Spaces:
Build error
Build error
frankleeeee
commited on
Commit
·
5613724
1
Parent(s):
68404e4
updated to v1.1
Browse files- app.py +299 -54
- configs/dit/inference/16x256x256.py +2 -2
- configs/dit/inference/1x256x256-class.py +2 -2
- configs/dit/inference/1x256x256.py +2 -2
- configs/dit/train/16x256x256.py +9 -9
- configs/dit/train/1x256x256.py +9 -8
- configs/latte/inference/16x256x256-class.py +2 -2
- configs/latte/inference/16x256x256.py +2 -2
- configs/latte/train/16x256x256.py +8 -8
- configs/opensora-v1-1/inference/sample-ref.py +62 -0
- configs/opensora-v1-1/inference/sample.py +43 -0
- configs/opensora-v1-1/train/benchmark.py +101 -0
- configs/opensora-v1-1/train/image.py +65 -0
- configs/opensora-v1-1/train/stage1.py +77 -0
- configs/opensora-v1-1/train/stage2.py +79 -0
- configs/opensora-v1-1/train/stage3.py +79 -0
- configs/opensora-v1-1/train/video.py +67 -0
- configs/opensora/inference/16x256x256.py +7 -4
- configs/opensora/inference/16x512x512.py +3 -3
- configs/opensora/inference/64x512x512.py +2 -2
- configs/opensora/train/16x256x256-mask.py +60 -0
- configs/opensora/train/16x256x256-spee.py +60 -0
- configs/opensora/train/16x256x256.py +8 -8
- configs/opensora/train/16x512x512.py +9 -9
- configs/opensora/train/360x512x512.py +13 -7
- configs/opensora/train/64x512x512-sp.py +9 -9
- configs/opensora/train/64x512x512.py +8 -8
- configs/pixart/inference/16x256x256.py +2 -2
- configs/pixart/inference/1x1024MS.py +3 -3
- configs/pixart/inference/1x256x256.py +2 -2
- configs/pixart/inference/1x512x512.py +9 -3
- configs/pixart/train/16x256x256.py +9 -9
- configs/pixart/train/1x512x512.py +8 -8
- configs/pixart/train/64x512x512.py +9 -8
- requirements.txt +1 -1
app.py
CHANGED
@@ -11,25 +11,148 @@ import importlib
|
|
11 |
import os
|
12 |
import subprocess
|
13 |
import sys
|
|
|
|
|
|
|
14 |
|
15 |
import spaces
|
16 |
import torch
|
17 |
|
18 |
import gradio as gr
|
19 |
|
20 |
-
|
|
|
21 |
CONFIG_MAP = {
|
22 |
-
"v1-
|
23 |
-
"v1-
|
24 |
-
"v1-HQ-16x512x512": "configs/opensora/inference/16x512x512.py",
|
25 |
}
|
26 |
HF_STDIT_MAP = {
|
27 |
-
"v1-
|
28 |
-
"v1-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
}
|
31 |
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
def install_dependencies(enable_optimization=False):
|
34 |
"""
|
35 |
Install the required dependencies for the demo if they are not already installed.
|
@@ -72,6 +195,9 @@ def install_dependencies(enable_optimization=False):
|
|
72 |
)
|
73 |
|
74 |
|
|
|
|
|
|
|
75 |
def read_config(config_path):
|
76 |
"""
|
77 |
Read the configuration file.
|
@@ -81,7 +207,7 @@ def read_config(config_path):
|
|
81 |
return Config.fromfile(config_path)
|
82 |
|
83 |
|
84 |
-
def build_models(model_type, config):
|
85 |
"""
|
86 |
Build the models for the given model type and configuration.
|
87 |
"""
|
@@ -101,8 +227,7 @@ def build_models(model_type, config):
|
|
101 |
|
102 |
stdit = AutoModel.from_pretrained(
|
103 |
HF_STDIT_MAP[model_type],
|
104 |
-
enable_flash_attn=
|
105 |
-
enable_layernorm_kernel=False,
|
106 |
trust_remote_code=True,
|
107 |
).cuda()
|
108 |
|
@@ -115,23 +240,20 @@ def build_models(model_type, config):
|
|
115 |
text_encoder.y_embedder = stdit.y_embedder
|
116 |
|
117 |
# move modelst to device
|
118 |
-
vae = vae.to(torch.
|
119 |
text_encoder.t5.model = text_encoder.t5.model.eval() # t5 must be in fp32
|
120 |
-
stdit = stdit.to(torch.
