File size: 5,199 Bytes
fd6a905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import re

from g2p_en import G2p

from style_bert_vits2.constants import Languages
from style_bert_vits2.nlp import bert_models
from style_bert_vits2.nlp.english.cmudict import get_dict
from style_bert_vits2.nlp.symbols import PUNCTUATIONS, SYMBOLS


# Initialize global variables once
ARPA = {
    "AH0",
    "S",
    "AH1",
    "EY2",
    "AE2",
    "EH0",
    "OW2",
    "UH0",
    "NG",
    "B",
    "G",
    "AY0",
    "M",
    "AA0",
    "F",
    "AO0",
    "ER2",
    "UH1",
    "IY1",
    "AH2",
    "DH",
    "IY0",
    "EY1",
    "IH0",
    "K",
    "N",
    "W",
    "IY2",
    "T",
    "AA1",
    "ER1",
    "EH2",
    "OY0",
    "UH2",
    "UW1",
    "Z",
    "AW2",
    "AW1",
    "V",
    "UW2",
    "AA2",
    "ER",
    "AW0",
    "UW0",
    "R",
    "OW1",
    "EH1",
    "ZH",
    "AE0",
    "IH2",
    "IH",
    "Y",
    "JH",
    "P",
    "AY1",
    "EY0",
    "OY2",
    "TH",
    "HH",
    "D",
    "ER0",
    "CH",
    "AO1",
    "AE1",
    "AO2",
    "OY1",
    "AY2",
    "IH1",
    "OW0",
    "L",
    "SH",
}
_g2p = G2p()
eng_dict = get_dict()


def g2p(text: str) -> tuple[list[str], list[int], list[int]]:
    phones = []
    tones = []
    phone_len = []
    words = __text_to_words(text)

    for word in words:
        temp_phones, temp_tones = [], []
        if len(word) > 1 and "'" in word:
            word = ["".join(word)]

        for w in word:
            if w in PUNCTUATIONS:
                temp_phones.append(w)
                temp_tones.append(0)
                continue
            if w.upper() in eng_dict:
                phns, tns = __refine_syllables(eng_dict[w.upper()])
                temp_phones += [__post_replace_ph(i) for i in phns]
                temp_tones += tns
            else:
                phone_list = list(filter(lambda p: p != " ", _g2p(w)))
                phns, tns = [], []
                for ph in phone_list:
                    if ph in ARPA:
                        ph, tn = __refine_ph(ph)
                        phns.append(ph)
                        tns.append(tn)
                    else:
                        phns.append(ph)
                        tns.append(0)
                temp_phones += [__post_replace_ph(i) for i in phns]
                temp_tones += tns

        phones += temp_phones
        tones += temp_tones
        phone_len.append(len(temp_phones))

    word2ph = []
    for token, pl in zip(words, phone_len):
        word_len = len(token)
        word2ph += __distribute_phone(pl, word_len)

    phones = ["_"] + phones + ["_"]
    tones = [0] + tones + [0]
    word2ph = [1] + word2ph + [1]
    assert len(phones) == len(tones), text
    assert len(phones) == sum(word2ph), text

    return phones, tones, word2ph


def __post_replace_ph(ph: str) -> str:
    REPLACE_MAP = {
        ":": ",",
        ";": ",",
        ",": ",",
        "。": ".",
        "!": "!",
        "?": "?",
        "\n": ".",
        "·": ",",
        "、": ",",
        "…": "...",
        "···": "...",
        "・・・": "...",
        "v": "V",
    }
    if ph in REPLACE_MAP:
        ph = REPLACE_MAP[ph]
    if ph in SYMBOLS:
        return ph
    return "UNK"


def __refine_ph(phn: str) -> tuple[str, int]:
    tone = 0
    if re.search(r"\d$", phn):
        tone = int(phn[-1]) + 1
        phn = phn[:-1]
    else:
        tone = 3
    return phn.lower(), tone


def __refine_syllables(syllables: list[list[str]]) -> tuple[list[str], list[int]]:
    tones = []
    phonemes = []
    for phn_list in syllables:
        for phn in phn_list:
            phn, tone = __refine_ph(phn)
            phonemes.append(phn)
            tones.append(tone)
    return phonemes, tones


def __distribute_phone(n_phone: int, n_word: int) -> list[int]:
    phones_per_word = [0] * n_word
    for task in range(n_phone):
        min_tasks = min(phones_per_word)
        min_index = phones_per_word.index(min_tasks)
        phones_per_word[min_index] += 1
    return phones_per_word


def __text_to_words(text: str) -> list[list[str]]:
    tokenizer = bert_models.load_tokenizer(Languages.EN)
    tokens = tokenizer.tokenize(text)
    words = []
    for idx, t in enumerate(tokens):
        if t.startswith("▁"):
            words.append([t[1:]])
        elif t in PUNCTUATIONS:
            if idx == len(tokens) - 1:
                words.append([f"{t}"])
            elif (
                not tokens[idx + 1].startswith("▁")
                and tokens[idx + 1] not in PUNCTUATIONS
            ):
                if idx == 0:
                    words.append([])
                words[-1].append(f"{t}")
            else:
                words.append([f"{t}"])
        else:
            if idx == 0:
                words.append([])
            words[-1].append(f"{t}")
    return words


if __name__ == "__main__":
    # print(get_dict())
    # print(eng_word_to_phoneme("hello"))
    print(g2p("In this paper, we propose 1 DSPGAN, a GAN-based universal vocoder."))
    # all_phones = set()
    # eng_dict = get_dict()
    # for k, syllables in eng_dict.items():
    #     for group in syllables:
    #         for ph in group:
    #             all_phones.add(ph)
    # print(all_phones)