shuffle_idx', torch.argsort(idx)) - - def forward(self, x, reverse=False): - if not reverse: - return x[:, self.forward_shuffle_idx] - else: - return x[:, self.backward_shuffle_idx] - - -if __name__ == "__main__": - p0 = AlternateParsing(16, 16) - print(p0.forward_shuffle_idx) - print(p0.backward_shuffle_idx) - - x = torch.randint(0, 768, size=(11, 256)) - y = p0(x) - xre = p0(y, reverse=True) - assert torch.equal(x, xre) - - p1 = SpiralOut(2, 2) - print(p1.forward_shuffle_idx) - print(p1.backward_shuffle_idx) diff --git a/3DTopia/taming/modules/util.py b/3DTopia/taming/modules/util.py deleted file mode 100644 index 9ee16385d8b1342a2d60a5f1aa5cadcfbe934bd8..0000000000000000000000000000000000000000 --- a/3DTopia/taming/modules/util.py +++ /dev/null @@ -1,130 +0,0 @@ -import torch -import torch.nn as nn - - -def count_params(model): - total_params = sum(p.numel() for p in model.parameters()) - return total_params - - -class ActNorm(nn.Module): - def __init__(self, num_features, logdet=False, affine=True, - allow_reverse_init=False): - assert affine - super().__init__() - self.logdet = logdet - self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1)) - self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1)) - self.allow_reverse_init = allow_reverse_init - - self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8)) - - def initialize(self, input): - with torch.no_grad(): - flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1) - mean = ( - flatten.mean(1) - .unsqueeze(1) - .unsqueeze(2) - .unsqueeze(3) - .permute(1, 0, 2, 3) - ) - std = ( - flatten.std(1) - .unsqueeze(1) - .unsqueeze(2) - .unsqueeze(3) - .permute(1, 0, 2, 3) - ) - - self.loc.data.copy_(-mean) - self.scale.data.copy_(1 / (std + 1e-6)) - - def forward(self, input, reverse=False): - if reverse: - return self.reverse(input) - if len(input.shape) == 2: - input = input[:,:,None,None] - squeeze = True - else: - squeeze = False - - _, _, height, width = input.shape - - if self.training and self.initialized.item() == 0: - self.initialize(input) - self.initialized.fill_(1) - - h = self.scale * (input + self.loc) - - if squeeze: - h = h.squeeze(-1).squeeze(-1) - - if self.logdet: - log_abs = torch.log(torch.abs(self.scale)) - logdet = height*width*torch.sum(log_abs) - logdet = logdet * torch.ones(input.shape[0]).to(input) - return h, logdet - - return h - - def reverse(self, output): - if self.training and self.initialized.item() == 0: - if not self.allow_reverse_init: - raise RuntimeError( - "Initializing ActNorm in reverse direction is " - "disabled by default. Use allow_reverse_init=True to enable." - ) - else: - self.initialize(output) - self.initialized.fill_(1) - - if len(output.shape) == 2: - output = output[:,:,None,None] - squeeze = True - else: - squeeze = False - - h = output / self.scale - self.loc - - if squeeze: - h = h.squeeze(-1).squeeze(-1) - return h - - -class AbstractEncoder(nn.Module): - def __init__(self): - super().__init__() - - def encode(self, *args, **kwargs): - raise NotImplementedError - - -class Labelator(AbstractEncoder): - """Net2Net Interface for Class-Conditional Model""" - def __init__(self, n_classes, quantize_interface=True): - super().__init__() - self.n_classes = n_classes - self.quantize_interface = quantize_interface - - def encode(self, c): - c = c[:,None] - if self.quantize_interface: - return c, None, [None, None, c.long()] - return c - - -class SOSProvider(AbstractEncoder): - # for unconditional training - def __init__(self, sos_token, quantize_interface=True): - super().__init__() - self.sos_token = sos_token - self.quantize_interface = quantize_interface - - def encode(self, x): - # get batch size from data and replicate sos_token - c = torch.ones(x.shape[0], 1)*self.sos_token - c = c.long().to(x.device) - if self.quantize_interface: - return c, None, [None, None, c] - return c diff --git a/3DTopia/taming/modules/vqvae/quantize.py b/3DTopia/taming/modules/vqvae/quantize.py deleted file mode 100644 index d75544e41fa01bce49dd822b1037963d62f79b51..0000000000000000000000000000000000000000 --- a/3DTopia/taming/modules/vqvae/quantize.py +++ /dev/null @@ -1,445 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -import numpy as np -from torch import einsum -from einops import rearrange - - -class VectorQuantizer(nn.Module): - """ - see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py - ____________________________________________ - Discretization bottleneck part of the VQ-VAE. - Inputs: - - n_e : number of embeddings - - e_dim : dimension of embedding - - beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 - _____________________________________________ - """ - - # NOTE: this class contains a bug regarding beta; see VectorQuantizer2 for - # a fix and use legacy=False to apply that fix. VectorQuantizer2 can be - # used wherever VectorQuantizer has been used before and is additionally - # more efficient. - def __init__(self, n_e, e_dim, beta): - super(VectorQuantizer, self).__init__() - self.n_e = n_e - self.e_dim = e_dim - self.beta = beta - - self.embedding = nn.Embedding(self.n_e, self.e_dim) - self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) - - def forward(self, z): - """ - Inputs the output of the encoder network z and maps it to a discrete - one-hot vector that is the index of the closest embedding vector e_j - z (continuous) -> z_q (discrete) - z.shape = (batch, channel, height, width) - quantization pipeline: - 1. get encoder input (B,C,H,W) - 2. flatten input to (B*H*W,C) - """ - # reshape z -> (batch, height, width, channel) and flatten - z = z.permute(0, 2, 3, 1).contiguous() - z_flattened = z.view(-1, self.e_dim) - # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z - - d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ - torch.sum(self.embedding.weight**2, dim=1) - 2 * \ - torch.matmul(z_flattened, self.embedding.weight.t()) - - ## could possible replace this here - # #\start... - # find closest encodings - min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1) - - min_encodings = torch.zeros( - min_encoding_indices.shape[0], self.n_e).to(z) - min_encodings.scatter_(1, min_encoding_indices, 1) - - # dtype min encodings: torch.float32 - # min_encodings shape: torch.Size([2048, 512]) - # min_encoding_indices.shape: torch.Size([2048, 1]) - - # get quantized latent vectors - z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) - #.........\end - - # with: - # .........\start - #min_encoding_indices = torch.argmin(d, dim=1) - #z_q = self.embedding(min_encoding_indices) - # ......\end......... (TODO) - - # compute loss for embedding - loss = torch.mean((z_q.detach()-z)**2) + self.beta * \ - torch.mean((z_q - z.detach()) ** 2) - - # preserve gradients - z_q = z + (z_q - z).detach() - - # perplexity - e_mean = torch.mean(min_encodings, dim=0) - perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) - - # reshape back to match original input shape - z_q = z_q.permute(0, 3, 1, 2).contiguous() - - return z_q, loss, (perplexity, min_encodings, min_encoding_indices) - - def get_codebook_entry(self, indices, shape): - # shape specifying (batch, height, width, channel) - # TODO: check for more easy handling with nn.Embedding - min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices) - min_encodings.scatter_(1, indices[:,None], 1) - - # get quantized latent vectors - z_q = torch.matmul(min_encodings.float(), self.embedding.weight) - - if shape is not None: - z_q = z_q.view(shape) - - # reshape back to match original input shape - z_q = z_q.permute(0, 3, 1, 2).contiguous() - - return z_q - - -class GumbelQuantize(nn.Module): - """ - credit to @karpathy: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py (thanks!) - Gumbel Softmax trick quantizer - Categorical Reparameterization with Gumbel-Softmax, Jang et al. 2016 - https://arxiv.org/abs/1611.01144 - """ - def __init__(self, num_hiddens, embedding_dim, n_embed, straight_through=True, - kl_weight=5e-4, temp_init=1.0, use_vqinterface=True, - remap=None, unknown_index="random"): - super().__init__() - - self.embedding_dim = embedding_dim - self.n_embed = n_embed - - self.straight_through = straight_through - self.temperature = temp_init - self.kl_weight = kl_weight - - self.proj = nn.Conv2d(num_hiddens, n_embed, 1) - self.embed = nn.Embedding(n_embed, embedding_dim) - - self.use_vqinterface = use_vqinterface - - self.remap = remap - if self.remap is not None: - self.register_buffer("used", torch.tensor(np.load(self.remap))) - self.re_embed = self.used.shape[0] - self.unknown_index = unknown_index # "random" or "extra" or integer - if self.unknown_index == "extra": - self.unknown_index = self.re_embed - self.re_embed = self.re_embed+1 - print(f"Remapping {self.n_embed} indices to {self.re_embed} indices. " - f"Using {self.unknown_index} for unknown indices.") - else: - self.re_embed = n_embed - - def remap_to_used(self, inds): - ishape = inds.shape - assert len(ishape)>1 - inds = inds.reshape(ishape[0],-1) - used = self.used.to(inds) - match = (inds[:,:,None]==used[None,None,...]).long() - new = match.argmax(-1) - unknown = match.sum(2)<1 - if self.unknown_index == "random": - new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device) - else: - new[unknown] = self.unknown_index - return new.reshape(ishape) - - def unmap_to_all(self, inds): - ishape = inds.shape - assert len(ishape)>1 - inds = inds.reshape(ishape[0],-1) - used = self.used.to(inds) - if self.re_embed > self.used.shape[0]: # extra token - inds[inds>=self.used.shape[0]] = 0 # simply set to zero - back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds) - return back.reshape(ishape) - - def forward(self, z, temp=None, return_logits=False): - # force hard = True when we are in eval mode, as we must quantize. actually, always true seems to work - hard = self.straight_through if self.training else True - temp = self.temperature if temp is None else temp - - logits = self.proj(z) - if self.remap is not None: - # continue only with used logits - full_zeros = torch.zeros_like(logits) - logits = logits[:,self.used,...] - - soft_one_hot = F.gumbel_softmax(logits, tau=temp, dim=1, hard=hard) - if self.remap is not None: - # go back to all entries but unused set to zero - full_zeros[:,self.used,...] = soft_one_hot - soft_one_hot = full_zeros - z_q = einsum('b n h w, n d -> b d h w', soft_one_hot, self.embed.weight) - - # + kl divergence to the prior loss - qy = F.softmax(logits, dim=1) - diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.n_embed + 1e-10), dim=1).mean() - - ind = soft_one_hot.argmax(dim=1) - if self.remap is not None: - ind = self.remap_to_used(ind) - if self.use_vqinterface: - if return_logits: - return z_q, diff, (None, None, ind), logits - return z_q, diff, (None, None, ind) - return z_q, diff, ind - - def get_codebook_entry(self, indices, shape): - b, h, w, c = shape - assert b*h*w == indices.shape[0] - indices = rearrange(indices, '(b h w) -> b h w', b=b, h=h, w=w) - if self.remap is not None: - indices = self.unmap_to_all(indices) - one_hot = F.one_hot(indices, num_classes=self.n_embed).permute(0, 3, 1, 2).float() - z_q = einsum('b n h w, n d -> b d h w', one_hot, self.embed.weight) - return z_q - - -class VectorQuantizer2(nn.Module): - """ - Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly - avoids costly matrix multiplications and allows for post-hoc remapping of indices. - """ - # NOTE: due to a bug the beta term was applied to the wrong term. for - # backwards compatibility we use the buggy version by default, but you can - # specify legacy=False to fix it. - def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", - sane_index_shape=False, legacy=True): - super().