|
121 |
-
return vae, text_encoder, stdit, scheduler
|
122 |
-
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
return latent_size
|
128 |
|
129 |
|
130 |
def parse_args():
|
131 |
parser = argparse.ArgumentParser()
|
132 |
parser.add_argument(
|
133 |
"--model-type",
|
134 |
-
default="v1-
|
135 |
choices=MODEL_TYPES,
|
136 |
help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}",
|
137 |
)
|
@@ -168,27 +290,129 @@ torch.jit._state.disable()
|
|
168 |
# set up
|
169 |
install_dependencies(enable_optimization=args.enable_optimization)
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
# build model
|
172 |
-
vae, text_encoder, stdit, scheduler = build_models(args.model_type, config)
|
173 |
|
174 |
|
175 |
@spaces.GPU(duration=200)
|
176 |
-
def run_inference(prompt_text):
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
|
194 |
def main():
|
@@ -218,27 +442,48 @@ def main():
|
|
218 |
|
219 |
with gr.Row():
|
220 |
with gr.Column():
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
|
|
|
|
|
|
|
|
224 |
with gr.Column():
|
225 |
-
output_video = gr.Video(
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
outputs=[output_video],
|
240 |
-
cache_examples=True,
|
241 |
-
)
|
242 |
|
243 |
# launch
|
244 |
demo.launch(server_port=args.port, server_name=args.host, share=args.share)
|
|
|
11 |
import os
|
12 |
import subprocess
|
13 |
import sys
|
14 |
+
import re
|
15 |
+
import json
|
16 |
+
import math
|
17 |
|
18 |
import spaces
|
19 |
import torch
|
20 |
|
21 |
import gradio as gr
|
22 |
|
23 |
+
|
24 |
+
MODEL_TYPES = ["v1.1"]
|
25 |
CONFIG_MAP = {
|
26 |
+
"v1.1-stage2": "configs/opensora-v1-1/inference/sample-ref.py",
|
27 |
+
"v1.1-stage3": "configs/opensora-v1-1/inference/sample-ref.py",
|
|
|
28 |
}
|
29 |
HF_STDIT_MAP = {
|
30 |
+
"v1.1-stage2": "hpcai-tech/OpenSora-STDiT-v2-stage2",
|
31 |
+
"v1.1-stage3": "hpcai-tech/OpenSora-STDiT-v2-stage3",
|
32 |
+
}
|
33 |
+
RESOLUTION_MAP = {
|
34 |
+
"144p": (144, 256),
|
35 |
+
"240p": (240, 426),
|
36 |
+
"360p": (360, 480),
|
37 |
+
"480p": (480, 858),
|
38 |
+
"720p": (720, 1280),
|
39 |
+
"1080p": (1080, 1920)
|
40 |
}
|
41 |
|
42 |
|
43 |
+
# ============================
|
44 |
+
# Utils
|
45 |
+
# ============================
|
46 |
+
def collect_references_batch(reference_paths, vae, image_size):
|
47 |
+
from opensora.datasets.utils import read_from_path
|
48 |
+
|
49 |
+
refs_x = []
|
50 |
+
for reference_path in reference_paths:
|
51 |
+
if reference_path is None:
|
52 |
+
refs_x.append([])
|
53 |
+
continue
|
54 |
+
ref_path = reference_path.split(";")
|
55 |
+
ref = []
|
56 |
+
for r_path in ref_path:
|
57 |
+
r = read_from_path(r_path, image_size, transform_name="resize_crop")
|
58 |
+
r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype))
|
59 |
+
r_x = r_x.squeeze(0)
|
60 |
+
ref.append(r_x)
|
61 |
+
refs_x.append(ref)
|
62 |
+
# refs_x: [batch, ref_num, C, T, H, W]
|
63 |
+
return refs_x
|
64 |
+
|
65 |
+
|
66 |
+
def process_mask_strategy(mask_strategy):
|
67 |
+
mask_batch = []
|
68 |
+
mask_strategy = mask_strategy.split(";")
|
69 |
+
for mask in mask_strategy:
|
70 |
+
mask_group = mask.split(",")
|
71 |
+
assert len(mask_group) >= 1 and len(mask_group) <= 6, f"Invalid mask strategy: {mask}"
|
72 |
+
if len(mask_group) == 1:
|
73 |
+
mask_group.extend(["0", "0", "0", "1", "0"])
|
74 |
+
elif len(mask_group) == 2:
|
75 |
+
mask_group.extend(["0", "0", "1", "0"])
|
76 |
+
elif len(mask_group) == 3:
|
77 |
+
mask_group.extend(["0", "1", "0"])
|
78 |
+
elif len(mask_group) == 4:
|
79 |
+
mask_group.extend(["1", "0"])
|
80 |
+
elif len(mask_group) == 5:
|
81 |
+
mask_group.append("0")
|
82 |
+
mask_batch.append(mask_group)
|
83 |
+
return mask_batch
|
84 |
+
|
85 |
+
|
86 |
+
def apply_mask_strategy(z, refs_x, mask_strategys, loop_i):
|
87 |
+
masks = []
|
88 |
+
for i, mask_strategy in enumerate(mask_strategys):
|
89 |
+
mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device)
