|
from typing import Optional |
|
|
|
import numpy as np |
|
import torch |
|
from torch.nn import functional as F |
|
|
|
|
|
DEFAULT_MIN_BIN_WIDTH = 1e-3 |
|
DEFAULT_MIN_BIN_HEIGHT = 1e-3 |
|
DEFAULT_MIN_DERIVATIVE = 1e-3 |
|
|
|
|
|
def piecewise_rational_quadratic_transform( |
|
inputs: torch.Tensor, |
|
unnormalized_widths: torch.Tensor, |
|
unnormalized_heights: torch.Tensor, |
|
unnormalized_derivatives: torch.Tensor, |
|
inverse: bool = False, |
|
tails: Optional[str] = None, |
|
tail_bound: float = 1.0, |
|
min_bin_width: float = DEFAULT_MIN_BIN_WIDTH, |
|
min_bin_height: float = DEFAULT_MIN_BIN_HEIGHT, |
|
min_derivative: float = DEFAULT_MIN_DERIVATIVE, |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
|
if tails is None: |
|
spline_fn = rational_quadratic_spline |
|
spline_kwargs = {} |
|
else: |
|
spline_fn = unconstrained_rational_quadratic_spline |
|
spline_kwargs = {"tails": tails, "tail_bound": tail_bound} |
|
|
|
outputs, logabsdet = spline_fn( |
|
inputs=inputs, |
|
unnormalized_widths=unnormalized_widths, |
|
unnormalized_heights=unnormalized_heights, |
|
unnormalized_derivatives=unnormalized_derivatives, |
|
inverse=inverse, |
|
min_bin_width=min_bin_width, |
|
min_bin_height=min_bin_height, |
|
min_derivative=min_derivative, |
|
**spline_kwargs, |
|
) |
|
return outputs, logabsdet |
|
|
|
|
|
def searchsorted( |
|
bin_locations: torch.Tensor, inputs: torch.Tensor, eps: float = 1e-6 |
|
) -> torch.Tensor: |
|
bin_locations[..., -1] += eps |
|
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1 |
|
|
|
|
|
def unconstrained_rational_quadratic_spline( |
|
inputs: torch.Tensor, |
|
unnormalized_widths: torch.Tensor, |
|
unnormalized_heights: torch.Tensor, |
|
unnormalized_derivatives: torch.Tensor, |
|
inverse: bool = False, |
|
tails: str = "linear", |
|
tail_bound: float = 1.0, |
|
min_bin_width: float = DEFAULT_MIN_BIN_WIDTH, |
|
min_bin_height: float = DEFAULT_MIN_BIN_HEIGHT, |
|
min_derivative: float = DEFAULT_MIN_DERIVATIVE, |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
|
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound) |
|
outside_interval_mask = ~inside_interval_mask |
|
|
|
outputs = torch.zeros_like(inputs) |
|
logabsdet = torch.zeros_like(inputs) |
|
|
|
if tails == "linear": |
|
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1)) |
|
constant = np.log(np.exp(1 - min_derivative) - 1) |
|
unnormalized_derivatives[..., 0] = constant |
|
unnormalized_derivatives[..., -1] = constant |
|
|
|
outputs[outside_interval_mask] = inputs[outside_interval_mask] |
|
logabsdet[outside_interval_mask] = 0 |
|
else: |
|
raise RuntimeError(f"{tails} tails are not implemented.") |
|
|
|
( |
|
outputs[inside_interval_mask], |
|
logabsdet[inside_interval_mask], |
|
) = rational_quadratic_spline( |
|
inputs=inputs[inside_interval_mask], |
|
unnormalized_widths=unnormalized_widths[inside_interval_mask, :], |
|
unnormalized_heights=unnormalized_heights[inside_interval_mask, :], |
|
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :], |
|
inverse=inverse, |
|
left=-tail_bound, |
|
right=tail_bound, |
|
bottom=-tail_bound, |
|
top=tail_bound, |
|
min_bin_width=min_bin_width, |
|
min_bin_height=min_bin_height, |
|
min_derivative=min_derivative, |
|
) |
|
|
|
return outputs, logabsdet |
|
|
|
|
|
def rational_quadratic_spline( |
|
inputs: torch.Tensor, |
|
unnormalized_widths: torch.Tensor, |
|
unnormalized_heights: torch.Tensor, |
|
unnormalized_derivatives: torch.Tensor, |
|
inverse: bool = False, |
|
left: float = 0.0, |
|
right: float = 1.0, |
|
bottom: float = 0.0, |
|
top: float = 1.0, |
|
min_bin_width: float = DEFAULT_MIN_BIN_WIDTH, |
|
min_bin_height: float = DEFAULT_MIN_BIN_HEIGHT, |
|