__init__() - self.n_e = n_e - self.e_dim = e_dim - self.beta = beta - self.legacy = legacy - - self.embedding = nn.Embedding(self.n_e, self.e_dim) - self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) - - self.remap = remap - if self.remap is not None: - self.register_buffer("used", torch.tensor(np.load(self.remap))) - self.re_embed = self.used.shape[0] - self.unknown_index = unknown_index # "random" or "extra" or integer - if self.unknown_index == "extra": - self.unknown_index = self.re_embed - self.re_embed = self.re_embed+1 - print(f"Remapping {self.n_e} indices to {self.re_embed} indices. " - f"Using {self.unknown_index} for unknown indices.") - else: - self.re_embed = n_e - - self.sane_index_shape = sane_index_shape - - def remap_to_used(self, inds): - ishape = inds.shape - assert len(ishape)>1 - inds = inds.reshape(ishape[0],-1) - used = self.used.to(inds) - match = (inds[:,:,None]==used[None,None,...]).long() - new = match.argmax(-1) - unknown = match.sum(2)<1 - if self.unknown_index == "random": - new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device) - else: - new[unknown] = self.unknown_index - return new.reshape(ishape) - - def unmap_to_all(self, inds): - ishape = inds.shape - assert len(ishape)>1 - inds = inds.reshape(ishape[0],-1) - used = self.used.to(inds) - if self.re_embed > self.used.shape[0]: # extra token - inds[inds>=self.used.shape[0]] = 0 # simply set to zero - back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds) - return back.reshape(ishape) - - def forward(self, z, temp=None, rescale_logits=False, return_logits=False): - assert temp is None or temp==1.0, "Only for interface compatible with Gumbel" - assert rescale_logits==False, "Only for interface compatible with Gumbel" - assert return_logits==False, "Only for interface compatible with Gumbel" - # reshape z -> (batch, height, width, channel) and flatten - z = rearrange(z, 'b c h w -> b h w c').contiguous() - z_flattened = z.view(-1, self.e_dim) - # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z - - d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ - torch.sum(self.embedding.weight**2, dim=1) - 2 * \ - torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n')) - - min_encoding_indices = torch.argmin(d, dim=1) - z_q = self.embedding(min_encoding_indices).view(z.shape) - perplexity = None - min_encodings = None - - # compute loss for embedding - if not self.legacy: - loss = self.beta * torch.mean((z_q.detach()-z)**2) + \ - torch.mean((z_q - z.detach()) ** 2) - else: - loss = torch.mean((z_q.detach()-z)**2) + self.beta * \ - torch.mean((z_q - z.detach()) ** 2) - - # preserve gradients - z_q = z + (z_q - z).detach() - - # reshape back to match original input shape - z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous() - - if self.remap is not None: - min_encoding_indices = min_encoding_indices.reshape(z.shape[0],-1) # add batch axis - min_encoding_indices = self.remap_to_used(min_encoding_indices) - min_encoding_indices = min_encoding_indices.reshape(-1,1) # flatten - - if self.sane_index_shape: - min_encoding_indices = min_encoding_indices.reshape( - z_q.shape[0], z_q.shape[2], z_q.shape[3]) - - return z_q, loss, (perplexity, min_encodings, min_encoding_indices) - - def get_codebook_entry(self, indices, shape): - # shape specifying (batch, height, width, channel) - if self.remap is not None: - indices = indices.reshape(shape[0],-1) # add batch axis - indices = self.unmap_to_all(indices) - indices = indices.reshape(-1) # flatten again - - # get quantized latent vectors - z_q = self.embedding(indices) - - if shape is not None: - z_q = z_q.view(shape) - # reshape back to match original input shape - z_q = z_q.permute(0, 3, 1, 2).contiguous() - - return z_q - -class EmbeddingEMA(nn.Module): - def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5): - super().__init__() - self.decay = decay - self.eps = eps - weight = torch.randn(num_tokens, codebook_dim) - self.weight = nn.Parameter(weight, requires_grad = False) - self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad = False) - self.embed_avg = nn.Parameter(weight.clone(), requires_grad = False) - self.update = True - - def forward(self, embed_id): - return F.embedding(embed_id, self.weight) - - def cluster_size_ema_update(self, new_cluster_size): - self.cluster_size.data.mul_(self.decay).add_(new_cluster_size, alpha=1 - self.decay) - - def embed_avg_ema_update(self, new_embed_avg): - self.embed_avg.data.mul_(self.decay).add_(new_embed_avg, alpha=1 - self.decay) - - def weight_update(self, num_tokens): - n = self.cluster_size.sum() - smoothed_cluster_size = ( - (self.cluster_size + self.eps) / (n + num_tokens * self.eps) * n - ) - #normalize embedding average with smoothed cluster size - embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1) - self.weight.data.copy_(embed_normalized) - - -class EMAVectorQuantizer(nn.Module): - def __init__(self, n_embed, embedding_dim, beta, decay=0.99, eps=1e-5, - remap=None, unknown_index="random"): - super().__init__() - self.codebook_dim = codebook_dim - self.num_tokens = num_tokens - self.beta = beta - self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps) - - self.remap = remap - if self.remap is not None: - self.register_buffer("used", torch.tensor(np.load(self.remap))) - self.re_embed = self.used.shape[0] - self.unknown_index = unknown_index # "random" or "extra" or integer - if self.unknown_index == "extra": - self.unknown_index = self.re_embed - self.re_embed = self.re_embed+1 - print(f"Remapping {self.n_embed} indices to {self.re_embed} indices. " - f"Using {self.unknown_index} for unknown indices.") - else: - self.re_embed = n_embed - - def remap_to_used(self, inds): - ishape = inds.shape - assert len(ishape)>1 - inds = inds.reshape(ishape[0],-1) - used = self.used.to(inds) - match = (inds[:,:,None]==used[None,None,...]).long() - new = match.argmax(-1) - unknown = match.sum(2)<1 - if self.unknown_index == "random": - new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device) - else: - new[unknown] = self.unknown_index - return new.reshape(ishape) - - def unmap_to_all(self, inds): - ishape = inds.shape - assert len(ishape)>1 - inds = inds.reshape(ishape[0],-1) - used = self.used.to(inds) - if self.re_embed > self.used.shape[0]: # extra token - inds[inds>=self.used.shape[0]] = 0 # simply set to zero - back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds) - return back.reshape(ishape) - - def forward(self, z): - # reshape z -> (batch, height, width, channel) and flatten - #z, 'b c h w -> b h w c' - z = rearrange(z, 'b c h w -> b h w c') - z_flattened = z.reshape(-1, self.codebook_dim) - - # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z - d = z_flattened.pow(2).sum(dim=1, keepdim=True) + \ - self.embedding.weight.pow(2).sum(dim=1) - 2 * \ - torch.einsum('bd,nd->bn', z_flattened, self.embedding.weight) # 'n d -> d n' - - - encoding_indices = torch.argmin(d, dim=1) - - z_q = self.embedding(encoding_indices).view(z.shape) - encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype) - avg_probs = torch.mean(encodings, dim=0) - perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) - - if self.training and self.embedding.update: - #EMA cluster size - encodings_sum = encodings.sum(0) - self.embedding.cluster_size_ema_update(encodings_sum) - #EMA embedding average - embed_sum = encodings.transpose(0,1) @ z_flattened - self.embedding.embed_avg_ema_update(embed_sum) - #normalize embed_avg and update weight - self.embedding.weight_update(self.num_tokens) - - # compute loss for embedding - loss = self.beta * F.mse_loss(z_q.detach(), z) - - # preserve gradients - z_q = z + (z_q - z).detach() - - # reshape back to match original input shape - #z_q, 'b h w c -> b c h w' - z_q = rearrange(z_q, 'b h w c -> b c h w') - return z_q, loss, (perplexity, encodings, encoding_indices) diff --git a/3DTopia/taming/util.py b/3DTopia/taming/util.py deleted file mode 100644 index 06053e5defb87977f9ab07e69bf4da12201de9b7..0000000000000000000000000000000000000000 --- a/3DTopia/taming/util.py +++ /dev/null @@ -1,157 +0,0 @@ -import os, hashlib -import requests -from tqdm import tqdm - -URL_MAP = { - "vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1" -} - -CKPT_MAP = { - "vgg_lpips": "vgg.pth" -} - -MD5_MAP = { - "vgg_lpips": "d507d7349b931f0638a25a48a722f98a" -} - - -def download(url, local_path, chunk_size=1024): - os.makedirs(os.path.split(local_path)[0], exist_ok=True) - with requests.get(url, stream=True) as r: - total_size = int(r.headers.get("content-length", 0)) - with tqdm(total=total_size, unit="B", unit_scale=True) as pbar: - with open(local_path, "wb") as f: - for data in r.iter_content(chunk_size=chunk_size): - if data: - f.write(data) - pbar.update(chunk_size) - - -def md5_hash(path): - with open(path, "rb") as f: - content = f.read() - return hashlib.md5(content).hexdigest() - - -def get_ckpt_path(name, root, check=False): - assert name in URL_MAP - path = os.path.join(root, CKPT_MAP[name]) - if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]): - print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path)) - download(URL_MAP[name], path) - md5 = md5_hash(path) - assert md5 == MD5_MAP[name], md5 - return path - - -class KeyNotFoundError(Exception): - def __init__(self, cause, keys=None, visited=None): - self.cause = cause - self.keys = keys - self.visited = visited - messages = list() - if keys is not None: - messages.append("Key not found: {}".format(keys)) - if visited is not None: - messages.append("Visited: {}".format(visited)) - messages.append("Cause:\n{}".format(cause)) - message = "\n".join(messages) - super().__init__(message) - - -def retrieve( - list_or_dict, key, splitval="/", default=None, expand=True, pass_success=False -): - """Given a nested list or dict return the desired value at key expanding - callable nodes if necessary and :attr:`expand` is ``True``. The expansion - is done in-place. - - Parameters - ---------- - list_or_dict : list or dict - Possibly nested list or dictionary. - key : str - key/to/value, path like string describing all keys necessary to - consider to get to the desired value. List indices can also be - passed here. - splitval : str - String that defines the delimiter between keys of the - different depth levels in `key`. - default : obj - Value returned if :attr:`key` is not found. - expand : bool - Whether to expand callable nodes on the path or not. - - Returns - ------- - The desired value or if :attr:`default` is not ``None`` and the - :attr:`key` is not found returns ``default``. - - Raises - ------ - Exception if ``key`` not in ``list_or_dict`` and :attr:`default` is - ``None``. - """ - - keys = key.split(splitval) - - success = True - try: - visited = [] - parent = None - last_key = None - for key in keys: - if callable(list_or_dict): - if not expand: - raise KeyNotFoundError( - ValueError( - "Trying to get past callable node with expand=False." - ), - keys=keys, - visited=visited, - ) - list_or_dict = list_or_dict() - parent[last_key] = list_or_dict - - last_key = key - parent = list_or_dict - - try: - if isinstance(list_or_dict, dict): - list_or_dict = list_or_dict[key] - else: - list_or_dict = list_or_dict[int(key)] - except (KeyError, IndexError, ValueError) as e: - raise KeyNotFoundError(e, keys=keys, visited=visited) - - visited += [key] - # final expansion of retrieved value - if expand and callable(list_or_dict): - list_or_dict = list_or_dict() - parent[last_key] = list_or_dict - except KeyNotFoundError as e: - if default is None: - raise e - else: - list_or_dict = default - success = False - - if not pass_success: - return list_or_dict - else: - return list_or_dict, success - - -if __name__ == "__main__": - config = {"keya": "a", - "keyb": "b", - "keyc": - {"cc1": 1, - "cc2": 2, - } - } - from omegaconf import OmegaConf - config = OmegaConf.create(config) - print(config) - retrieve(config, "keya") - diff --git a/3DTopia/utility/initialize.py b/3DTopia/utility/initialize.py deleted file mode 100644 index ac572368414198aef0efd6ab3b1d43f5c22b0331..0000000000000000000000000000000000000000 --- a/3DTopia/utility/initialize.py +++ /dev/null @@ -1,13 +0,0 @@ -import importlib - -def get_obj_from_str(string, reload=False): - module, cls = string.rsplit(".", 1) - if reload: - module_imp = importlib.import_module(module) - importlib.reload(module_imp) - return getattr(importlib.import_module(module, package=None), cls) - -def instantiate_from_config(config): - if not "target" in config: - raise KeyError("Expected key `target` to instantiate.") - return get_obj_from_str(config["target"])(**config.get("params", dict())) diff --git a/3DTopia/utility/mcubes_from_latent.py b/3DTopia/utility/mcubes_from_latent.py deleted file mode 100644 index bcbad2a16ae1e3e3473f6f2341f2058699540bcb..0000000000000000000000000000000000000000 --- a/3DTopia/utility/mcubes_from_latent.py +++ /dev/null @@ -1,160 +0,0 @@ -import os -import torch -import argparse -import mcubes -import trimesh -import numpy as np -from tqdm import tqdm -from omegaconf import OmegaConf -from utility.initialize import instantiate_from_config, get_obj_from_str -from utility.triplane_renderer.eg3d_renderer import sample_from_planes, generate_planes - -# load model -parser = argparse.ArgumentParser() -parser.add_argument("--config", type=str, default=None, required=True) -parser.add_argument("--ckpt", type=str, default=None, required=True) -args = parser.parse_args() -configs = OmegaConf.load(args.config) -device = 'cuda' -vae = get_obj_from_str(configs.model.params.first_stage_config['target'])(**configs.model.params.first_stage_config['params']) -vae = vae.to(device) -vae.eval() - -model = get_obj_from_str(configs.model["target"]).load_from_checkpoint(args.ckpt, map_location='cpu', strict=False, **configs.model.params) -model = model.to(device) - -def extract_mesh(triplane_fname, save_name=None): - latent = torch.from_numpy(np.load(triplane_fname)).to(device) - with torch.no_grad(): - with model.ema_scope(): - triplane = model.decode_first_stage(latent) - - # prepare volumn for marching cube - res = 128 - c_list = torch.linspace(-1.2, 1.2, steps=res) - grid_x, grid_y, grid_z = torch.meshgrid( - c_list, c_list, c_list, indexing='ij' - ) - coords = torch.stack([grid_x, grid_y, grid_z], -1).to(device) # 256x256x256x3 - plane_axes = generate_planes() - feats = sample_from_planes( - plane_axes, triplane.reshape(1, 3, -1, 256, 256), coords.reshape(1, -1, 3), padding_mode='zeros', box_warp=2.4 - ) - fake_dirs = torch.zeros_like(coords) - fake_dirs[..., 0] = 1 - with torch.no_grad(): - out = vae.triplane_decoder.decoder(feats, fake_dirs) - u = out['sigma'].reshape(res, res, res).detach().cpu().numpy() - del out - - # marching cube - vertices, triangles = mcubes.marching_cubes(u, 8) - min_bound = np.array([-1.2, -1.2, -1.2]) - max_bound = np.array([1.2, 1.2, 1.2]) - vertices = vertices / (res - 1) * (max_bound - min_bound)[None, :] + min_bound[None, :] - pt_vertices = torch.from_numpy(vertices).to(device) - - # extract vertices color - res_triplane = 256 - # rays_d = torch.from_numpy(-vertices / np.sqrt((vertices ** 2).sum(-1)).reshape(-1, 1)).to(device).unsqueeze(0) - # rays_o = -rays_d * 2.0 - render_kwargs = { - 'depth_resolution': 128, - 'disparity_space_sampling': False, - 'box_warp': 2.4, - 'depth_resolution_importance': 128, - 'clamp_mode': 'softplus', - 'white_back': True, - 'det': True - } - # render_out = vae.triplane_decoder(triplane.reshape(1, 3, -1, res_triplane, res_triplane), rays_o, rays_d, render_kwargs, whole_img=False, tvloss=False) - # rgb = render_out['rgb_marched'].reshape(-1, 3).detach().cpu().numpy() - # rgb = (rgb * 255).astype(np.uint8) - rays_o_list = [ - np.array([0, 0, 2]), - np.array([0, 0, -2]), - np.array([0, 2, 0]), - np.array([0, -2, 0]), - np.array([2, 0, 0]), - np.array([-2, 0, 0]), - ] - rgb_final = None - diff_final = None - for rays_o in tqdm(rays_o_list): - rays_o = torch.from_numpy(rays_o.reshape(1, 3)).repeat(vertices.shape[0], 1).float().to(device) - rays_d = pt_vertices.reshape(-1, 3) - rays_o - rays_d = rays_d / torch.norm(rays_d, dim=-1).reshape(-1, 1) - dist = torch.norm(pt_vertices.reshape(-1, 3) - rays_o, dim=-1).cpu().numpy().reshape(-1) - - # batch_size = 2**14 - # batch_num = (rays_o.shape[0] // batch_size) + 1 - # rgb_list = [] - # depth_diff_list = [] - # for b in range(batch_num): - # cur_rays_o = rays_o[b * batch_size: (b + 1) * batch_size] - # cur_rays_d = rays_d[b * batch_size: (b + 1) * batch_size] - with torch.no_grad(): - render_out = vae.triplane_decoder(triplane.reshape(1, 3, -1, res_triplane, res_triplane), - rays_o.unsqueeze(0), rays_d.unsqueeze(0), render_kwargs, - whole_img=False, tvloss=False) - rgb = render_out['rgb_marched'].reshape(-1, 3).detach().cpu().numpy() - depth = render_out['depth_final'].reshape(-1).detach().cpu().numpy() - depth_diff = np.abs(dist - depth) - - # rgb_list.append(rgb) - # depth_diff_list.append(depth_diff) - - # del render_out - # torch.cuda.empty_cache() - - # rgb = np.concatenate(rgb_list, 0) - # depth_diff = np.concatenate(depth_diff_list, 0) - - if rgb_final is None: - rgb_final = rgb.copy() - diff_final = depth_diff.copy() - - else: - ind = diff_final > depth_diff - rgb_final[ind] = rgb[ind] - diff_final[ind] = depth_diff[ind] - - - # bgr to rgb - rgb_final = np.stack([ - rgb_final[:, 2], rgb_final[:, 1], rgb_final[:, 0] - ], -1) - - # export to ply - mesh = trimesh.Trimesh(vertices, triangles, vertex_colors=(rgb_final * 255).astype(np.uint8)) - if save_name: - trimesh.exchange.export.export_mesh(mesh, save_name, file_type='ply') - else: - trimesh.exchange.export.export_mesh(mesh, triplane_fname[:-4] + '.ply', file_type='ply') - -# load triplane -# fname = 'log/diff_res32ch8_preprocess_ca_text/sample_mesh_1/sample_16_0.npy' -# u = np.load(fname) -# triplane_fname = 'log/diff_res32ch8_preprocess_ca_text/sample_mesh_1/triplane_16_0.npy' -# folder = 'log/diff_res32ch8_preprocess_ca_text/sample_mesh_opt' -# folder = 'log/diff_res32ch8_preprocess_ca_text/sample_mesh_opt_simple' -folder = '/mnt/lustre/hongfangzhou.p/AE3D/log/diff_res32ch8_preprocess_ca_text_new_triplane_96_full_openaimodel_only_cap3d_high_quality_7w/sample_demo_424_prompts_for_demo_30_60_10' -save_folder = folder + '_extract_mesh' -os.makedirs(save_folder, exist_ok=True) -fnames = [f.replace('_sample', 'triplane').replace('mp4', 'npy') for f in os.listdir(folder) if f.startswith('_')] -prompts = [l.strip() for l in open('test/prompts_for_demo_2.txt', 'r').readlines()][30:60] -# fnames = [os.path.join(folder, f) for f in os.listdir(folder) if (f.startswith('triplane') and f.endswith('.npy'))] -fnames = sorted(fnames) - -def extract_number(s): - return int(s.split('_')[-2]) - -def extract_id(s): - return s.split('_')[-1].split('.')[0] - -for fname in fnames: - try: - print(fname) - extract_mesh(os.path.join(folder, fname), os.path.join(save_folder, prompts[extract_number(fname)].replace(' ', '_') + '_' + extract_id(fname) + '.ply')) - except Exception as e: - print(e) diff --git a/3DTopia/utility/triplane_renderer/eg3d_renderer.py b/3DTopia/utility/triplane_renderer/eg3d_renderer.py deleted file mode 100644 index 796c47071d2a77d709cf81fba12323155f115b79..0000000000000000000000000000000000000000 --- a/3DTopia/utility/triplane_renderer/eg3d_renderer.py +++ /dev/null @@ -1,685 +0,0 @@ -import os -import math -import numpy as np - -import torch -import torch.nn as nn -import torch.nn.functional as F - - -# TriPlane Utils -class MipRayMarcher2(nn.Module): - def __init__(self): - super().__init__() - - def run_forward(self, colors, densities, depths, rendering_options): - deltas = depths[:, :, 1:] - depths[:, :, :-1] - colors_mid = (colors[:, :, :-1] + colors[:, :, 1:]) / 2 - densities_mid = (densities[:, :, :-1] + densities[:, :, 1:]) / 2 - depths_mid = (depths[:, :, :-1] + depths[:, :, 1:]) / 2 - - - if rendering_options['clamp_mode'] == 'softplus': - densities_mid = F.softplus(densities_mid - 1) # activation bias of -1 makes things initialize better - else: - assert False, "MipRayMarcher only supports `clamp_mode`=`softplus`!" - - density_delta = densities_mid * deltas - - alpha = 1 - torch.exp(-density_delta) - - alpha_shifted = torch.cat([torch.ones_like(alpha[:, :, :1]), 1-alpha + 1e-10], -2) - weights = alpha * torch.cumprod(alpha_shifted, -2)[:, :, :-1] - - composite_rgb = torch.sum(weights * colors_mid, -2) - weight_total = weights.sum(2) - # composite_depth = torch.sum(weights * depths_mid, -2) / weight_total - composite_depth = torch.sum(weights * depths_mid, -2) - - # clip the composite to min/max range of depths - composite_depth = torch.nan_to_num(composite_depth, float('inf')) - # composite_depth = torch.nan_to_num(composite_depth, 0.) - composite_depth = torch.clamp(composite_depth, torch.min(depths), torch.max(depths)) - - if rendering_options.get('white_back', False): - composite_rgb = composite_rgb + 1 - weight_total - - composite_rgb = composite_rgb * 2 - 1 # Scale to (-1, 1) - - return composite_rgb, composite_depth, weights - - def forward(self, colors, densities, depths, rendering_options): - composite_rgb, composite_depth, weights = self.run_forward(colors, densities, depths, rendering_options) - - return composite_rgb, composite_depth, weights - -def transform_vectors(matrix: torch.Tensor, vectors4: torch.Tensor) -> torch.Tensor: - """ - Left-multiplies MxM @ NxM. Returns NxM. - """ - res = torch.matmul(vectors4, matrix.T) - return res - -def normalize_vecs(vectors: torch.Tensor) -> torch.Tensor: - """ - Normalize vector lengths. - """ - return vectors / (torch.norm(vectors, dim=-1, keepdim=True)) - -def torch_dot(x: torch.Tensor, y: torch.Tensor): - """ - Dot product of two tensors. - """ - return (x * y).sum(-1) - -def get_ray_limits_box(rays_o: torch.Tensor, rays_d: torch.Tensor, box_side_length): - """ - Author: Petr Kellnhofer - Intersects rays with the [-1, 1] NDC volume. - Returns min and max distance of entry. - Returns -1 for no intersection. - https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection - """ - o_shape = rays_o.shape - rays_o = rays_o.detach().reshape(-1, 3) - rays_d = rays_d.detach().reshape(-1, 3) - - - bb_min = [-1*(box_side_length/2), -1*(box_side_length/2), -1*(box_side_length/2)] - bb_max = [1*(box_side_length/2), 1*(box_side_length/2), 1*(box_side_length/2)] - bounds = torch.tensor([bb_min, bb_max], dtype=rays_o.dtype, device=rays_o.device) - is_valid = torch.ones(rays_o.shape[:-1], dtype=bool, device=rays_o.device) - - # Precompute inverse for stability. - invdir = 1 / rays_d - sign = (invdir < 0).long() - - # Intersect with YZ plane. - tmin = (bounds.index_select(0, sign[..., 0])[..., 0] - rays_o[..., 0]) * invdir[..., 0] - tmax = (bounds.index_select(0, 1 - sign[..., 0])[..., 0] - rays_o[..., 0]) * invdir[..., 0] - - # Intersect with XZ plane. - tymin = (bounds.index_select(0, sign[..., 1])[..., 1] - rays_o[..., 1]) * invdir[..., 1] - tymax = (bounds.index_select(0, 1 - sign[..., 1])[..., 1] - rays_o[..., 1]) * invdir[..., 1] - - # Resolve parallel rays. - is_valid[torch.logical_or(tmin > tymax, tymin > tmax)] = False - - # Use the shortest intersection. - tmin = torch.max(tmin, tymin) - tmax = torch.min(tmax, tymax) - - # Intersect with XY plane. - tzmin = (bounds.index_select(0, sign[..., 2])[..., 2] - rays_o[..., 2]) * invdir[..., 2] - tzmax = (bounds.index_select(0, 1 - sign[..., 2])[..., 2] - rays_o[..., 2]) * invdir[..., 2] - - # Resolve parallel rays. - is_valid[torch.logical_or(tmin > tzmax, tzmin > tmax)] = False - - # Use the shortest intersection. - tmin = torch.max(tmin, tzmin) - tmax = torch.min(tmax, tzmax) - - # Mark invalid. - tmin[torch.logical_not(is_valid)] = -1 - tmax[torch.logical_not(is_valid)] = -2 - - return tmin.reshape(*o_shape[:-1], 1), tmax.reshape(*o_shape[:-1], 1) - -def linspace(start: torch.Tensor, stop: torch.Tensor, num: int): - """ - Creates a tensor of shape [num, *start.shape] whose values are evenly spaced from start to end, inclusive. - Replicates but the multi-dimensional bahaviour of numpy.linspace in PyTorch. - """ - # create a tensor of 'num' steps from 0 to 1 - steps = torch.arange(num, dtype=torch.float32, device=start.device) / (num - 1) - - # reshape the 'steps' tensor to [-1, *([1]*start.ndim)] to allow for broadcastings - # - using 'steps.reshape([-1, *([1]*start.ndim)])' would be nice here but torchscript - # "cannot statically infer the expected size of a list in this contex", hence the code below - for i in range(start.ndim): - steps = steps.unsqueeze(-1) - - # the output starts at 'start' and increments until 'stop' in each dimension - out = start[None] + steps * (stop - start)[None] - - return out - -def generate_planes(): - """ - Defines planes by the three vectors that form the "axes" of the - plane. Should work with arbitrary number of planes and planes of - arbitrary orientation. - """ - return torch.tensor([[[1, 0, 0], - [0, 1, 0], - [0, 0, 1]], - [[1, 0, 0], - [0, 0, 1], - [0, 1, 0]], - [[0, 0, 1], - [1, 0, 0], - [0, 1, 0]]], dtype=torch.float32) - -def project_onto_planes(planes, coordinates): - """ - Does a projection of a 3D point onto a batch of 2D planes, - returning 2D plane coordinates. - Takes plane axes of shape n_planes, 3, 3 - # Takes coordinates of shape N, M, 3 - # returns projections of shape N*n_planes, M, 2 - """ - - # # ORIGINAL - # N, M, C = coordinates.shape - # xy_coords = coordinates[..., [0, 1]] - # xz_coords = coordinates[..., [0, 2]] - # zx_coords = coordinates[..., [2, 0]] - # return torch.stack([xy_coords, xz_coords, zx_coords], dim=1).reshape(N*3, M, 2) - - # FIXED - N, M, _ = coordinates.shape - xy_coords = coordinates[..., [0, 1]] - yz_coords = coordinates[..., [1, 2]] - zx_coords = coordinates[..., [2, 0]] - return torch.stack([xy_coords, yz_coords, zx_coords], dim=1).reshape(N*3, M, 2) - -def sample_from_planes(plane_axes, plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None): - assert padding_mode == 'zeros' - N, n_planes, C, H, W = plane_features.shape - _, M, _ = coordinates.shape - plane_features = plane_features.view(N*n_planes, C, H, W) - - coordinates = (2/box_warp) * coordinates # TODO: add specific box bounds - - projected_coordinates = project_onto_planes(plane_axes, coordinates).unsqueeze(1) - - output_features = torch.nn.functional.grid_sample(plane_features, projected_coordinates.float(), mode=mode, padding_mode=padding_mode, align_corners=False).permute(0, 3, 2, 1).reshape(N, n_planes, M, C) - return output_features - -def sample_from_3dgrid(grid, coordinates): - """ - Expects coordinates in shape (batch_size, num_points_per_batch, 3) - Expects grid in shape (1, channels, H, W, D) - (Also works if grid has batch size) - Returns sampled features of shape (batch_size, num_points_per_batch, feature_channels) - """ - batch_size, n_coords, n_dims = coordinates.shape - sampled_features = torch.nn.functional.grid_sample(grid.expand(batch_size, -1, -1, -1, -1), - coordinates.reshape(batch_size, 1, 1, -1, n_dims), - mode='bilinear', padding_mode='zeros', align_corners=False) - N, C, H, W, D = sampled_features.shape - sampled_features = sampled_features.permute(0, 4, 3, 2, 1).reshape(N, H*W*D, C) - return sampled_features - -class FullyConnectedLayer(nn.Module): - def __init__(self, - in_features, # Number of input features. - out_features, # Number of output features. - bias = True, # Apply additive bias before the activation function? - activation = 'linear', # Activation function: 'relu', 'lrelu', etc. - lr_multiplier = 1, # Learning rate multiplier. - bias_init = 0, # Initial value for the additive bias. - ): - super().