|
90 |
+
if mask_strategy is None:
|
91 |
+
masks.append(mask)
|
92 |
+
continue
|
93 |
+
mask_strategy = process_mask_strategy(mask_strategy)
|
94 |
+
for mst in mask_strategy:
|
95 |
+
loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mst
|
96 |
+
loop_id = int(loop_id)
|
97 |
+
if loop_id != loop_i:
|
98 |
+
continue
|
99 |
+
m_id = int(m_id)
|
100 |
+
m_ref_start = int(m_ref_start)
|
101 |
+
m_length = int(m_length)
|
102 |
+
m_target_start = int(m_target_start)
|
103 |
+
edit_ratio = float(edit_ratio)
|
104 |
+
ref = refs_x[i][m_id] # [C, T, H, W]
|
105 |
+
if m_ref_start < 0:
|
106 |
+
m_ref_start = ref.shape[1] + m_ref_start
|
107 |
+
if m_target_start < 0:
|
108 |
+
# z: [B, C, T, H, W]
|
109 |
+
m_target_start = z.shape[2] + m_target_start
|
110 |
+
z[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length]
|
111 |
+
mask[m_target_start : m_target_start + m_length] = edit_ratio
|
112 |
+
masks.append(mask)
|
113 |
+
masks = torch.stack(masks)
|
114 |
+
return masks
|
115 |
+
|
116 |
+
|
117 |
+
def process_prompts(prompts, num_loop):
|
118 |
+
from opensora.models.text_encoder.t5 import text_preprocessing
|
119 |
+
|
120 |
+
ret_prompts = []
|
121 |
+
for prompt in prompts:
|
122 |
+
if prompt.startswith("|0|"):
|
123 |
+
prompt_list = prompt.split("|")[1:]
|
124 |
+
text_list = []
|
125 |
+
for i in range(0, len(prompt_list), 2):
|
126 |
+
start_loop = int(prompt_list[i])
|
127 |
+
text = prompt_list[i + 1]
|
128 |
+
text = text_preprocessing(text)
|
129 |
+
end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_loop
|
130 |
+
text_list.extend([text] * (end_loop - start_loop))
|
131 |
+
assert len(text_list) == num_loop, f"Prompt loop mismatch: {len(text_list)} != {num_loop}"
|
132 |
+
ret_prompts.append(text_list)
|
133 |
+
else:
|
134 |
+
prompt = text_preprocessing(prompt)
|
135 |
+
ret_prompts.append([prompt] * num_loop)
|
136 |
+
return ret_prompts
|
137 |
+
|
138 |
+
|
139 |
+
def extract_json_from_prompts(prompts):
|
140 |
+
additional_infos = []
|
141 |
+
ret_prompts = []
|
142 |
+
for prompt in prompts:
|
143 |
+
parts = re.split(r"(?=[{\[])", prompt)
|
144 |
+
assert len(parts) <= 2, f"Invalid prompt: {prompt}"
|
145 |
+
ret_prompts.append(parts[0])
|
146 |
+
if len(parts) == 1:
|
147 |
+
additional_infos.append({})
|
148 |
+
else:
|
149 |
+
additional_infos.append(json.loads(parts[1]))
|
150 |
+
return ret_prompts, additional_infos
|
151 |
+
|
152 |
+
|
153 |
+
# ============================
|
154 |
+
# Runtime Environment
|
155 |
+
# ============================
|
156 |
def install_dependencies(enable_optimization=False):
|
157 |
"""
|
158 |
Install the required dependencies for the demo if they are not already installed.
|
|
|
195 |
)
|
196 |
|
197 |
|
198 |
+
# ============================
|
199 |
+
# Model-related
|
200 |
+
# ============================
|
201 |
def read_config(config_path):
|
202 |
"""
|
203 |
Read the configuration file.
|
|
|
207 |
return Config.fromfile(config_path)
|
208 |
|
209 |
|
210 |
+
def build_models(model_type, config, enable_optimization=False):
|
211 |
"""
|
212 |
Build the models for the given model type and configuration.
|
213 |
"""
|
|
|
227 |
|
228 |
stdit = AutoModel.from_pretrained(
|
229 |
HF_STDIT_MAP[model_type],
|
230 |
+
enable_flash_attn=enable_optimization,
|
|
|
231 |
trust_remote_code=True,
|
232 |
).cuda()
|
233 |
|
|
|
240 |
text_encoder.y_embedder = stdit.y_embedder
|
241 |
|
242 |
# move modelst to device
|
243 |
+
vae = vae.to(torch.bfloat16).eval()
|
244 |
text_encoder.t5.model = text_encoder.t5.model.eval() # t5 must be in fp32
|
245 |
+
stdit = stdit.to(torch.bfloat16).eval()
|
|
|
|
|
246 |
|
247 |
+
# clear cuda
|
248 |
+
torch.cuda.empty_cache()
|
249 |
+
return vae, text_encoder, stdit, scheduler
|
|
|
250 |
|
251 |
|
252 |
def parse_args():
|
253 |
parser = argparse.ArgumentParser()
|
254 |
parser.add_argument(
|
255 |
"--model-type",
|