min_derivative: float = DEFAULT_MIN_DERIVATIVE, |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
|
if torch.min(inputs) < left or torch.max(inputs) > right: |
|
raise ValueError("Input to a transform is not within its domain") |
|
|
|
num_bins = unnormalized_widths.shape[-1] |
|
|
|
if min_bin_width * num_bins > 1.0: |
|
raise ValueError("Minimal bin width too large for the number of bins") |
|
if min_bin_height * num_bins > 1.0: |
|
raise ValueError("Minimal bin height too large for the number of bins") |
|
|
|
widths = F.softmax(unnormalized_widths, dim=-1) |
|
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths |
|
cumwidths = torch.cumsum(widths, dim=-1) |
|
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0) |
|
cumwidths = (right - left) * cumwidths + left |
|
cumwidths[..., 0] = left |
|
cumwidths[..., -1] = right |
|
widths = cumwidths[..., 1:] - cumwidths[..., :-1] |
|
|
|
derivatives = min_derivative + F.softplus(unnormalized_derivatives) |
|
|
|
heights = F.softmax(unnormalized_heights, dim=-1) |
|
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights |
|
cumheights = torch.cumsum(heights, dim=-1) |
|
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0) |
|
cumheights = (top - bottom) * cumheights + bottom |
|
cumheights[..., 0] = bottom |
|
cumheights[..., -1] = top |
|
heights = cumheights[..., 1:] - cumheights[..., :-1] |
|
|
|
if inverse: |
|
bin_idx = searchsorted(cumheights, inputs)[..., None] |
|
else: |
|
bin_idx = searchsorted(cumwidths, inputs)[..., None] |
|
|
|
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0] |
|
input_bin_widths = widths.gather(-1, bin_idx)[..., 0] |
|
|
|
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0] |
|
delta = heights / widths |
|
input_delta = delta.gather(-1, bin_idx)[..., 0] |
|
|
|
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0] |
|
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0] |
|
|
|
input_heights = heights.gather(-1, bin_idx)[..., 0] |
|
|
|
if inverse: |
|
a = (inputs - input_cumheights) * ( |
|
input_derivatives + input_derivatives_plus_one - 2 * input_delta |
|
) + input_heights * (input_delta - input_derivatives) |
|
b = input_heights * input_derivatives - (inputs - input_cumheights) * ( |
|
input_derivatives + input_derivatives_plus_one - 2 * input_delta |
|
) |
|
c = -input_delta * (inputs - input_cumheights) |
|
|
|
discriminant = b.pow(2) - 4 * a * c |
|
assert (discriminant >= 0).all() |
|
|
|
root = (2 * c) / (-b - torch.sqrt(discriminant)) |
|
outputs = root * input_bin_widths + input_cumwidths |
|
|
|
theta_one_minus_theta = root * (1 - root) |
|
denominator = input_delta + ( |
|
(input_derivatives + input_derivatives_plus_one - 2 * input_delta) |
|
* theta_one_minus_theta |
|
) |
|
derivative_numerator = input_delta.pow(2) * ( |
|
input_derivatives_plus_one * root.pow(2) |
|
+ 2 * input_delta * theta_one_minus_theta |
|
+ input_derivatives * (1 - root).pow(2) |
|
) |
|
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) |
|
|
|
return outputs, -logabsdet |
|
else: |
|
theta = (inputs - input_cumwidths) / input_bin_widths |
|
theta_one_minus_theta = theta * (1 - theta) |
|
|
|
numerator = input_heights * ( |
|
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta |
|
) |
|
denominator = input_delta + ( |
|
(input_derivatives + input_derivatives_plus_one - 2 * input_delta) |
|
* theta_one_minus_theta |
|
) |
|
outputs = input_cumheights + numerator / denominator |
|
|
|
derivative_numerator = input_delta.pow(2) * ( |
|
input_derivatives_plus_one * theta.pow(2) |
|
+ 2 * input_delta * theta_one_minus_theta |
|
+ input_derivatives * (1 - theta).pow(2) |
|
) |
|
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) |
|
|
|
return outputs, logabsdet |
|
|