__init__() - self.in_features = in_features - self.out_features = out_features - self.activation = activation - # self.weight = torch.nn.Parameter(torch.full([out_features, in_features], np.float32(0))) - self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) / lr_multiplier) - self.bias = torch.nn.Parameter(torch.full([out_features], np.float32(bias_init))) if bias else None - self.weight_gain = lr_multiplier / np.sqrt(in_features) - self.bias_gain = lr_multiplier - - def forward(self, x): - w = self.weight.to(x.dtype) * self.weight_gain - b = self.bias - if b is not None: - b = b.to(x.dtype) - if self.bias_gain != 1: - b = b * self.bias_gain - - if self.activation == 'linear' and b is not None: - x = torch.addmm(b.unsqueeze(0), x, w.t()) - else: - x = x.matmul(w.t()) - x = bias_act.bias_act(x, b, act=self.activation) - return x - - def extra_repr(self): - return f'in_features={self.in_features:d}, out_features={self.out_features:d}, activation={self.activation:s}' - - -def positional_encoding(positions, freqs): - freq_bands = (2**torch.arange(freqs).float()).to(positions.device) # (F,) - pts = (positions[..., None] * freq_bands).reshape( - positions.shape[:-1] + (freqs * positions.shape[-1], )) # (..., DF) - pts = torch.cat([torch.sin(pts), torch.cos(pts)], dim=-1) - return pts - -# class TriPlane_Decoder(nn.Module): -# def __init__(self, dim=12, width=128): -# super().__init__() -# self.net = torch.nn.Sequential( -# FullyConnectedLayer(dim, width), -# torch.nn.Softplus(), -# FullyConnectedLayer(width, width), -# torch.nn.Softplus(), -# FullyConnectedLayer(width, 1 + 3) -# ) - -# def forward(self, sampled_features, viewdir): -# sampled_features = sampled_features.mean(1) -# x = sampled_features - -# N, M, C = x.shape -# x = x.view(N*M, C) - -# x = self.net(x) -# x = x.view(N, M, -1) -# rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF -# sigma = x[..., 0:1] -# return {'rgb': rgb, 'sigma': sigma} - -class TriPlane_Decoder(nn.Module): - def __init__(self, dim=12, width=128): - super().__init__() - self.net = torch.nn.Sequential( - FullyConnectedLayer(dim, width), - torch.nn.Softplus(), - FullyConnectedLayer(width, width), - torch.nn.Softplus(), - FullyConnectedLayer(width, width), - torch.nn.Softplus(), - FullyConnectedLayer(width, width), - torch.nn.Softplus(), - FullyConnectedLayer(width, 1 + 3) - ) - - # def forward(self, sampled_features, viewdir): - # #ipdb.set_trace() - # sampled_features = sampled_features.mean(1) - # x = sampled_features - - # N, M, C = x.shape - # x = x.view(N*M, C) - - # x = self.net(x) - # x = x.view(N, M, -1) - # rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF - # sigma = x[..., 0:1] - # return {'rgb': rgb, 'sigma': sigma} - def forward(self, sampled_features, viewdir): - M = sampled_features.shape[-2] - batch_size = 256 * 256 - num_batches = M // batch_size - if num_batches * batch_size < M: - num_batches += 1 - res = { - 'rgb': [], - 'sigma': [], - } - - for b in range(num_batches): - p = b * batch_size - b_sampled_features = sampled_features[:, :, p:p+batch_size] - b_res = self._forward(b_sampled_features) - res['rgb'].append(b_res['rgb']) - res['sigma'].append(b_res['sigma']) - res['rgb'] = torch.cat(res['rgb'], -2) - res['sigma'] = torch.cat(res['sigma'], -2) - - return res - - def _forward(self, sampled_features): - # N, _, M, C = sampled_features.shape - sampled_features = sampled_features.mean(1) - x = sampled_features - N, M, C = x.shape - x = x.view(N*M, C) - - x = self.net(x) - x = x.view(N, M, -1) - rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF - sigma = x[..., 0:1] - - # assert self.sigma_dim + self.c_dim == C - # sigma_features = sampled_features[..., :self.sigma_dim] - # rgb_features = sampled_features[..., -self.c_dim:] - # sigma_features = sigma_features.permute(0, 2, 1, 3).reshape(N * M, self.sigma_dim * 3) - # rgb_features = rgb_features.permute(0, 2, 1, 3).reshape(N * M, self.c_dim * 3) - - # x = torch.cat([self.sigmanet(sigma_features), self.rgbnet(rgb_features)], -1) - # x = x.view(N, M, -1) - # rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF - # sigma = x[..., 0:1] - return {'rgb': rgb, 'sigma': sigma} - -class TriPlane_Decoder_PE(nn.Module): - def __init__(self, dim=12, width=128, viewpe=2, feape=2): - super().__init__() - assert viewpe > 0 and feape > 0 - self.viewpe = viewpe - self.feape = feape - # self.densitynet = torch.nn.Sequential( - # FullyConnectedLayer(dim + 2*feape*dim, width), - # torch.nn.Softplus() - # ) - # self.densityout = FullyConnectedLayer(width, 1) - # self.rgbnet = torch.nn.Sequential( - # FullyConnectedLayer(width + 3 + 2 * viewpe * 3, width), - # torch.nn.Softplus(), - # FullyConnectedLayer(width, 3) - # ) - self.net = torch.nn.Sequential( - FullyConnectedLayer(dim+2*feape*dim+3+2*viewpe*3, width), - torch.nn.Softplus(), - FullyConnectedLayer(width, width), - torch.nn.Softplus(), - FullyConnectedLayer(width, 1 + 3) - ) - - def forward(self, sampled_features,viewdir): - sampled_features = sampled_features.mean(1) - x = sampled_features - N, M, C = x.shape - x = x.view(N*M, C) - viewdir = viewdir.view(N*M, 3) - x_pe = positional_encoding(x, self.feape) - viewdir_pe = positional_encoding(viewdir, self.viewpe) - - x = torch.cat([x, x_pe, viewdir, viewdir_pe], -1) - x = self.net(x) - x = x.view(N, M, -1) - rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF - sigma = x[..., 0:1] - # layer1 = self.densitynet(torch.cat([x, x_pe], -1)) - # sigma = self.densityout(layer1).view(N, M, 1) - # rgb = self.rgbnet(torch.cat([layer1, viewdir, viewdir_pe], -1)).view(N, M, -1) - # rgb = torch.sigmoid(rgb)*(1 + 2*0.001) - 0.001 - return {'rgb': rgb, 'sigma': sigma} - -class TriPlane_Decoder_Decompose(nn.Module): - def __init__(self, sigma_dim=12, c_dim=12, width=128): - super().__init__() - self.rgbnet = torch.nn.Sequential( - FullyConnectedLayer(c_dim * 3, width), - torch.nn.Softplus(), - FullyConnectedLayer(width, width), - torch.nn.Softplus(), - FullyConnectedLayer(width, 3) - ) - self.sigmanet = torch.nn.Sequential( - FullyConnectedLayer(sigma_dim * 3, width), - torch.nn.Softplus(), - FullyConnectedLayer(width, width), - torch.nn.Softplus(), - FullyConnectedLayer(width, 1) - ) - self.sigma_dim = sigma_dim - self.c_dim = c_dim - - def forward(self, sampled_features, viewdir): - M = sampled_features.shape[-2] - batch_size = 256 * 256 - num_batches = M // batch_size - if num_batches * batch_size < M: - num_batches += 1 - res = { - 'rgb': [], - 'sigma': [], - } - - for b in range(num_batches): - p = b * batch_size - b_sampled_features = sampled_features[:, :, p:p+batch_size] - b_res = self._forward(b_sampled_features) - res['rgb'].append(b_res['rgb']) - res['sigma'].append(b_res['sigma']) - res['rgb'] = torch.cat(res['rgb'], -2) - res['sigma'] = torch.cat(res['sigma'], -2) - - return res - - def _forward(self, sampled_features): - N, _, M, C = sampled_features.shape - assert self.sigma_dim + self.c_dim == C - sigma_features = sampled_features[..., :self.sigma_dim] - rgb_features = sampled_features[..., -self.c_dim:] - sigma_features = sigma_features.permute(0, 2, 1, 3).reshape(N * M, self.sigma_dim * 3) - rgb_features = rgb_features.permute(0, 2, 1, 3).reshape(N * M, self.c_dim * 3) - - x = torch.cat([self.sigmanet(sigma_features), self.rgbnet(rgb_features)], -1) - x = x.view(N, M, -1) - rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF - sigma = x[..., 0:1] - return {'rgb': rgb, 'sigma': sigma} - -class Renderer_TriPlane(nn.Module): - # def __init__(self, rgbnet_dim=18, rgbnet_width=128, viewpe=0, feape=0): - # super(Renderer_TriPlane, self).__init__() - # if viewpe > 0 or feape > 0: - # self.decoder = TriPlane_Decoder_PE(dim=rgbnet_dim//3, width=rgbnet_width, viewpe=viewpe, feape=feape) - # else: - # self.decoder = TriPlane_Decoder(dim=rgbnet_dim//3, width=rgbnet_width) - # self.ray_marcher = MipRayMarcher2() - # self.plane_axes = generate_planes() - - def __init__(self, rgbnet_dim=18, rgbnet_width=128, viewpe=0, feape=0, sigma_dim=0, c_dim=0): - super(Renderer_TriPlane, self).__init__() - if viewpe > 0 and feape > 0: - self.decoder = TriPlane_Decoder_PE(dim=rgbnet_dim//3, width=rgbnet_width, viewpe=viewpe, feape=feape) - elif sigma_dim > 0 and c_dim > 0: - self.decoder = TriPlane_Decoder_Decompose(sigma_dim=sigma_dim, c_dim=c_dim, width=rgbnet_width) - else: - self.decoder = TriPlane_Decoder(dim=rgbnet_dim, width=rgbnet_width) - self.ray_marcher = MipRayMarcher2() - self.plane_axes = generate_planes() - - def forward(self, planes, ray_origins, ray_directions, rendering_options, whole_img=False, tvloss=False): - self.plane_axes = self.plane_axes.to(ray_origins.device) - - ray_start, ray_end = get_ray_limits_box(ray_origins, ray_directions, box_side_length=rendering_options['box_warp']) - is_ray_valid = ray_end > ray_start - if torch.any(is_ray_valid).item(): - ray_start[~is_ray_valid] = ray_start[is_ray_valid].min() - ray_end[~is_ray_valid] = ray_start[is_ray_valid].max() - depths_coarse = self.sample_stratified(ray_origins, ray_start, ray_end, rendering_options['depth_resolution'], rendering_options['disparity_space_sampling'], - rendering_options['det']) - - batch_size, num_rays, samples_per_ray, _ = depths_coarse.shape - - # Coarse Pass - sample_coordinates = (ray_origins.unsqueeze(-2) + depths_coarse * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3) - sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3) - - - out = self.run_model(planes, self.decoder, sample_coordinates, sample_directions, rendering_options) - colors_coarse = out['rgb'] - densities_coarse = out['sigma'] - colors_coarse = colors_coarse.reshape(batch_size, num_rays, samples_per_ray, colors_coarse.shape[-1]) - densities_coarse = densities_coarse.reshape(batch_size, num_rays, samples_per_ray, 1) - - # Fine Pass - N_importance = rendering_options['depth_resolution_importance'] - if N_importance > 0: - _, _, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options) - - depths_fine = self.sample_importance(depths_coarse, weights, N_importance, rendering_options['det']) - - sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, N_importance, -1).reshape(batch_size, -1, 3) - sample_coordinates = (ray_origins.unsqueeze(-2) + depths_fine * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3) - - out = self.run_model(planes, self.decoder, sample_coordinates, sample_directions, rendering_options) - colors_fine = out['rgb'] - densities_fine = out['sigma'] - colors_fine = colors_fine.reshape(batch_size, num_rays, N_importance, colors_fine.shape[-1]) - densities_fine = densities_fine.reshape(batch_size, num_rays, N_importance, 1) - - all_depths, all_colors, all_densities = self.unify_samples(depths_coarse, colors_coarse, densities_coarse, - depths_fine, colors_fine, densities_fine) - - # Aggregate - rgb_final, depth_final, weights = self.ray_marcher(all_colors, all_densities, all_depths, rendering_options) - else: - rgb_final, depth_final, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options) - - - if tvloss: - initial_coordinates = torch.rand((batch_size, 1000, 3), device=planes.device) * 2 - 1 - perturbed_coordinates = initial_coordinates + torch.randn_like(initial_coordinates) * 0.004 - all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1) - projected_coordinates = project_onto_planes(self.plane_axes, all_coordinates).unsqueeze(1) - N, n_planes, C, H, W = planes.shape - _, M, _ = all_coordinates.shape - planes = planes.view(N*n_planes, C, H, W) - output_features = torch.nn.functional.grid_sample(planes, projected_coordinates.float(), mode='bilinear', padding_mode='zeros', align_corners=False).permute(0, 3, 2, 1).reshape(batch_size, n_planes, M, C) - sigma = self.decoder(output_features)['sigma'] - sigma_initial = sigma[:, :sigma.shape[1]//2] - sigma_perturbed = sigma[:, sigma.shape[1]//2:] - TVloss = torch.nn.functional.l1_loss(sigma_initial, sigma_perturbed) - else: - TVloss = None - - # return rgb_final, depth_final, weights.sum(2) - if whole_img: - H = W = int(ray_origins.shape[1] ** 0.5) - rgb_final = rgb_final.permute(0, 2, 1).reshape(-1, 3, H, W).contiguous() - depth_final = depth_final.permute(0, 2, 1).reshape(-1, 1, H, W).contiguous() - depth_final = (depth_final - depth_final.min()) / (depth_final.max() - depth_final.min()) - depth_final = depth_final.repeat(1, 3, 1, 1) - # rgb_final = torch.clip(rgb_final, min=0, max=1) - rgb_final = (rgb_final + 1) / 2. - weights = weights.sum(2).reshape(rgb_final.shape[0], rgb_final.shape[2], rgb_final.shape[3]) - return { - 'rgb_marched': rgb_final, - 'depth_final': depth_final, - 'weights': weights, - 'tvloss': TVloss, - } - else: - rgb_final = (rgb_final + 1) / 2. - return { - 'rgb_marched': rgb_final, - 'depth_final': depth_final, - 'tvloss': TVloss, - } - - def run_model(self, planes, decoder, sample_coordinates, sample_directions, options): - sampled_features = sample_from_planes(self.plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp']) - - out = decoder(sampled_features, sample_directions) - if options.get('density_noise', 0) > 0: - out['sigma'] += torch.randn_like(out['sigma']) * options['density_noise'] - return out - - def sort_samples(self, all_depths, all_colors, all_densities): - _, indices = torch.sort(all_depths, dim=-2) - all_depths = torch.gather(all_depths, -2, indices) - all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1])) - all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1)) - return all_depths, all_colors, all_densities - - def unify_samples(self, depths1, colors1, densities1, depths2, colors2, densities2): - all_depths = torch.cat([depths1, depths2], dim = -2) - all_colors = torch.cat([colors1, colors2], dim = -2) - all_densities = torch.cat([densities1, densities2], dim = -2) - - _, indices = torch.sort(all_depths, dim=-2) - all_depths = torch.gather(all_depths, -2, indices) - all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1])) - all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1)) - - return all_depths, all_colors, all_densities - - def sample_stratified(self, ray_origins, ray_start, ray_end, depth_resolution, disparity_space_sampling=False, det=False): - """ - Return depths of approximately uniformly spaced samples along rays. - """ - N, M, _ = ray_origins.shape - if disparity_space_sampling: - depths_coarse = torch.linspace(0, - 1, - depth_resolution, - device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1) - depth_delta = 1/(depth_resolution - 1) - depths_coarse += torch.rand_like(depths_coarse) * depth_delta - depths_coarse = 1./(1./ray_start * (1. - depths_coarse) + 1./ray_end * depths_coarse) - else: - if type(ray_start) == torch.Tensor: - depths_coarse = linspace(ray_start, ray_end, depth_resolution).permute(1,2,0,3) - depth_delta = (ray_end - ray_start) / (depth_resolution - 1) - if det: - depths_coarse += 0.5 * depth_delta[..., None] - else: - depths_coarse += torch.rand_like(depths_coarse) * depth_delta[..., None] - else: - depths_coarse = torch.linspace(ray_start, ray_end, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1) - depth_delta = (ray_end - ray_start)/(depth_resolution - 1) - if det: - depths_coarse += 0.5 * depth_delta - else: - depths_coarse += torch.rand_like(depths_coarse) * depth_delta - - return depths_coarse - - def sample_importance(self, z_vals, weights, N_importance, det=False): - """ - Return depths of importance sampled points along rays. See NeRF importance sampling for more. - """ - with torch.no_grad(): - batch_size, num_rays, samples_per_ray, _ = z_vals.shape - - z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray) - weights = weights.reshape(batch_size * num_rays, -1) # -1 to account for loss of 1 sample in MipRayMarcher - - # smooth weights - weights = torch.nn.functional.max_pool1d(weights.unsqueeze(1).float(), 2, 1, padding=1) - weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze() - weights = weights + 0.01 - - z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:]) - importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1], - N_importance, det=det).detach().reshape(batch_size, num_rays, N_importance, 1) - return importance_z_vals - - def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5): - """ - Sample @N_importance samples from @bins with distribution defined by @weights. - Inputs: - bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2" - weights: (N_rays, N_samples_) - N_importance: the number of samples to draw from the distribution - det: deterministic or not - eps: a small number to prevent division by zero - Outputs: - samples: the sampled samples - """ - N_rays, N_samples_ = weights.shape - weights = weights + eps # prevent division by zero (don't do inplace op!) - pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_) - cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function - cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) # (N_rays, N_samples_+1) - # padded to 0~1 inclusive - - if det: - u = torch.linspace(0, 1, N_importance, device=bins.device) - u = u.expand(N_rays, N_importance) - else: - u = torch.rand(N_rays, N_importance, device=bins.device) - u = u.contiguous() - - inds = torch.searchsorted(cdf, u, right=True) - below = torch.clamp_min(inds-1, 0) - above = torch.clamp_max(inds, N_samples_) - - inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance) - cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2) - bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2) - - denom = cdf_g[...,1]-cdf_g[...,0] - denom[denom 0.: - # get intervals between samples - mids = .5 * (z_vals[...,1:] + z_vals[...,:-1]) - upper = torch.cat([mids, z_vals[...,-1:]], -1) - lower = torch.cat([z_vals[...,:1], mids], -1) - # stratified samples in those intervals - t_rand = torch.rand(z_vals.shape) - - # Pytest, overwrite u with numpy's fixed random numbers - if pytest: - np.random.seed(0) - t_rand = np.random.rand(*list(z_vals.shape)) - t_rand = torch.Tensor(t_rand) - - z_vals = lower + (upper - lower) * t_rand - - pts = rays_o[...,None,:] + rays_d[...,None,:] * z_vals[...,:,None] # [N_rays, N_samples, 3] - - -# raw = run_network(pts) - raw = network_query_fn(pts, viewdirs, label,network_fn) - rgb_map, disp_map, acc_map, weights, depth_map = raw2outputs(raw, z_vals, rays_d, raw_noise_std, white_bkgd, pytest=pytest) - - - ret = {'rgb_map' : rgb_map, 'disp_map' : disp_map, 'acc_map' : acc_map} - if retraw: - ret['raw'] = raw - if N_importance > 0: - ret['rgb0'] = rgb_map_0 - ret['disp0'] = disp_map_0 - ret['acc0'] = acc_map_0 - ret['z_std'] = torch.std(z_samples, dim=-1, unbiased=False) # [N_rays] - - for k in ret: - if (torch.isnan(ret[k]).any() or torch.isinf(ret[k]).any()): - print(f"! [Numerical Error] {k} contains nan or inf.") - - return ret - -def raw2outputs(raw, z_vals, rays_d, raw_noise_std=0, white_bkgd=False, pytest=False): - """Transforms model's predictions to semantically meaningful values. - Args: - raw: [num_rays, num_samples along ray, 4]. Prediction from model. - z_vals: [num_rays, num_samples along ray]. Integration time. - rays_d: [num_rays, 3]. Direction of each ray. - Returns: - rgb_map: [num_rays, 3]. Estimated RGB color of a ray. - disp_map: [num_rays]. Disparity map. Inverse of depth map. - acc_map: [num_rays]. Sum of weights along each ray. - weights: [num_rays, num_samples]. Weights assigned to each sampled color. - depth_map: [num_rays]. Estimated distance to object. - """ - #ipdb.set_trace() - act_ff=nn.Softplus() - - raw2alpha = lambda raw, dists, act_fn=act_ff: 1.-torch.exp(-act_fn(raw)*dists) - - dists = z_vals[...,1:] - z_vals[...,:-1] - dists = torch.cat([dists, torch.Tensor([1e10]).to(dists.device).expand(dists[...,:1].shape)], -1) # [N_rays, N_samples] - - dists = dists * torch.norm(rays_d[...,None,:], dim=-1) - - rgb = torch.sigmoid(raw[...,:3]) # [N_rays, N_samples, 3] - noise = 0. - if raw_noise_std > 0.: - noise = torch.randn(raw[...,3].shape) * raw_noise_std - - # Overwrite randomly sampled data if pytest - if pytest: - np.random.seed(0) - noise = np.random.rand(*list(raw[...,3].shape)) * raw_noise_std - noise = torch.Tensor(noise) - #ipdb.set_trace() - alpha = raw2alpha(raw[...,3] + noise, dists) # [N_rays, N_samples] - - #ipdb.set_trace() - weights = alpha * torch.cumprod(torch.cat([torch.ones((alpha.shape[0],alpha.shape[1], 1)).to(alpha.device), 1.-alpha + 1e-10], -1), -1)[:,:, :-1] - rgb_map = torch.sum(weights[...,None] * rgb, -2) # [N_rays, 3] - - depth_map = torch.sum(weights * z_vals, -1) - disp_map = 1./torch.max(1e-10 * torch.ones_like(depth_map), depth_map / torch.sum(weights, -1)) - acc_map = torch.sum(weights, -1) - - if white_bkgd: - rgb_map = rgb_map + (1.-acc_map[...,None]) - - return rgb_map, disp_map, acc_map, weights, depth_map - - -def get_rays(H, W, K, c2w): - i, j = torch.meshgrid(torch.linspace(0, W-1, W), torch.linspace(0, H-1, H)) # pytorch's meshgrid has indexing='ij' - i = i.t() - j = j.t() - dirs = torch.stack([(i-K[0][2])/K[0][0], (j-K[1][2])/K[1][1], torch.ones_like(i)], -1) - # Rotate ray directions from camera frame to the world frame - rays_d = torch.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs] - # Translate camera frame's origin to the world frame. It is the origin of all rays. - rays_o = c2w[:3,-1].expand(rays_d.shape) - return rays_o, rays_d diff --git a/LICENSE b/LICENSE index 261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64..b223647b129c5dae45e13cf43de9f835850b38f1 100644 --- a/LICENSE +++ b/LICENSE @@ -1,201 +1,10 @@ - Apache License - Version 2.0, January 2004 - http://www.apache.org/licenses/ +S-Lab License 1.0 - TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION +Copyright 2023 S-Lab - 1. Definitions. - - "License" shall mean the terms and conditions for use, reproduction, - and distribution as defined by Sections 1 through 9 of this document. - - "Licensor" shall mean the copyright owner or entity authorized by - the copyright owner that is granting the License. - - "Legal Entity" shall mean the union of the acting entity and all - other entities that control, are controlled by, or are under common - control with that entity. For the purposes of this definition, - "control" means (i) the power, direct or indirect, to cause the - direction or management of such entity, whether by contract or - otherwise, or (ii) ownership of fifty percent (50%) or more of the - outstanding shares, or (iii) beneficial ownership of such entity. - - "You" (or "Your") shall mean an individual or Legal Entity - exercising permissions granted by this License. - - "Source" form shall mean the preferred form for making modifications, - including but not limited to software source code, documentation - source, and configuration files. - - "Object" form shall mean any form resulting from mechanical - transformation or translation of a Source form, including but - not limited to compiled object code, generated documentation, - and conversions to other media types. - - "Work" shall mean the work of authorship, whether in Source or - Object form, made available under the License, as indicated by a - copyright notice that is included in or attached to the work - (an example is provided in the Appendix below). - - "Derivative Works" shall mean any work, whether in Source or Object - form, that is based on (or derived from) the Work and for which the - editorial revisions, annotations, elaborations, or other modifications - represent, as a whole, an original work of authorship. For the purposes - of this License, Derivative Works shall not include works that remain - separable from, or merely link (or bind by name) to the interfaces of, - the Work and Derivative Works thereof. - - "Contribution" shall mean any work of authorship, including - the original version of the Work and any modifications or additions - to that Work or Derivative Works thereof, that is intentionally - submitted to Licensor for inclusion in the Work by the copyright owner - or by an individual or Legal Entity authorized to submit on behalf of - the copyright owner. For the purposes of this definition, "submitted" - means any form of electronic, verbal, or written communication sent - to the Licensor or its representatives, including but not limited to - communication on electronic mailing lists, source code control