256 |
+
default="v1.1-stage3",
|
257 |
choices=MODEL_TYPES,
|
258 |
help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}",
|
259 |
)
|
|
|
290 |
# set up
|
291 |
install_dependencies(enable_optimization=args.enable_optimization)
|
292 |
|
293 |
+
# import after installation
|
294 |
+
from opensora.datasets import IMG_FPS, save_sample
|
295 |
+
from opensora.utils.misc import to_torch_dtype
|
296 |
+
|
297 |
+
# some global variables
|
298 |
+
dtype = to_torch_dtype(config.dtype)
|
299 |
+
device = torch.device("cuda")
|
300 |
+
|
301 |
# build model
|
302 |
+
vae, text_encoder, stdit, scheduler = build_models(args.model_type, config, enable_optimization=args.enable_optimization)
|
303 |
|
304 |
|
305 |
@spaces.GPU(duration=200)
|
306 |
+
def run_inference(mode, prompt_text, resolution, length, reference_image):
|
307 |
+
with torch.inference_mode():
|
308 |
+
# ======================
|
309 |
+
# 1. Preparation
|
310 |
+
# ======================
|
311 |
+
# parse the inputs
|
312 |
+
resolution = RESOLUTION_MAP[resolution]
|
313 |
+
|
314 |
+
# compute number of loops
|
315 |
+
num_seconds = int(length.rstrip('s'))
|
316 |
+
total_number_of_frames = num_seconds * config.fps / config.frame_interval
|
317 |
+
num_loop = math.ceil(total_number_of_frames / config.num_frames)
|
318 |
+
|
319 |
+
# prepare model args
|
320 |
+
model_args = dict()
|
321 |
+
height = torch.tensor([resolution[0]], device=device, dtype=dtype)
|
322 |
+
width = torch.tensor([resolution[1]], device=device, dtype=dtype)
|
323 |
+
num_frames = torch.tensor([config.num_frames], device=device, dtype=dtype)
|
324 |
+
ar = torch.tensor([resolution[0] / resolution[1]], device=device, dtype=dtype)
|
325 |
+
if config.num_frames == 1:
|
326 |
+
config.fps = IMG_FPS
|
327 |
+
fps = torch.tensor([config.fps], device=device, dtype=dtype)
|
328 |
+
model_args["height"] = height
|
329 |
+
model_args["width"] = width
|
330 |
+
model_args["num_frames"] = num_frames
|
331 |
+
model_args["ar"] = ar
|
332 |
+
model_args["fps"] = fps
|
333 |
+
|
334 |
+
# compute latent size
|
335 |
+
input_size = (config.num_frames, *resolution)
|
336 |
+
latent_size = vae.get_latent_size(input_size)
|
337 |
+
|
338 |
+
# process prompt
|
339 |
+
prompt_raw = [prompt_text]
|
340 |
+
prompt_raw, _ = extract_json_from_prompts(prompt_raw)
|
341 |
+
prompt_loops = process_prompts(prompt_raw, num_loop)
|
342 |
+
video_clips = []
|
343 |
+
|
344 |
+
# prepare mask strategy
|
345 |
+
if mode == "Text2Video":
|
346 |
+
mask_strategy = [None]
|
347 |
+
elif mode == "Image2Video":
|
348 |
+
mask_strategy = ['0']
|
349 |
+
else:
|
350 |
+
raise ValueError(f"Invalid mode: {mode}")
|
351 |
+
|
352 |
+
# =========================
|
353 |
+
# 2. Load reference images
|
354 |
+
# =========================
|
355 |
+
if mode == "Text2Video":
|
356 |
+
refs_x = collect_references_batch([None], vae, resolution)
|
357 |
+
elif mode == "Image2Video":
|
358 |
+
# save image to disk
|
359 |
+
from PIL import Image
|
360 |
+
im = Image.fromarray(reference_image)
|
361 |
+
im.save("test.jpg")
|
362 |
+
refs_x = collect_references_batch(["test.jpg"], vae, resolution)
|
363 |
+
else:
|
364 |
+
raise ValueError(f"Invalid mode: {mode}")
|
365 |
+
|
366 |
+
# 4.3. long video generation
|
367 |
+
for loop_i in range(num_loop):
|
368 |
+
# 4.4 sample in hidden space
|
369 |
+
batch_prompts = [prompt[loop_i] for prompt in prompt_loops]
|
370 |
+
z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
|
371 |
+
|
372 |
+
# 4.5. apply mask strategy
|
373 |
+
masks = None
|
374 |
+
|
375 |
+
# if cfg.reference_path is not None:
|
376 |
+
if loop_i > 0:
|
377 |
+
ref_x = vae.encode(video_clips[-1])
|
378 |
+
for j, refs in enumerate(refs_x):
|
379 |
+
if refs is None:
|
380 |
+
refs_x[j] = [ref_x[j]]
|
381 |
+
else:
|
382 |
+
refs.append(ref_x[j])
|
383 |
+
if mask_strategy[j] is None:
|
384 |
+
mask_strategy[j] = ""
|
385 |
+
else:
|
386 |
+
