from transformers import pipeline | |
import gradio as gr | |
from pytube import YouTube | |
pipe = pipeline(model="howlbz/whisper-small-hi") # change to "your-username/the-name-you-picked" | |
def transcribe(audio,url): | |
if url: | |
youtubeObject = YouTube(url).streams.first().download() | |
audio = youtubeObject | |
text = pipe(audio)["text"] | |
return text | |
iface = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(source="microphone", type="filepath"), | |
gr.inputs.Textbox(label="give me an url",default ="https://www.youtube.com/watch?v=YzGsIavAo_E") | |
], | |
outputs="text", | |
title="Whisper Small Chinese", | |
description="Realtime demo for chinese speech recognition using a fine-tuned Whisper small model.", | |
) | |
iface.launch() | |
# import gradio as gr | |
# import numpy as np | |
# from PIL import Image | |
# import requests | |
# | |
# import hopsworks | |
# import joblib | |
# | |
# project = hopsworks.login() | |
# fs = project.get_feature_store() | |
# | |
# #HwJaWmtvaCzFra3g.89QYueFGuScRnJkiepzG2tiWtKSrqNHCCJrnVie9fwhIMeJxRUpAGAT7mF36MDMv | |
# mr = project.get_model_registry() | |
# model = mr.get_model("iris_modal", version=1) | |
# model_dir = model.download() | |
# model = joblib.load(model_dir + "/iris_model.pkl") | |
# | |
# | |
# def iris(sepal_length, sepal_width, petal_length, petal_width): | |
# input_list = [] | |
# input_list.append(sepal_length) | |
# input_list.append(sepal_width) | |
# input_list.append(petal_length) | |
# input_list.append(petal_width) | |
# # 'res' is a list of predictions returned as the label. | |
# res = model.predict(np.asarray(input_list).reshape(1, -1)) | |
# # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want | |
# # the first element. | |
# flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png" | |
# img = Image.open(requests.get(flower_url, stream=True).raw) | |
# return img | |
# | |
# demo = gr.Interface( | |
# fn=iris, | |
# title="Iris Flower Predictive Analytics", | |
# description="Experiment with sepal/petal lengths/widths to predict which flower it is.", | |
# allow_flagging="never", | |
# inputs=[ | |
# gr.inputs.Number(default=1.0, label="sepal length (cm)"), | |
# gr.inputs.Number(default=1.0, label="sepal width (cm)"), | |
# gr.inputs.Number(default=1.0, label="petal length (cm)"), | |
# gr.inputs.Number(default=1.0, label="petal width (cm)"), | |
# ], | |
# outputs=gr.Image(type="pil")) | |
# | |
# demo.launch(share = True) | |
# | |