systems, - and issue tracking systems that are managed by, or on behalf of, the - Licensor for the purpose of discussing and improving the Work, but - excluding communication that is conspicuously marked or otherwise - designated in writing by the copyright owner as "Not a Contribution." - - "Contributor" shall mean Licensor and any individual or Legal Entity - on behalf of whom a Contribution has been received by Licensor and - subsequently incorporated within the Work. - - 2. Grant of Copyright License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - copyright license to reproduce, prepare Derivative Works of, - publicly display, publicly perform, sublicense, and distribute the - Work and such Derivative Works in Source or Object form. - - 3. Grant of Patent License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - (except as stated in this section) patent license to make, have made, - use, offer to sell, sell, import, and otherwise transfer the Work, - where such license applies only to those patent claims licensable - by such Contributor that are necessarily infringed by their - Contribution(s) alone or by combination of their Contribution(s) - with the Work to which such Contribution(s) was submitted. If You - institute patent litigation against any entity (including a - cross-claim or counterclaim in a lawsuit) alleging that the Work - or a Contribution incorporated within the Work constitutes direct - or contributory patent infringement, then any patent licenses - granted to You under this License for that Work shall terminate - as of the date such litigation is filed. - - 4. Redistribution. You may reproduce and distribute copies of the - Work or Derivative Works thereof in any medium, with or without - modifications, and in Source or Object form, provided that You - meet the following conditions: - - (a) You must give any other recipients of the Work or - Derivative Works a copy of this License; and - - (b) You must cause any modified files to carry prominent notices - stating that You changed the files; and - - (c) You must retain, in the Source form of any Derivative Works - that You distribute, all copyright, patent, trademark, and - attribution notices from the Source form of the Work, - excluding those notices that do not pertain to any part of - the Derivative Works; and - - (d) If the Work includes a "NOTICE" text file as part of its - distribution, then any Derivative Works that You distribute must - include a readable copy of the attribution notices contained - within such NOTICE file, excluding those notices that do not - pertain to any part of the Derivative Works, in at least one - of the following places: within a NOTICE text file distributed - as part of the Derivative Works; within the Source form or - documentation, if provided along with the Derivative Works; or, - within a display generated by the Derivative Works, if and - wherever such third-party notices normally appear. The contents - of the NOTICE file are for informational purposes only and - do not modify the License. You may add Your own attribution - notices within Derivative Works that You distribute, alongside - or as an addendum to the NOTICE text from the Work, provided - that such additional attribution notices cannot be construed - as modifying the License. - - You may add Your own copyright statement to Your modifications and - may provide additional or different license terms and conditions - for use, reproduction, or distribution of Your modifications, or - for any such Derivative Works as a whole, provided Your use, - reproduction, and distribution of the Work otherwise complies with - the conditions stated in this License. - - 5. Submission of Contributions. Unless You explicitly state otherwise, - any Contribution intentionally submitted for inclusion in the Work - by You to the Licensor shall be under the terms and conditions of - this License, without any additional terms or conditions. - Notwithstanding the above, nothing herein shall supersede or modify - the terms of any separate license agreement you may have executed - with Licensor regarding such Contributions. - - 6. Trademarks. This License does not grant permission to use the trade - names, trademarks, service marks, or product names of the Licensor, - except as required for reasonable and customary use in describing the - origin of the Work and reproducing the content of the NOTICE file. - - 7. Disclaimer of Warranty. Unless required by applicable law or - agreed to in writing, Licensor provides the Work (and each - Contributor provides its Contributions) on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or - implied, including, without limitation, any warranties or conditions - of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A - PARTICULAR PURPOSE. You are solely responsible for determining the - appropriateness of using or redistributing the Work and assume any - risks associated with Your exercise of permissions under this License. - - 8. Limitation of Liability. In no event and under no legal theory, - whether in tort (including negligence), contract, or otherwise, - unless required by applicable law (such as deliberate and grossly - negligent acts) or agreed to in writing, shall any Contributor be - liable to You for damages, including any direct, indirect, special, - incidental, or consequential damages of any character arising as a - result of this License or out of the use or inability to use the - Work (including but not limited to damages for loss of goodwill, - work stoppage, computer failure or malfunction, or any and all - other commercial damages or losses), even if such Contributor - has been advised of the possibility of such damages. - - 9. Accepting Warranty or Additional Liability. While redistributing - the Work or Derivative Works thereof, You may choose to offer, - and charge a fee for, acceptance of support, warranty, indemnity, - or other liability obligations and/or rights consistent with this - License. However, in accepting such obligations, You may act only - on Your own behalf and on Your sole responsibility, not on behalf - of any other Contributor, and only if You agree to indemnify, - defend, and hold each Contributor harmless for any liability - incurred by, or claims asserted against, such Contributor by reason - of your accepting any such warranty or additional liability. - - END OF TERMS AND CONDITIONS - - APPENDIX: How to apply the Apache License to your work. - - To apply the Apache License to your work, attach the following - boilerplate notice, with the fields enclosed by brackets "[]" - replaced with your own identifying information. (Don't include - the brackets!) The text should be enclosed in the appropriate - comment syntax for the file format. We also recommend that a - file or class name and description of purpose be included on the - same "printed page" as the copyright notice for easier - identification within third-party archives. - - Copyright [yyyy] [name of copyright owner] - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. +Redistribution and use for non-commercial purpose in source and binary forms, with or without modification, are permitted provided that the following conditions are met: +1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. +2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. +3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +4. In the event that redistribution and/or use for commercial purpose in source or binary forms, with or without modification is required, please contact the contributor(s) of the work. diff --git a/README.md b/README.md index 7cf88e8ae82ab98330250505a26b78af28bea42b..050395844682758c40d97d881fb6fc3e26743ce9 100644 --- a/README.md +++ b/README.md @@ -1,13 +1,13 @@ --- -title: 3DTopia -emoji: 📉 -colorFrom: blue -colorTo: blue +title: EVA3D +emoji: 👀 +colorFrom: yellow +colorTo: yellow sdk: gradio -sdk_version: 4.16.0 +sdk_version: 3.18.0 app_file: app.py pinned: false -license: apache-2.0 +license: other --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/app.py b/app.py index c970344448e140af830ea66a4fc7f3b8dad8f2ed..f787434d74b9a506da77a5a92b5ca038502220e5 100644 --- a/app.py +++ b/app.py @@ -1,431 +1,397 @@ -import os import sys -import cv2 -import time -import json -import tqdm +import os + +os.system("git clone https://github.com/hongfz16/EVA3D.git") +sys.path.append("EVA3D") +os.system("cp -r EVA3D/assets .") + +os.system(f"{sys.executable} -m pip install -U fvcore plotly") + import torch -import mcubes -import trimesh -import datetime -import argparse -import subprocess -import numpy as np -import gradio as gr -import imageio.v2 as imageio -import pytorch_lightning as pl -from omegaconf import OmegaConf -from safetensors.torch import load_file +pyt_version_str=torch.__version__.split("+")[0].replace(".", "") +version_str="".join([ + f"py3{sys.version_info.minor}_cu", + torch.version.cuda.replace(".",""), + f"_pyt{pyt_version_str}" +]) + +os.system(f"{sys.executable} -m pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html") + +import os +import html +import glob +import uuid +import hashlib +import requests +from tqdm import tqdm +from pdb import set_trace as st + +from download_models import download_file +eva3d_deepfashion_model = dict(file_url='https://drive.google.com/uc?id=1SYPjxnHz3XPRhTarx_Lw8SG_iz16QUMU', + alt_url='', file_size=160393221, file_md5='d0fae86edf76c52e94223bd3f39b2157', + file_path='checkpoint/512x256_deepfashion/volume_renderer/models_0420000.pt',) + +smpl_model = dict(file_url='https://drive.google.com/uc?id={}'.format(os.environ['smpl_link']), + alt_url='', file_size=39001280, file_md5='65dc7f162f3ef21a38637663c57e14a7', + file_path='smpl_models/smpl/SMPL_NEUTRAL.pkl',) + from huggingface_hub import hf_hub_download -sys.path.append("3DTopia") - -os.system("pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch") -os.system("pip install git+https://github.com/NVlabs/nvdiffrast") -os.system("pip install git+https://github.com/3DTopia/threefiner") - -import tyro -import kiui - -from ldm.models.diffusion.ddim import DDIMSampler -from ldm.models.diffusion.plms import PLMSSampler -from ldm.models.diffusion.dpm_solver import DPMSolverSampler - -from utility.initialize import instantiate_from_config, get_obj_from_str -from utility.triplane_renderer.eg3d_renderer import sample_from_planes, generate_planes -from utility.triplane_renderer.renderer import get_rays, to8b - -from threefiner.gui import GUI -from threefiner.opt import config_defaults, config_doc, check_options, Options - -import warnings -warnings.filterwarnings("ignore", category=UserWarning) -warnings.filterwarnings("ignore", category=DeprecationWarning) - -###################################### INIT STAGE 1 ######################################### -config = "3DTopia/configs/default.yaml" -download_ckpt = "3DTopia/checkpoints/3dtopia_diffusion_state_dict.ckpt" -if not os.path.exists(download_ckpt): - ckpt = hf_hub_download(repo_id="hongfz16/3DTopia", filename="model.safetensors") -else: - ckpt = download_ckpt -configs = OmegaConf.load(config) -os.makedirs("tmp", exist_ok=True) - -if ckpt.endswith(".ckpt"): - model = get_obj_from_str(configs.model["target"]).load_from_checkpoint(ckpt, map_location='cpu', strict=False, **configs.model.params) -elif ckpt.endswith(".safetensors"): - model = get_obj_from_str(configs.model["target"])(**configs.model.params) - model_ckpt = load_file(ckpt) - model.load_state_dict(model_ckpt) -else: - raise NotImplementedError -device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") -model = model.to(device) -sampler = DDIMSampler(model) - -img_size = configs.model.params.unet_config.params.image_size -channels = configs.model.params.unet_config.params.in_channels -shape = [channels, img_size, img_size * 3] - -pose_folder = '3DTopia/assets/sample_data/pose' -poses_fname = sorted([os.path.join(pose_folder, f) for f in os.listdir(pose_folder)]) -batch_rays_list = [] -H = 128 -ratio = 512 // H -for p in poses_fname: - c2w = np.loadtxt(p).reshape(4, 4) - c2w[:3, 3] *= 2.2 - c2w = np.array([ - [1, 0, 0, 0], - [0, 0, -1, 0], - [0, 1, 0, 0], - [0, 0, 0, 1] - ]) @ c2w - - k = np.array([ - [560 / ratio, 0, H * 0.5], - [0, 560 / ratio, H * 0.5], - [0, 0, 1] - ]) - - rays_o, rays_d = get_rays(H, H, torch.Tensor(k), torch.Tensor(c2w[:3, :4])) - coords = torch.stack(torch.meshgrid(torch.linspace(0, H-1, H), torch.linspace(0, H-1, H), indexing='ij'), -1) - coords = torch.reshape(coords, [-1,2]).long() - rays_o = rays_o[coords[:, 0], coords[:, 1]] - rays_d = rays_d[coords[:, 0], coords[:, 1]] - batch_rays = torch.stack([rays_o, rays_d], 0) - batch_rays_list.append(batch_rays) -batch_rays_list = torch.stack(batch_rays_list, 0) -###################################### INIT STAGE 1 ######################################### - -###################################### INIT STAGE 2 ######################################### -GRADIO_SAVE_PATH_MESH = 'gradio_output.glb' -GRADIO_SAVE_PATH_VIDEO = 'gradio_output.mp4' - -# opt = tyro.cli(tyro.extras.subcommand_type_from_defaults(config_defaults, config_doc)) -opt = Options( - mode='IF2', - iters=400, -) +def download_pretrained_models(): + print('Downloading EVA3D model pretrained on DeepFashion.') + # with requests.Session() as session: + # try: + # download_file(session, eva3d_deepfashion_model) + # except: + # print('Google Drive download failed.