File size: 1,205 Bytes
fd6a905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import re

import cn2an

from style_bert_vits2.nlp.symbols import PUNCTUATIONS


__REPLACE_MAP = {
    ":": ",",
    "οΌ›": ",",
    ",": ",",
    "。": ".",
    "!": "!",
    "?": "?",
    "\n": ".",
    "Β·": ",",
    "、": ",",
    "...": "…",
    "$": ".",
    "β€œ": "'",
    "”": "'",
    '"': "'",
    "β€˜": "'",
    "’": "'",
    "(": "'",
    "οΌ‰": "'",
    "(": "'",
    ")": "'",
    "γ€Š": "'",
    "》": "'",
    "【": "'",
    "】": "'",
    "[": "'",
    "]": "'",
    "β€”": "-",
    "~": "-",
    "~": "-",
    "γ€Œ": "'",
    "」": "'",
}


def normalize_text(text: str) -> str:
    numbers = re.findall(r"\d+(?:\.?\d+)?", text)
    for number in numbers:
        text = text.replace(number, cn2an.an2cn(number), 1)
    text = replace_punctuation(text)
    return text


def replace_punctuation(text: str) -> str:

    text = text.replace("ε—―", "恩").replace("ε‘£", "母")
    pattern = re.compile("|".join(re.escape(p) for p in __REPLACE_MAP))

    replaced_text = pattern.sub(lambda x: __REPLACE_MAP[x.group()], text)

    replaced_text = re.sub(
        r"[^\u4e00-\u9fa5" + "".join(PUNCTUATIONS) + r"]+", "", replaced_text
    )

    return replaced_text