mask_strategy[j] += ";"
|
387 |
+
mask_strategy[
|
388 |
+
j
|
389 |
+
] += f"{loop_i},{len(refs)-1},-{config.condition_frame_length},0,{config.condition_frame_length}"
|
390 |
+
|
391 |
+
masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i)
|
392 |
+
|
393 |
+
# 4.6. diffusion sampling
|
394 |
+
samples = scheduler.sample(
|
395 |
+
stdit,
|
396 |
+
text_encoder,
|
397 |
+
z=z,
|
398 |
+
prompts=batch_prompts,
|
399 |
+
device=device,
|
400 |
+
additional_args=model_args,
|
401 |
+
mask=masks, # scheduler must support mask
|
402 |
+
)
|
403 |
+
samples = vae.decode(samples.to(dtype))
|
404 |
+
video_clips.append(samples)
|
405 |
|
406 |
+
# 4.7. save video
|
407 |
+
if loop_i == num_loop - 1:
|
408 |
+
video_clips_list = [
|
409 |
+
video_clips[0][0]] + [video_clips[i][0][:, config.condition_frame_length :]
|
410 |
+
for i in range(1, num_loop)
|
411 |
+
]
|
412 |
+
video = torch.cat(video_clips_list, dim=1)
|
413 |
+
save_path = f"{args.output}/sample"
|
414 |
+
saved_path = save_sample(video, fps=config.fps // config.frame_interval, save_path=save_path, force_video=True)
|
415 |
+
return saved_path
|
416 |
|
417 |
|
418 |
def main():
|
|
|
442 |
|
443 |
with gr.Row():
|
444 |
with gr.Column():
|
445 |
+
mode = gr.Radio(
|
446 |
+
choices=["Text2Video", "Image2Video"],
|
447 |
+
value="Text2Video",
|
448 |
+
label="Usage",
|
449 |
+
info="Choose your usage scenario",
|
450 |
+
)
|
451 |
+
prompt_text = gr.Textbox(
|
452 |
+
label="Prompt",
|
453 |
+
placeholder="Describe your video here",
|
454 |
+
lines=4,
|
455 |
+
)
|
456 |
+
resolution = gr.Radio(
|
457 |
+
choices=["144p", "240p", "360p", "480p", "720p", "1080p"],
|
458 |
+
value="144p",
|
459 |
+
label="Resolution",
|
460 |
+
)
|
461 |
+
length = gr.Radio(
|
462 |
+
choices=["2s", "4s", "8s"],
|
463 |
+
value="2s",
|
464 |
+
label="Video Length",
|
465 |
+
info="8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time."
|
466 |
+
)
|
467 |
|
468 |
+
reference_image = gr.Image(
|
469 |
+
label="Reference Image (only used for Image2Video)",
|
470 |
+
)
|
471 |
+
|
472 |
with gr.Column():
|
473 |
+
output_video = gr.Video(
|
474 |
+
label="Output Video",
|
475 |
+
height="100%"
|
476 |
+
)
|
477 |
+
|
478 |
+
with gr.Row():
|
479 |
+
submit_button = gr.Button("Generate video")
|
480 |
+
|
481 |
+
|
482 |
+
submit_button.click(
|
483 |
+
fn=run_inference,
|
484 |
+
inputs=[mode, prompt_text, resolution, length, reference_image],
|
485 |
+
outputs=output_video
|
486 |
+
)
|
|
|
|
|
|
|
487 |
|
488 |
# launch
|
489 |
demo.launch(server_port=args.port, server_name=args.host, share=args.share)
|
configs/dit/inference/16x256x256.py
CHANGED
@@ -22,10 +22,10 @@ scheduler = dict(
|
|
22 |
num_sampling_steps=20,
|
23 |
cfg_scale=4.0,
|
24 |
)
|
25 |
-
dtype = "
|
26 |
|
27 |
# Others
|
28 |
batch_size = 2
|
29 |
seed = 42
|
30 |
prompt_path = "./assets/texts/ucf101_labels.txt"
|
31 |
-
save_dir = "./
|
|
|
22 |
num_sampling_steps=20,
|
23 |
cfg_scale=4.0,
|
24 |
)
|
25 |
+
dtype = "bf16"
|
26 |
|
27 |
# Others
|
28 |
batch_size = 2
|
29 |
seed = 42
|
30 |
prompt_path = "./assets/texts/ucf101_labels.txt"
|
31 |
+
save_dir = "./samples/samples/"
|
configs/dit/inference/1x256x256-class.py
CHANGED
@@ -22,10 +22,10 @@ scheduler = dict(
|
|
22 |
num_sampling_steps=20,
|
23 |
cfg_scale=4.0,
|
24 |
)
|
25 |
-
dtype = "
|
26 |
|
27 |
# Others
|
28 |
batch_size = 2
|
29 |
seed = 42
|
30 |
prompt_path = "./assets/texts/imagenet_id.txt"
|
31 |
-
save_dir = "./
|
|
|
22 |
num_sampling_steps=20,
|
23 |
cfg_scale=4.0,
|
24 |
)
|
25 |
+
dtype = "bf16"
|
26 |
|
27 |
# Others
|
28 |
batch_size = 2
|
29 |
seed = 42
|
30 |
prompt_path = "./assets/texts/imagenet_id.txt"
|
31 |
+
save_dir = "./samples/samples/"
|
configs/dit/inference/1x256x256.py
CHANGED
@@ -23,10 +23,10 @@ scheduler = dict(
|
|
23 |
num_sampling_steps=20,
|
24 |
cfg_scale=4.0,
|
25 |
)
|
26 |
-
dtype = "
|
27 |
|
28 |
# Others
|
29 |
batch_size = 2
|
30 |
seed = 42