\n' \ + # 'Trying do download from alternate server') + # download_file(session, eva3d_deepfashion_model, use_alt_url=True) + eva3d_ckpt = hf_hub_download(repo_id="hongfz16/EVA3D", filename="models_0420000.pt", token=os.environ['hf_token']) + os.system("mkdir -p checkpoint/512x256_deepfashion/volume_renderer") + os.system("mkdir -p smpl_models/smpl") + os.system(f"cp {eva3d_ckpt} checkpoint/512x256_deepfashion/volume_renderer/models_0420000.pt") + print('Downloading SMPL model.') + # with requests.Session() as session: + # try: + # download_file(session, smpl_model) + # except: + # print('Google Drive download failed.\n' \ + # 'Trying do download from alternate server') + # download_file(session, smpl_model, use_alt_url=True) + smpl_pkl = hf_hub_download(repo_id="hongfz16/EVA3D", filename="SMPL_NEUTRAL.pkl", token=os.environ['hf_token']) + os.system(f"cp {smpl_pkl} smpl_models/smpl/SMPL_NEUTRAL.pkl") + +download_pretrained_models() -# hacks for not loading mesh at initialization -# opt.mesh = 'tmp/_2024-01-25_19:33:03.110191_if2.glb' -opt.save = GRADIO_SAVE_PATH_MESH -opt.prompt = '' -opt.text_dir = True -opt.front_dir = '+z' -opt.force_cuda_rast = True -device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') -gui = GUI(opt) -###################################### INIT STAGE 2 ######################################### - -def add_text(rgb, caption): - font = cv2.FONT_HERSHEY_SIMPLEX - # org - gap = 10 - org = (gap, gap) - # fontScale - fontScale = 0.3 - # Blue color in BGR - color = (255, 0, 0) - # Line thickness of 2 px - thickness = 1 - break_caption = [] - for i in range(len(caption) // 30 + 1): - break_caption_i = caption[i*30:(i+1)*30] - break_caption.append(break_caption_i) - for i, bci in enumerate(break_caption): - cv2.putText(rgb, bci, (gap, gap*(i+1)), font, fontScale, color, thickness, cv2.LINE_AA) - return rgb - -def marching_cube(b, text, global_info): - # prepare volumn for marching cube - res = 64 - assert 'decode_res' in global_info - decode_res = global_info['decode_res'] - c_list = torch.linspace(-1.2, 1.2, steps=res) - grid_x, grid_y, grid_z = torch.meshgrid( - c_list, c_list, c_list, indexing='ij' - ) - coords = torch.stack([grid_x, grid_y, grid_z], -1).to(device) - plane_axes = generate_planes() - feats = sample_from_planes( - plane_axes, decode_res[b:b+1].reshape(1, 3, -1, 256, 256), coords.reshape(1, -1, 3), padding_mode='zeros', box_warp=2.4 - ) - fake_dirs = torch.zeros_like(coords) - fake_dirs[..., 0] = 1 - out = model.first_stage_model.triplane_decoder.decoder(feats, fake_dirs) - u = out['sigma'].reshape(res, res, res).detach().cpu().numpy() - del out - - # marching cube - vertices, triangles = mcubes.marching_cubes(u, 10) - min_bound = np.array([-1.2, -1.2, -1.2]) - max_bound = np.array([1.2, 1.2, 1.2]) - vertices = vertices / (res - 1) * (max_bound - min_bound)[None, :] + min_bound[None, :] - pt_vertices = torch.from_numpy(vertices).to(device) - - # extract vertices color - res_triplane = 256 - render_kwargs = { - 'depth_resolution': 128, - 'disparity_space_sampling': False, - 'box_warp': 2.4, - 'depth_resolution_importance': 128, - 'clamp_mode': 'softplus', - 'white_back': True, - 'det': True - } - rays_o_list = [ - np.array([0, 0, 2]), - np.array([0, 0, -2]), - np.array([0, 2, 0]), - np.array([0, -2, 0]), - np.array([2, 0, 0]), - np.array([-2, 0, 0]), - ] - rgb_final = None - diff_final = None - for rays_o in tqdm.tqdm(rays_o_list): - rays_o = torch.from_numpy(rays_o.reshape(1, 3)).repeat(vertices.shape[0], 1).float().to(device) - rays_d = pt_vertices.reshape(-1, 3) - rays_o - rays_d = rays_d / torch.norm(rays_d, dim=-1).reshape(-1, 1) - dist = torch.norm(pt_vertices.reshape(-1, 3) - rays_o, dim=-1).cpu().numpy().reshape(-1) - - render_out = model.first_stage_model.triplane_decoder( - decode_res[b:b+1].reshape(1, 3, -1, res_triplane, res_triplane), - rays_o.unsqueeze(0), rays_d.unsqueeze(0), render_kwargs, - whole_img=False, tvloss=False - ) - rgb = render_out['rgb_marched'].reshape(-1, 3).detach().cpu().numpy() - depth = render_out['depth_final'].reshape(-1).detach().cpu().numpy() - depth_diff = np.abs(dist - depth) - - if rgb_final is None: - rgb_final = rgb.copy() - diff_final = depth_diff.copy() +import os +import torch +import trimesh +import imageio +import pickle +import numpy as np +from munch import * +from PIL import Image +from tqdm import tqdm +from torch.nn import functional as F +from torch.utils import data +from torchvision import utils +from torchvision import transforms +from skimage.measure import marching_cubes +from scipy.spatial import Delaunay +from scipy.spatial.transform import Rotation as R +from options import BaseOptions +from model import VoxelHumanGenerator as Generator +from dataset import DeepFashionDataset, DemoDataset +from utils import ( + generate_camera_params, + align_volume, + extract_mesh_with_marching_cubes, + xyz2mesh, + requires_grad, + create_mesh_renderer, + create_cameras +) +from pytorch3d.io import load_objs_as_meshes, load_obj +from pytorch3d.structures import Meshes +from pytorch3d.renderer import ( + FoVPerspectiveCameras, look_at_view_transform, look_at_rotation, + RasterizationSettings, MeshRenderer, MeshRasterizer, BlendParams, + SoftSilhouetteShader, HardPhongShader, PointLights, TexturesVertex, +) +torch.random.manual_seed(8888) +import random +random.seed(8888) + +panning_angle = np.pi / 3 + +def sample_latent(opt, device): + return + +def generate_rgb(opt, g_ema, device, mean_latent, sample_z, sample_trans, sample_beta, sample_theta, sample_cam_extrinsics, sample_focals): + requires_grad(g_ema, False) + g_ema.is_train = False + g_ema.train_renderer = False + img_list = [] + for k in range(3): + if k == 0: + delta = R.from_rotvec(np.pi/8 * np.array([0, 1, 0])) + elif k == 2: + delta = R.from_rotvec(-np.pi/8 * np.array([0, 1, 0])) else: - ind = diff_final > depth_diff - rgb_final[ind] = rgb[ind] - diff_final[ind] = depth_diff[ind] + delta = R.from_rotvec(0 * np.array([0, 1, 0])) + r = R.from_rotvec(sample_theta[0, :3].cpu().numpy()) + new_r = delta * r + new_sample_theta = sample_theta.clone() + new_sample_theta[0, :3] = torch.from_numpy(new_r.as_rotvec()).to(device) + + with torch.no_grad(): + j = 0 + chunk = 1 + out = g_ema([sample_z[j:j+chunk]], + sample_cam_extrinsics[j:j+chunk], + sample_focals[j:j+chunk], + sample_beta[j:j+chunk], + new_sample_theta[j:j+chunk], + sample_trans[j:j+chunk], + truncation=opt.truncation_ratio, + truncation_latent=mean_latent, + return_eikonal=False, + return_normal=False, + return_mask=False, + fix_viewdir=True) + + rgb_images_thumbs = out[1].detach().cpu()[..., :3].permute(0, 3, 1, 2) + g_ema.zero_grad() + img_list.append(rgb_images_thumbs) + + utils.save_image(torch.cat(img_list, 0), + os.path.join(opt.results_dst_dir, 'images_paper_fig','{}.png'.format(str(0).zfill(7))), + nrow=3, + normalize=True, + range=(-1, 1), + padding=0,) + +def generate_mesh(opt, g_ema, device, mean_latent, sample_z, sample_trans, sample_beta, sample_theta, sample_cam_extrinsics, sample_focals): + latent = g_ema.styles_and_noise_forward(sample_z[:1], None, opt.truncation_ratio, + mean_latent, False) + + sdf = g_ema.renderer.marching_cube_posed(latent[0], sample_beta, sample_theta, resolution=350, size=1.4).detach() + marching_cubes_mesh, _, _ = extract_mesh_with_marching_cubes(sdf, level_set=0) + marching_cubes_mesh = trimesh.smoothing.filter_humphrey(marching_cubes_mesh, beta=0.2, iterations=5) + # marching_cubes_mesh_filename = os.path.join(opt.results_dst_dir,'marching_cubes_meshes_posed','sample_{}_marching_cubes_mesh.obj'.format(0)) + # with open(marching_cubes_mesh_filename, 'w') as f: + # marching_cubes_mesh.export(f,file_type='obj') + return marching_cubes_mesh + +def generate_video(opt, g_ema, device, mean_latent, sample_z, sample_trans, sample_beta, sample_theta, sample_cam_extrinsics, sample_focals): + video_list = [] + for k in tqdm(range(120)): + if k < 30: + angle = (panning_angle / 2) * (k / 30) + elif k >= 30 and k < 90: + angle = panning_angle / 2 - panning_angle * ((k - 30) / 60) + else: + angle = -panning_angle / 2 * ((120 - k) / 30) + delta = R.from_rotvec(angle * np.array([0, 1, 0])) + r = R.from_rotvec(sample_theta[0, :3].cpu().numpy()) + new_r = delta * r + new_sample_theta = sample_theta.clone() + new_sample_theta[0, :3] = torch.from_numpy(new_r.as_rotvec()).to(device) + with torch.no_grad(): + j = 0 + chunk = 1 + out = g_ema([sample_z[j:j+chunk]], + sample_cam_extrinsics[j:j+chunk], + sample_focals[j:j+chunk], + sample_beta[j:j+chunk], + new_sample_theta[j:j+chunk], + sample_trans[j:j+chunk], + truncation=opt.truncation_ratio, + truncation_latent=mean_latent, + return_eikonal=False, + return_normal=False, + return_mask=False, + fix_viewdir=True) + rgb_images_thumbs = out[1].detach().cpu()[..., :3] + g_ema.zero_grad() + video_list.append((rgb_images_thumbs.numpy() + 1) / 2. * 255. + 0.5) + all_img = np.concatenate(video_list, 0).astype(np.uint8) + imageio.mimwrite(os.path.join(opt.results_dst_dir, 'images_paper_video', 'video_{}.mp4'.format(str(0).zfill(7))), all_img, fps=30, quality=8) + +def setup(): + device='cuda' if torch.cuda.is_available() else 'cpu' + opt = BaseOptions().parse() + + opt.training.batch = 1 + opt.training.chunk = 1 + opt.experiment.expname = '512x256_deepfashion' + opt.dataset.dataset_path = 'demodataset' + opt.rendering.depth = 5 + opt.rendering.width = 128 + opt.model.style_dim = 128 + opt.model.renderer_spatial_output_dim = [512, 256] + opt.training.no_sphere_init = True + opt.rendering.input_ch_views = 3 + opt.rendering.white_bg = True + opt.model.voxhuman_name = 'eva3d_deepfashion' + opt.training.deltasdf = True + opt.rendering.N_samples = 28 + opt.experiment.ckpt = '420000' + opt.inference.identities = 1 + opt.inference.truncation_ratio = 0.6 + + opt.model.is_test = True + opt.model.freeze_renderer = False + opt.rendering.no_features_output = True + opt.rendering.offset_sampling = True + opt.rendering.static_viewdirs = True + opt.rendering.force_background = True + opt.rendering.perturb = 0 + opt.inference.size = opt.model.size + opt.inference.camera = opt.camera + opt.inference.renderer_output_size = opt.model.renderer_spatial_output_dim + opt.inference.style_dim = opt.model.style_dim + opt.inference.project_noise = opt.model.project_noise + opt.inference.return_xyz = opt.rendering.return_xyz + + checkpoints_dir = os.path.join('checkpoint', opt.experiment.expname, 'volume_renderer') + checkpoint_path = os.path.join(checkpoints_dir, + 'models_{}.pt'.format(opt.experiment.ckpt.zfill(7))) + # define results directory name + result_model_dir = 'iter_{}'.format(opt.experiment.ckpt.zfill(7)) + + # create results directory + results_dir_basename = os.path.join(opt.inference.results_dir, opt.experiment.expname) + opt.inference.results_dst_dir = os.path.join(results_dir_basename, result_model_dir) + if opt.inference.fixed_camera_angles: + opt.inference.results_dst_dir = os.path.join(opt.inference.results_dst_dir, 'fixed_angles') + else: + opt.inference.results_dst_dir = os.path.join(opt.inference.results_dst_dir, 'random_angles') + os.makedirs(opt.inference.results_dst_dir, exist_ok=True) + os.makedirs(os.path.join(opt.inference.results_dst_dir, 'images_paper_fig'), exist_ok=True) + os.makedirs(os.path.join(opt.inference.results_dst_dir, 'images_paper_video'), exist_ok=True) + os.makedirs(os.path.join(opt.inference.results_dst_dir, 'marching_cubes_meshes_posed'), exist_ok=True) + checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) + + # load generation model + g_ema = Generator(opt.model, opt.rendering, full_pipeline=False, voxhuman_name=opt.model.voxhuman_name).to(device) + pretrained_weights_dict = checkpoint["g_ema"] + model_dict = g_ema.state_dict() + for k, v in pretrained_weights_dict.items(): + if v.size() == model_dict[k].size(): + model_dict[k] = v + else: + print(k) + + g_ema.load_state_dict(model_dict) + + transform = transforms.Compose( + [transforms.ToTensor(), + transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)]) + + if 'deepfashion' in opt.dataset.dataset_path: + file_list = '/mnt/lustre/fzhong/smplify-x/deepfashion_train_list/deepfashion_train_list_MAN.txt' + elif '20w_fashion' in opt.dataset.dataset_path: + file_list = '/mnt/lustre/fzhong/mmhuman3d/20w_fashion_result/nondress_flist.txt' + else: + file_list = None + if file_list: + dataset = DeepFashionDataset(opt.dataset.dataset_path, transform, opt.model.size, + opt.model.renderer_spatial_output_dim, file_list) + else: + dataset = DemoDataset() - # bgr to rgb - rgb_final = np.stack([ - rgb_final[:, 2], rgb_final[:, 1], rgb_final[:, 0] - ], -1) + # get the mean latent vector for g_ema + if opt.inference.truncation_ratio < 1: + with torch.no_grad(): + mean_latent = g_ema.mean_latent(opt.inference.truncation_mean, device) + else: + mean_latent = None - # export to ply - mesh = trimesh.Trimesh(vertices, triangles, vertex_colors=(rgb_final * 255).astype(np.uint8)) - path = os.path.join('tmp', f"{text.replace(' ', '_')}_{str(datetime.datetime.now()).replace(' ', '_')}.ply") - trimesh.exchange.export.export_mesh(mesh, path, file_type='ply') + g_ema.renderer.is_train = False + g_ema.renderer.perturb = 0 - del vertices, triangles, rgb_final - torch.cuda.empty_cache() + # generate(opt.inference, dataset, g_ema, device, mean_latent, opt.rendering.render_video) - return path + sample_trans, sample_beta, sample_theta = dataset.sample_smpl_param(1, device, val=False) + sample_cam_extrinsics, sample_focals = dataset.get_camera_extrinsics(1, device, val=False) -def infer(prompt, samples, steps, scale, seed, global_info): - prompt = prompt.replace('/', '') - pl.seed_everything(seed) - batch_size = samples - with torch.no_grad(): - noise = None - c = model.get_learned_conditioning([prompt]) - unconditional_c = torch.zeros_like(c) - sample, _ = sampler.sample( - S=steps, - batch_size=batch_size, - shape=shape, - verbose=False, - x_T = noise, - conditioning = c.repeat(batch_size, 1, 1), - unconditional_guidance_scale=scale, - unconditional_conditioning=unconditional_c.repeat(batch_size, 1, 1) - ) - decode_res = model.decode_first_stage(sample) - - big_video_list = [] - - global_info['decode_res'] = decode_res - - for b in range(batch_size): - def render_img(v): - rgb_sample, _ = model.first_stage_model.render_triplane_eg3d_decoder( - decode_res[b:b+1], batch_rays_list[v:v+1].to(device), torch.zeros(1, H, H, 3).to(device), - ) - rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0] - rgb_sample = np.stack( - [rgb_sample[..., 2], rgb_sample[..., 1], rgb_sample[..., 0]], -1 - ) - rgb_sample = add_text(rgb_sample, str(b)) - return rgb_sample - - view_num = len(batch_rays_list) - video_list = [] - for v in tqdm.tqdm(range(view_num//8*3, view_num//8*5, 2)): - rgb_sample = render_img(v) - video_list.append(rgb_sample) - big_video_list.append(video_list) - # if batch_size == 2: - # cat_video_list = [ - # np.concatenate([big_video_list[j][i] for j in range(len(big_video_list))], 1) \ - # for i in range(len(big_video_list[0])) - # ] - # elif batch_size > 2: - # if batch_size == 3: - # big_video_list.append( - # [np.zeros_like(f) for f in big_video_list[0]] - # ) - # cat_video_list = [ - # np.concatenate([ - # np.concatenate([big_video_list[0][i], big_video_list[1][i]], 1), - # np.concatenate([big_video_list[2][i], big_video_list[3][i]], 1), - # ], 0) \ - # for i in range(len(big_video_list[0])) - # ] - # else: - # cat_video_list = big_video_list[0] - - for _ in range(4 - batch_size): - big_video_list.append( - [np.zeros_like(f) + 255 for f in big_video_list[0]] - ) - cat_video_list = [ - np.concatenate([ - np.concatenate([big_video_list[0][i], big_video_list[1][i]], 1), - np.concatenate([big_video_list[2][i], big_video_list[3][i]], 1), - ], 0) \ - for i in range(len(big_video_list[0])) - ] - - path = f"tmp/{prompt.replace(' ', '_')}_{str(datetime.datetime.now()).replace(' ', '_')}.mp4" - imageio.mimwrite(path, np.stack(cat_video_list, 0)) - - return global_info, path - -def infer_stage2(prompt, selection, seed, global_info, iters): - prompt = prompt.replace('/', '') - mesh_path = marching_cube(int(selection), prompt, global_info) - mesh_name = mesh_path.split('/')[-1][:-4] - # if2_cmd = f"threefiner if2 --mesh {mesh_path} --prompt \"{prompt}\" --outdir tmp --save {mesh_name}_if2.glb --text_dir --front_dir=-y" - # print(if2_cmd) - # subprocess.Popen(if2_cmd, shell=True).wait() - # torch.cuda.empty_cache() - video_path = f"tmp/{prompt.replace(' ', '_')}_{str(datetime.datetime.now()).replace(' ', '_')}.mp4" - # render_cmd = f"kire {os.path.join('tmp', mesh_name + '_if2.glb')} --save_video {video_path} --wogui --force_cuda_rast --H 256 --W 256" - # print(render_cmd) - # subprocess.Popen(render_cmd, shell=True).wait() - # torch.cuda.empty_cache() - - process_stage2(mesh_path, prompt, "down", iters, f'tmp/{mesh_name}_if2.glb', video_path) - torch.cuda.empty_cache() + torch.randn(1, opt.inference.style_dim, device=device) - return video_path, f'tmp/{mesh_name}_if2.glb' - -def process_stage2(input_model, input_text, input_dir, iters, output_model, output_video): - # set front facing direction (map from gradio model3D's mysterious coordinate system to OpenGL...) - opt.text_dir = True - if input_dir == 'front': - opt.front_dir = '-z' - elif input_dir == 'back': - opt.front_dir = '+z' - elif input_dir == 'left': - opt.front_dir = '+x' - elif input_dir == 'right': - opt.front_dir = '-x' - elif input_dir == 'up': - opt.front_dir = '+y' - elif input_dir == 'down': - opt.front_dir = '-y' - else: - # turn off text_dir - opt.text_dir = False - opt.front_dir = '+z' - - # set mesh path - opt.mesh = input_model + return opt.inference, g_ema, device, mean_latent, torch.randn(1, opt.inference.style_dim, device=device), \ + sample_trans, sample_beta, sample_theta, sample_cam_extrinsics, sample_focals - # load mesh! - gui.renderer = gui.renderer_class(opt, device).to(device) +import gradio as gr +import plotly.graph_objects as go +from PIL import Image - # set prompt - gui.prompt = opt.positive_prompt + ', ' + input_text +setup_list = None - # train - gui.prepare_train() # update optimizer and prompt embeddings - for i in tqdm.trange(iters): - gui.train_step() +def get_video(): + global setup_list + if setup_list is None: + setup_list = list(setup()) + generate_video(*setup_list) + torch.cuda.empty_cache() + path = 'evaluations/512x256_deepfashion/iter_0420000/random_angles/images_paper_video/video_0000000.mp4' + return path - # save mesh & video - gui.save_model(output_model) - gui.save_model(output_video) +def get_mesh(): + global setup_list + if setup_list is None: + setup_list = list(setup()) + setup_list[4] = torch.randn(1, setup_list[0].style_dim, device=setup_list[2]) + generate_rgb(*setup_list) + mesh = generate_mesh(*setup_list) + torch.cuda.empty_cache() + x=np.asarray(mesh.vertices).T[0] + y=np.asarray(mesh.vertices).T[1] + z=np.asarray(mesh.vertices).T[2] + + i=np.asarray(mesh.faces).T[0] + j=np.asarray(mesh.faces).T[1] + k=np.asarray(mesh.faces).T[2] + fig = go.Figure(go.Mesh3d(x=x, y=y, z=z, + i=i, j=j, k=k, + color="lightpink", + # flatshading=True, + lighting=dict(ambient=0.5, + diffuse=1, + fresnel=4, + specular=0.5, + roughness=0.05, + facenormalsepsilon=0, + vertexnormalsepsilon=0),)) + # lightposition=dict(x=100, + # y=100, + # z=1000))) + path='evaluations/512x256_deepfashion/iter_0420000/random_angles/images_paper_fig/0000000.png' + + image=Image.open(path) + + return fig,image + markdown=f''' - # 3DTopia - ![](https://visitor-badge.laobi.icu/badge?page_id=3DTopia.3DTopia.gradio) - A two-stage text-to-3D generation model. The first stage uses diffusion model to quickly generate candidates. The second stage refines the assets chosen from the first stage. - - ### Usage: - First enter prompt for a 3D object, hit "Generate 3D". Then choose one candidate from the dropdown options for the second stage refinement and hit "Start Refinement". The final mesh can be downloaded from the bottom right box. + # EVA3D: Compositional 3D Human Generation from 2D Image Collections - ### Runtime: - The first stage takes 30s if generating 4 samples. The second stage takes roughly 1m30s. + Authored by Fangzhou Hong, Zhaoxi Chen, Yushi Lan, Liang Pan, Ziwei Liu + + The space demo for the ICLR 2023 Spotlight paper "EVA3D: Compositional 3D Human Generation from 2D Image Collections". ### Useful links: - [Github Repo](https://github.com/3DTopia/3DTopia) -''' + - [Official Github Repo](https://github.com/hongfz16/EVA3D) + - [Project Page](https://hongfz16.github.io/projects/EVA3D.html) + - [arXiv Link](https://arxiv.org/abs/2210.04888) + + Licensed under the S-Lab License. -block = gr.Blocks() + First use button "Generate RGB & Mesh" to randomly sample a 3D human. Then push button "Generate Video" to generate a panning video of the generated human. +''' -with block: - global_info = gr.State(dict()) - gr.Markdown(markdown) +with gr.Blocks() as demo: with gr.Row(): with gr.Column(): - with gr.Row(): - text = gr.Textbox( - label = "Enter your prompt", - max_lines = 1, - placeholder = "Enter your prompt", - container = False, - ) - btn = gr.Button("Generate 3D") - gallery = gr.Video(height=512) - # advanced_button = gr.Button("Advanced options", elem_id="advanced-btn") - with gr.Row(elem_id="advanced-options"): - with gr.Tab("Advanced options"): - samples = gr.Slider(label="Number of Samples", minimum=1, maximum=4, value=4, step=1) - steps = gr.Slider(label="Steps", minimum=1, maximum=500, value=50, step=1) - scale = gr.Slider( - label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1 - ) - seed = gr.Slider( - label="Seed", - minimum=0, - maximum=2147483647, - step=1, - randomize=True, - ) - gr.on([text.submit, btn.click], infer, inputs=[text, samples, steps, scale, seed, global_info], outputs=[global_info, gallery]) - # advanced_button.click( - # None, - # [], - # text, - # ) + gr.Markdown(markdown) with gr.Column(): with gr.Row(): - dropdown = gr.Dropdown( - ['0', '1', '2', '3'], label="Choose a Candidate For Stage2", value='0' - ) - btn_stage2 = gr.Button("Start Refinement") - gallery = gr.Video(height=512) - with gr.Row(elem_id="advanced-options"): - with gr.Tab("Advanced options"): - # input_dir = gr.Radio(['front', 'back', 'left', 'right', 'up', 'down'], value='down', label="front-facing direction") - iters = gr.Slider(minimum=100, maximum=1000, step=100, value=400, label="Refine iterations") - download = gr.File(label="Download Mesh", file_count="single", height=100) - gr.on([btn_stage2.click], infer_stage2, inputs=[text, dropdown, seed, global_info, iters], outputs=[gallery, download]) - -block.launch(share=True) + with gr.Column(): + image=gr.Image(type="pil",shape=(512,256*3)) + with gr.Row(): + with gr.Column(): + mesh = gr.Plot() + with gr.Column(): + video=gr.Video() + # with gr.Row(): + # numberoframes = gr.Slider( minimum=30, maximum=250,label='Number Of Frame For Video Generation') + # model_name=gr.Dropdown(choices=["ffhq","afhq"],label="Choose Model Type") + # mesh_type=gr.Dropdown(choices=["DepthMesh","Marching Cubes"],label="Choose Mesh Type") + with gr.Row(): + btn = gr.Button(value="Generate RGB & Mesh") + btn_2=gr.Button(value="Generate Video") + + btn.click(get_mesh,[],[mesh,image]) + btn_2.click(get_video,[],[video]) + +demo.launch() diff --git a/requirements.txt b/requirements.txt index 913a21c3deeb447088bacddedacc94c4533b599a..4c25a09523df84aa65da06695b63f4e8131fcba7 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,60 +1,25 @@ -torch==1.13.1+cu117 -torchvision==0.14.1+cu117 -torchaudio==0.13.1 ---extra-index-url https://download.pytorch.org/whl/cu117 -pytorch-lightning -numpy +--extra-index-url https://download.pytorch.org/whl/cu116 +torch +torchvision +plotly +gradio +chumpy==0.70 +imageio==2.16.1 +matplotlib==3.5.1 +numpy==1.21.2 +opencv-python==4.5.5.64 +pillow==9.0.1 +scikit-image==0.19.2 +scikit-learn==1.0.2 +scikit-video==1.1.11 +scipy==1.8.0 +smplx==0.1.28 +trimesh==3.10.7 +scikit-learn +lmdb +ninja +requests tqdm -PyYAML -git+https://github.com/openai/CLIP.git -einops -huggingface-hub -imageio -imageio-ffmpeg -importlib-resources -ipdb -ipython -jedi -kiwisolver -kornia -lpips -matplotlib -matplotlib-inline -omegaconf -open-clip-torch -opencv-python -parso -pathtools -pexpect -pickleshare -pillow -prompt-toolkit -protobuf -psutil -ptyprocess -pure-eval -pygments -pymcubes -pyparsing -pytorch-fid -pytorch-msssim -regex -safetensors -scipy -sentencepiece -sentry-sdk -setproctitle -smmap -stack-data -timm -tokenizers -tomli -traitlets -transformers -trimesh -vit-pytorch -wandb -wcwidth -zipp -kiui -accelerate \ No newline at end of file +configargparse +munch +imageio_ffmpeg