File size: 4,753 Bytes
6aee98f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from typing import List, Tuple

import numpy as np
import pytorch_lightning as pl
import sentencepiece as spm
import torch
import torch.nn as nn

#from sacrebleu.metrics.bleu import BLEU, _get_tokenizer
from torch import optim
from torch.nn.init import xavier_uniform_
from transformers.models.bert.tokenization_bert import BertTokenizer

#import wandb
from dataset import Batched, DecodedBatch
#from models.scheduler import WarmupDecayLR
from transformer import Decoder, Encoder
#from kobe.utils import helpers


class KobeModel(pl.LightningModule):
    def __init__(self, args):
        super(KobeModel, self).__init__()

        self.encoder = Encoder(
            vocab_size=args.text_vocab_size + args.cond_vocab_size,
            max_seq_len=args.max_seq_len,
            d_model=args.d_model,
            nhead=args.nhead,
            num_layers=args.num_encoder_layers,
            dropout=args.dropout,
            mode=args.mode,
        )
        self.decoder = Decoder(
            vocab_size=args.text_vocab_size,
            max_seq_len=args.max_seq_len,
            d_model=args.d_model,
            nhead=args.nhead,
            num_layers=args.num_decoder_layers,
            dropout=args.dropout,
        )
        self.lr = args.lr
        self.d_model = args.d_model
        self.loss = nn.CrossEntropyLoss(
            reduction="mean", ignore_index=0, label_smoothing=0.1
        )
        self._reset_parameters()

        self.decoding_strategy = args.decoding_strategy
        self.vocab = BertTokenizer.from_pretrained(args.text_vocab_path)
        #self.bleu = BLEU(tokenize=args.tokenize)
        #self.sacre_tokenizer = _get_tokenizer(args.tokenize)()
        #self.bert_scorer = BERTScorer(lang=args.tokenize, rescale_with_baseline=True)

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                xavier_uniform_(p)

    def _tokenwise_loss_acc(
        self, logits: torch.Tensor, batch: Batched
    ) -> Tuple[torch.Tensor, float]:
        unmask = ~batch.description_token_ids_mask.T[1:]
        unmasked_logits = logits[unmask]
        unmasked_targets = batch.description_token_ids[1:][unmask]
        #acc = helpers.accuracy(unmasked_logits, unmasked_targets)
        return self.loss(logits.transpose(1, 2), batch.description_token_ids[1:]), 1

    def training_step(self, batch: Batched, batch_idx: int):
        encoded = self.encoder.forward(batch)
        logits = self.decoder.forward(batch, encoded)
        loss, acc = self._tokenwise_loss_acc(logits, batch)
        self.lr_schedulers().step()
        self.log("train/loss", loss.item())
        self.log("train/acc", acc)
        return loss

    def _shared_eval_step(self, batch: Batched, batch_idx: int) -> DecodedBatch:
        encoded = self.encoder.forward(batch)
        #logits = self.decoder.forward(batch, encoded)
        #loss, acc = self._tokenwise_loss_acc(logits, batch)

        preds = self.decoder.predict(
            encoded_batch=encoded, decoding_strategy=self.decoding_strategy
        )
        generated = self.vocab.batch_decode(preds.T.tolist(), skip_special_tokens=True)
        #print(generated)

        return generated
        return DecodedBatch(
            loss=loss.item(),
            acc=acc,
            generated=generated,
            descriptions=batch.descriptions,
            titles=batch.titles,
        )

    def validation_step(self, batch, batch_idx):
        return self._shared_eval_step(batch, batch_idx)

    def test_step(self, batch, batch_idx, dataloader_idx=0):
        return self._shared_eval_step(batch, batch_idx)

    def _shared_epoch_end(self, outputs: List[DecodedBatch], prefix):
        loss = np.mean([o.loss for o in outputs])
        acc = np.mean([o.acc for o in outputs])
        self.log(f"{prefix}/loss", loss)
        self.log(f"{prefix}/acc", acc)
        print(outputs)

        generated = [g for o in outputs for g in o.generated]
        references = [r for o in outputs for r in o.descriptions]
        titles = [r for o in outputs for r in o.titles]


        # Examples
        columns = ["Generated", "Reference"]
        data = list(zip(generated[:256:16], references[:256:16]))
        table = wandb.Table(data=data, columns=columns)
        self.logger.experiment.log({f"examples/{prefix}": table})

    def validation_epoch_end(self, outputs):
        self._shared_epoch_end(outputs, "val")

    def test_epoch_end(self, outputs):
        self._shared_epoch_end(outputs, "test")

    def configure_optimizers(self):
        optimizer = optim.AdamW(self.parameters(), lr=self.lr, betas=(0.9, 0.98))
        #scheduler = WarmupDecayLR(optimizer, warmup_steps=10000, d_model=self.d_model)
        return [optimizer]