|
31 |
prompt_path = "./assets/texts/imagenet_labels.txt"
|
32 |
-
save_dir = "./
|
|
|
23 |
num_sampling_steps=20,
|
24 |
cfg_scale=4.0,
|
25 |
)
|
26 |
+
dtype = "bf16"
|
27 |
|
28 |
# Others
|
29 |
batch_size = 2
|
30 |
seed = 42
|
31 |
prompt_path = "./assets/texts/imagenet_labels.txt"
|
32 |
+
save_dir = "./samples/samples/"
|
configs/dit/train/16x256x256.py
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
-
num_frames = 16
|
2 |
-
frame_interval = 3
|
3 |
-
image_size = (256, 256)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
|
|
12 |
dtype = "bf16"
|
13 |
-
grad_checkpoint =
|
14 |
plugin = "zero2"
|
15 |
sp_size = 1
|
16 |
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
|
10 |
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
15 |
sp_size = 1
|
16 |
|
configs/dit/train/1x256x256.py
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
-
num_frames = 1
|
2 |
-
frame_interval = 1
|
3 |
-
image_size = (256, 256)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
|
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = False
|
14 |
plugin = "zero2"
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=1,
|
6 |
+
frame_interval=1,
|
7 |
+
image_size=(256, 256),
|
8 |
+
transform_name="center",
|
9 |
+
)
|
10 |
|
11 |
# Define acceleration
|
12 |
+
num_workers = 4
|
13 |
dtype = "bf16"
|
14 |
grad_checkpoint = False
|
15 |
plugin = "zero2"
|
configs/latte/inference/16x256x256-class.py
CHANGED
@@ -21,10 +21,10 @@ scheduler = dict(
|
|
21 |
num_sampling_steps=20,
|
22 |
cfg_scale=4.0,
|
23 |
)
|
24 |
-
dtype = "
|
25 |
|
26 |
# Others
|
27 |
batch_size = 2
|
28 |
seed = 42
|
29 |
prompt_path = "./assets/texts/ucf101_id.txt"
|
30 |
-
save_dir = "./
|
|
|
21 |
num_sampling_steps=20,
|
22 |
cfg_scale=4.0,
|
23 |
)
|
24 |
+
dtype = "bf16"
|
25 |
|
26 |
# Others
|
27 |
batch_size = 2
|
28 |
seed = 42
|
29 |
prompt_path = "./assets/texts/ucf101_id.txt"
|
30 |
+
save_dir = "./samples/samples/"
|
configs/latte/inference/16x256x256.py
CHANGED
@@ -22,10 +22,10 @@ scheduler = dict(
|
|
22 |
num_sampling_steps=20,
|
23 |
cfg_scale=4.0,
|
24 |
)
|
25 |
-
dtype = "
|
26 |
|
27 |
# Others
|
28 |
batch_size = 2
|
29 |
seed = 42
|
30 |
prompt_path = "./assets/texts/ucf101_labels.txt"
|
31 |
-
save_dir = "./
|
|
|
22 |
num_sampling_steps=20,
|
23 |
cfg_scale=4.0,
|
24 |
)
|
25 |
+
dtype = "bf16"
|
26 |
|
27 |
# Others
|
28 |
batch_size = 2
|
29 |
seed = 42
|
30 |
prompt_path = "./assets/texts/ucf101_labels.txt"
|
31 |
+
save_dir = "./samples/samples/"
|
configs/latte/train/16x256x256.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
-
num_frames = 16
|
2 |
-
frame_interval = 3
|
3 |
-
image_size = (256, 256)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
|
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
|
10 |
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
configs/opensora-v1-1/inference/sample-ref.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
frame_interval = 3
|
3 |
+
fps = 24
|
4 |
+
image_size = (240, 426)
|
5 |
+
multi_resolution = "STDiT2"
|
6 |
+
|
7 |
+
# Condition
|
8 |
+
prompt_path = None
|
9 |
+
prompt = [
|
10 |
+
"A car driving on the ocean.",
|
11 |
+
'Drone view of waves crashing against the rugged cliffs along Big Sur\'s garay point beach. The crashing blue waters create white-tipped waves, while the golden light of the setting sun illuminates the rocky shore. A small island with a lighthouse sits in the distance, and green shrubbery covers the cliff\'s edge. The steep drop from the road down to the beach is a dramatic feat, with the cliff\'s edges jutting out over the sea. This is a view that captures the raw beauty of the coast and the rugged landscape of the Pacific Coast Highway.{"reference_path": "assets/images/condition/cliff.png", "mask_strategy": "0"}',
|
12 |
+
"In an ornate, historical hall, a massive tidal wave peaks and begins to crash. Two surfers, seizing the moment, skillfully navigate the face of the wave.",
