Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import gradio as gr
|
3 |
+
from pytube import YouTube
|
4 |
+
|
5 |
+
pipe = pipeline(model="kk90ujhun/whisper-small-zh") # change to "your-username/the-name-you-picked"
|
6 |
+
|
7 |
+
def transcribe(audio,url):
|
8 |
+
if url:
|
9 |
+
youtubeObject = YouTube(url).streams.first().download()
|
10 |
+
audio = youtubeObject
|
11 |
+
text = pipe(audio)["text"]
|
12 |
+
return text
|
13 |
+
|
14 |
+
iface = gr.Interface(
|
15 |
+
fn=transcribe,
|
16 |
+
inputs=[
|
17 |
+
gr.Audio(source="microphone", type="filepath"),
|
18 |
+
gr.inputs.Textbox(label="give me an url",default ="https://www.youtube.com/watch?v=YzGsIavAo_E")
|
19 |
+
],
|
20 |
+
outputs="text",
|
21 |
+
title="Whisper Small Chinese",
|
22 |
+
description="Realtime demo for chinese speech recognition using a fine-tuned Whisper small model.",
|
23 |
+
)
|
24 |
+
|
25 |
+
iface.launch()
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
# import gradio as gr
|
30 |
+
# import numpy as np
|
31 |
+
# from PIL import Image
|
32 |
+
# import requests
|
33 |
+
#
|
34 |
+
# import hopsworks
|
35 |
+
# import joblib
|
36 |
+
#
|
37 |
+
# project = hopsworks.login()
|
38 |
+
# fs = project.get_feature_store()
|
39 |
+
#
|
40 |
+
# #HwJaWmtvaCzFra3g.89QYueFGuScRnJkiepzG2tiWtKSrqNHCCJrnVie9fwhIMeJxRUpAGAT7mF36MDMv
|
41 |
+
# mr = project.get_model_registry()
|
42 |
+
# model = mr.get_model("iris_modal", version=1)
|
43 |
+
# model_dir = model.download()
|
44 |
+
# model = joblib.load(model_dir + "/iris_model.pkl")
|
45 |
+
#
|
46 |
+
#
|
47 |
+
# def iris(sepal_length, sepal_width, petal_length, petal_width):
|
48 |
+
# input_list = []
|
49 |
+
# input_list.append(sepal_length)
|
50 |
+
# input_list.append(sepal_width)
|
51 |
+
# input_list.append(petal_length)
|
52 |
+
# input_list.append(petal_width)
|
53 |
+
# # 'res' is a list of predictions returned as the label.
|
54 |
+
# res = model.predict(np.asarray(input_list).reshape(1, -1))
|
55 |
+
# # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
|
56 |
+
# # the first element.
|
57 |
+
# flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png"
|
58 |
+
# img = Image.open(requests.get(flower_url, stream=True).raw)
|
59 |
+
# return img
|
60 |
+
#
|
61 |
+
# demo = gr.Interface(
|
62 |
+
# fn=iris,
|
63 |
+
# title="Iris Flower Predictive Analytics",
|
64 |
+
# description="Experiment with sepal/petal lengths/widths to predict which flower it is.",
|
65 |
+
# allow_flagging="never",
|
66 |
+
# inputs=[
|
67 |
+
# gr.inputs.Number(default=1.0, label="sepal length (cm)"),
|
68 |
+
# gr.inputs.Number(default=1.0, label="sepal width (cm)"),
|
69 |
+
# gr.inputs.Number(default=1.0, label="petal length (cm)"),
|
70 |
+
# gr.inputs.Number(default=1.0, label="petal width (cm)"),
|
71 |
+
# ],
|
72 |
+
# outputs=gr.Image(type="pil"))
|
73 |
+
#
|
74 |
+
# demo.launch(share = True)
|
75 |
+
#
|