File size: 7,676 Bytes
6aee98f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import math
from typing import Tuple

import torch
import torch.nn as nn
from cached_property import cached_property
from torch.nn.modules.transformer import (
    TransformerDecoder,
    TransformerDecoderLayer,
    TransformerEncoder,
    TransformerEncoderLayer,
)

from dataset import Batched, EncodedBatch
from vocab import BOS_ID, EOS_ID, PAD_ID
import helper

class PositionalEncoding(nn.Module):
    def __init__(self, dropout, dim, max_len=5000):
        """
        initialization of required variables and functions
        :param dropout: dropout probability
        :param dim: hidden size
        :param max_len: maximum length
        """
        super(PositionalEncoding, self).__init__()
        # positional encoding initialization
        pe = torch.zeros(max_len, dim)
        position = torch.arange(0, max_len).unsqueeze(1)
        # term to divide
        div_term = torch.exp(
            (torch.arange(0, dim, 2, dtype=torch.float) * -(math.log(10000.0) / dim))
        )
        # sinusoidal positional encoding
        pe[:, 0::2] = torch.sin(position.float() * div_term)
        pe[:, 1::2] = torch.cos(position.float() * div_term)
        pe = pe.unsqueeze(1)
        self.register_buffer("pe", pe)
        self.dropout = nn.Dropout(p=dropout)
        self.dim = dim

    def forward(self, emb):
        """
        create positional encoding
        :param emb: word embedding
        :param step: step for decoding in inference
        :return: positional encoding representation
        """
        emb *= math.sqrt(self.dim)
        emb = emb + self.pe[: emb.size(0)]  # [len, batch, size]
        emb = self.dropout(emb)
        return emb


class Encoder(nn.Module):
    @staticmethod
    def from_args(args) -> "Encoder":
        return Encoder(
            args.text_vocab_size + args.cond_vocab_size,
            args.max_seq_len,
            args.d_model,
            args.nhead,
            args.num_encoder_layers,
            args.dropout,
            args.mode,
        )

    def __init__(
        self,
        vocab_size: int,
        max_seq_len: int,
        d_model: int,
        nhead: int,
        num_layers: int,
        dropout: float,
        mode: str,
    ):
        super().__init__()
        self.d_model = d_model
        self.max_seq_len = max_seq_len
        self.input_embedding = nn.Embedding(vocab_size, d_model)
        self.pos_encoder = PositionalEncoding(dropout, d_model)
        encoder_layer = TransformerEncoderLayer(
            d_model, nhead, d_model * 4, dropout, norm_first=True
        )
        self.encoder = TransformerEncoder(
            encoder_layer, num_layers, nn.LayerNorm(d_model)
        )
        self.mode = mode

    @cached_property
    def device(self):
        return list(self.parameters())[0].device

    def forward(self, batched: Batched) -> EncodedBatch:
        src, src_key_padding_mask = Encoder._get_input(batched, self.mode)
        src = self.input_embedding(src)
        src = self.pos_encoder(src)
        token_encodings = self.encoder.forward(
            src=src, src_key_padding_mask=src_key_padding_mask
        )
        return EncodedBatch(
            context_encodings=token_encodings,
            context_encodings_mask=src_key_padding_mask,
        )

    @staticmethod
    def _get_input(batched: Batched, mode: str) -> Tuple[torch.Tensor, torch.Tensor]:
        return {
            helpers.BASELINE: (batched.title_token_ids, batched.title_token_ids_mask),
            helpers.KOBE_ATTRIBUTE: (
                batched.cond_title_token_ids,
                batched.cond_title_token_ids_mask,
            ),
            helpers.KOBE_KNOWLEDGE: (
                batched.title_fact_token_ids,
                batched.title_fact_token_ids_mask,
            ),
            helpers.KOBE_FULL: (
                batched.cond_title_fact_token_ids,
                batched.cond_title_fact_token_ids_mask,
            ),
        }[mode]


class Decoder(nn.Module):
    @staticmethod
    def from_args(args) -> "Decoder":
        return Decoder(
            args.text_vocab_size,
            args.max_seq_len,
            args.d_model,
            args.nhead,
            args.num_encoder_layers,
            args.dropout,
        )

    def __init__(
        self,
        vocab_size: int,
        max_seq_len: int,
        d_model: int,
        nhead: int,
        num_layers: int,
        dropout: float,
    ):
        super(Decoder, self).__init__()
        self.max_seq_len = max_seq_len
        self.embedding = nn.Embedding(vocab_size, d_model)
        self.pos_encoder = PositionalEncoding(dropout, d_model)
        decoder_layer = TransformerDecoderLayer(
            d_model, nhead, 4 * d_model, dropout, norm_first=True
        )
        self.decoder = TransformerDecoder(
            decoder_layer, num_layers, nn.LayerNorm(d_model)
        )
        self.output = nn.Linear(d_model, vocab_size)

    def forward(self, batch: Batched, encoded_batch: EncodedBatch) -> torch.Tensor:
        tgt = self.embedding(batch.description_token_ids[:-1])
        tgt = self.pos_encoder(tgt)
        tgt_mask = Decoder.generate_square_subsequent_mask(tgt.shape[0], tgt.device)
        outputs = self.decoder(
            tgt=tgt,
            tgt_mask=tgt_mask,
            tgt_key_padding_mask=batch.description_token_ids_mask[:, :-1],
            memory=encoded_batch.context_encodings,
            memory_key_padding_mask=encoded_batch.context_encodings_mask,
        )
        return self.output(outputs)

    def predict(self, encoded_batch: EncodedBatch, decoding_strategy: str):
        batch_size = encoded_batch.context_encodings.shape[1]
        tgt = torch.tensor(
            [BOS_ID] * batch_size, device=encoded_batch.context_encodings.device
        ).unsqueeze(dim=0)
        tgt_mask = Decoder.generate_square_subsequent_mask(self.max_seq_len, tgt.device)
        pred_all = []
        for idx in range(self.max_seq_len):
            tgt_emb = self.pos_encoder(self.embedding(tgt))
            outputs = self.decoder(
                tgt_emb,
                tgt_mask=tgt_mask[: idx + 1, : idx + 1],
                memory=encoded_batch.context_encodings,
                memory_key_padding_mask=encoded_batch.context_encodings_mask,
            )
            logits = self.output(outputs[-1])

            if decoding_strategy == "greedy":
                pred_step = logits.argmax(dim=1).tolist()
            elif decoding_strategy == "nucleus":
                pred_step = [
                    helpers.top_k_top_p_sampling(logits[i], top_p=0.95)
                    for i in range(batch_size)
                ]
            else:
                raise NotImplementedError
            for b in range(batch_size):
                if pred_all and pred_all[-1][b].item() in [EOS_ID, PAD_ID]:
                    pred_step[b] = PAD_ID
            if all([pred == PAD_ID for pred in pred_step]):
                break
            pred_step = torch.tensor(pred_step, device=tgt.device)
            pred_all.append(pred_step)

            if idx < self.max_seq_len - 1:
                tgt_step = pred_step.unsqueeze(dim=0)
                tgt = torch.cat([tgt, tgt_step], dim=0)

        preds = torch.stack(pred_all)
        return preds

    @staticmethod
    def generate_square_subsequent_mask(sz: int, device: torch.device) -> torch.Tensor:
        r"""
        Generate a square mask for the sequence. The masked positions are filled with
          float('-inf').
        Unmasked positions are filled with float(0.0).
        """
        return torch.triu(
            torch.full((sz, sz), float("-inf"), device=device), diagonal=1
        )