|
13 |
+
]
|
14 |
+
|
15 |
+
loop = 2
|
16 |
+
condition_frame_length = 4
|
17 |
+
reference_path = [
|
18 |
+
"https://cdn.openai.com/tmp/s/interp/d0.mp4",
|
19 |
+
None,
|
20 |
+
"assets/images/condition/wave.png",
|
21 |
+
]
|
22 |
+
# valid when reference_path is not None
|
23 |
+
# (loop id, ref id, ref start, length, target start)
|
24 |
+
mask_strategy = [
|
25 |
+
"0,0,0,0,8,0.3",
|
26 |
+
None,
|
27 |
+
"0",
|
28 |
+
]
|
29 |
+
|
30 |
+
# Define model
|
31 |
+
model = dict(
|
32 |
+
type="STDiT2-XL/2",
|
33 |
+
from_pretrained=None,
|
34 |
+
input_sq_size=512,
|
35 |
+
qk_norm=True,
|
36 |
+
enable_flashattn=True,
|
37 |
+
enable_layernorm_kernel=True,
|
38 |
+
)
|
39 |
+
vae = dict(
|
40 |
+
type="VideoAutoencoderKL",
|
41 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
42 |
+
cache_dir=None, # "/mnt/hdd/cached_models",
|
43 |
+
micro_batch_size=4,
|
44 |
+
)
|
45 |
+
text_encoder = dict(
|
46 |
+
type="t5",
|
47 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
48 |
+
cache_dir=None, # "/mnt/hdd/cached_models",
|
49 |
+
model_max_length=200,
|
50 |
+
)
|
51 |
+
scheduler = dict(
|
52 |
+
type="iddpm",
|
53 |
+
num_sampling_steps=100,
|
54 |
+
cfg_scale=7.0,
|
55 |
+
cfg_channel=3, # or None
|
56 |
+
)
|
57 |
+
dtype = "bf16"
|
58 |
+
|
59 |
+
# Others
|
60 |
+
batch_size = 1
|
61 |
+
seed = 42
|
62 |
+
save_dir = "./samples/samples/"
|
configs/opensora-v1-1/inference/sample.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
frame_interval = 3
|
3 |
+
fps = 24
|
4 |
+
image_size = (240, 426)
|
5 |
+
multi_resolution = "STDiT2"
|
6 |
+
|
7 |
+
# Define model
|
8 |
+
model = dict(
|
9 |
+
type="STDiT2-XL/2",
|
10 |
+
from_pretrained=None,
|
11 |
+
input_sq_size=512,
|
12 |
+
qk_norm=True,
|
13 |
+
enable_flashattn=True,
|
14 |
+
enable_layernorm_kernel=True,
|
15 |
+
)
|
16 |
+
vae = dict(
|
17 |
+
type="VideoAutoencoderKL",
|
18 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
19 |
+
cache_dir=None, # "/mnt/hdd/cached_models",
|
20 |
+
micro_batch_size=4,
|
21 |
+
)
|
22 |
+
text_encoder = dict(
|
23 |
+
type="t5",
|
24 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
25 |
+
cache_dir=None, # "/mnt/hdd/cached_models",
|
26 |
+
model_max_length=200,
|
27 |
+
)
|
28 |
+
scheduler = dict(
|
29 |
+
type="iddpm",
|
30 |
+
num_sampling_steps=100,
|
31 |
+
cfg_scale=7.0,
|
32 |
+
cfg_channel=3, # or None
|
33 |
+
)
|
34 |
+
dtype = "bf16"
|
35 |
+
|
36 |
+
# Condition
|
37 |
+
prompt_path = "./assets/texts/t2v_samples.txt"
|
38 |
+
prompt = None # prompt has higher priority than prompt_path
|
39 |
+
|
40 |
+
# Others
|
41 |
+
batch_size = 1
|
42 |
+
seed = 42
|
43 |
+
save_dir = "./samples/samples/"
|
configs/opensora-v1-1/train/benchmark.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# this file is only for batch size search and is not used for training
|
2 |
+
|
3 |
+
# Define dataset
|
4 |
+
dataset = dict(
|
5 |
+
type="VariableVideoTextDataset",
|
6 |
+
data_path=None,
|
7 |
+
num_frames=None,
|
8 |
+
frame_interval=3,
|
9 |
+
image_size=(None, None),
|
10 |
+
transform_name="resize_crop",
|
11 |
+
)
|
12 |
+
|
13 |
+
# bucket config format:
|
14 |
+
# 1. { resolution: {num_frames: (prob, batch_size)} }, in this case batch_size is ignored when searching
|
15 |
+
# 2. { resolution: {num_frames: (prob, (max_batch_size, ))} }, batch_size is searched in the range [batch_size_start, max_batch_size), batch_size_start is configured via CLI
|
16 |
+
# 3. { resolution: {num_frames: (prob, (min_batch_size, max_batch_size))} }, batch_size is searched in the range [min_batch_size, max_batch_size)
|
17 |
+
# 4. { resolution: {num_frames: (prob, (min_batch_size, max_batch_size, step_size))} }, batch_size is searched in the range [min_batch_size, max_batch_size) with step_size (grid search)
|
18 |
+
# 5. { resolution: {num_frames: (0.0, None)} }, this bucket will not be used
|
19 |
+
|
20 |
+
bucket_config = {
|
21 |
+
# == manual search ==
|
22 |
+
# "240p": {128: (1.0, 2)}, # 4.28s/it
|
23 |
+
# "240p": {64: (1.0, 4)},
|
24 |
+
# "240p": {32: (1.0, 8)}, # 4.6s/it
|
25 |
+
# "240p": {16: (1.0, 16)}, # 4.6s/it
|
26 |
+
# "480p": {16: (1.0, 4)}, # 4.6s/it
|
27 |
+
# "720p": {16: (1.0, 2)}, # 5.89s/it
|
28 |
+
# "256": {1: (1.0, 256)}, # 4.5s/it
|
29 |
+
# "512": {1: (1.0, 96)}, # 4.7s/it
|
30 |
+
# "512": {1: (1.0, 128)}, # 6.3s/it
|
31 |
+
# "480p": {1: (1.0, 50)}, # 4.0s/it
|
32 |
+
# "1024": {1: (1.0, 32)}, # 6.8s/it
|
33 |
+
# "1024": {1: (1.0, 20)}, # 4.3s/it
|
34 |
+
# "1080p": {1: (1.0, 16)}, # 8.6s/it
|
35 |
+
# "1080p": {1: (1.0, 8)}, # 4.4s/it
|
36 |
+
# == stage 2 ==
|
37 |
+
# "240p": {
|
38 |
+
# 16: (1.0, (2, 32)),
|
39 |
+
# 32: (1.0, (2, 16)),
|
40 |
+
# 64: (1.0, (2, 8)),
|
41 |
+
# 128: (1.0, (2, 6)),
|
42 |
+
# },
|
43 |
+
# "256": {1: (1.0, (128, 300))},
|
44 |
+
# "512": {1: (0.5, (64, 128))},
|
45 |
+
# "480p": {1: (0.4, (32, 128)), 16: (0.4, (2, 32)), 32: (0.0, None)},
|
46 |
+
# "720p": {16: (0.1, (2, 16)), 32: (0.0, None)}, # No examples now
|
47 |
+
# "1024": {1: (0.3, (8, 64))},
|
48 |
+
# "1080p": {1: (0.3, (2, 32))},
|
49 |
+
# == stage 3 ==
|
50 |
+
"720p": {1: (20, 40), 32: (0.5, (2, 4)), 64: (0.5, (1, 1))},
|
51 |
+
}
|
52 |
+
|
53 |
+
|
54 |
+
# Define acceleration
|
55 |
+
num_workers = 4
|
56 |
+
num_bucket_build_workers = 16
|
57 |
+
dtype = "bf16"
|
58 |
+
grad_checkpoint = True
|
59 |
+
plugin = "zero2"
|
60 |
+
sp_size = 1
|
61 |
+
|
62 |
+
# Define model
|
63 |
+
model = dict(
|
64 |
+
type="STDiT2-XL/2",
|
65 |
+
from_pretrained=None,
|
66 |
+
input_sq_size=512, # pretrained model is trained on 512x512
|
67 |
+
qk_norm=True,
|
68 |
+
enable_flashattn=True,
|
69 |
+
enable_layernorm_kernel=True,
|
70 |
+
)
|
71 |
+
vae = dict(
|
72 |
+
type="VideoAutoencoderKL",
|
73 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
74 |
+
micro_batch_size=4,
|
75 |
+
local_files_only=True,
|
76 |
+
)
|
77 |
+
text_encoder = dict(
|
78 |
+
type="t5",
|
79 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
80 |
+
model_max_length=200,
|
81 |
+
shardformer=True,
|
82 |
+
local_files_only=True,
|
83 |
+
)
|
84 |
+
scheduler = dict(
|
85 |
+
type="iddpm",
|
86 |
+
timestep_respacing="",
|
87 |
+
)
|
88 |
+
|
89 |
+
# Others
|
90 |
+
seed = 42
|
91 |
+
outputs = "outputs"
|
92 |
+
wandb = False
|
93 |
+
|
94 |
+
epochs = 1000
|
95 |
+
log_every = 10
|
96 |
+
ckpt_every = 1000
|
97 |
+
load = None
|
98 |
+
|
99 |
+
batch_size = None
|
100 |
+
lr = 2e-5
|
101 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/train/image.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=None,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(None, None),
|
8 |
+
transform_name="resize_crop",
|
9 |
+
)
|
10 |
+
bucket_config = { # 6s/it
|
11 |
+
"256": {1: (1.0, 256)},
|
12 |
+
"512": {1: (1.0, 80)},
|
13 |
+
"480p": {1: (1.0, 52)},
|
14 |
+
"1024": {1: (1.0, 20)},
|
15 |
+
"1080p": {1: (1.0, 8)},
|
16 |
+
}
|
17 |
+
|
18 |
+
# Define acceleration
|
19 |
+
num_workers = 4
|
20 |
+
num_bucket_build_workers = 16
|
21 |
+
dtype = "bf16"
|
22 |
+
grad_checkpoint = True
|
23 |
+
plugin = "zero2"
|
24 |
+
sp_size = 1
|
25 |
+
|
26 |
+
# Define model
|
27 |
+
model = dict(
|
28 |
+
type="STDiT2-XL/2",
|
29 |
+
from_pretrained=None,
|
30 |
+
input_sq_size=512, # pretrained model is trained on 512x512
|
31 |
+
qk_norm=True,
|
32 |
+
enable_flashattn=True,
|
33 |
+
enable_layernorm_kernel=True,
|
34 |
+
)
|
35 |
+
vae = dict(
|
36 |
+
type="VideoAutoencoderKL",
|
37 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
38 |
+
micro_batch_size=4,
|
39 |
+
local_files_only=True,
|
40 |
+
)
|
41 |
+
text_encoder = dict(
|
42 |
+
type="t5",
|
43 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
44 |
+
model_max_length=200,
|
45 |
+
shardformer=True,
|
46 |
+
local_files_only=True,
|
47 |
+
)
|
48 |
+
scheduler = dict(
|
49 |
+
type="iddpm",
|
50 |
+
timestep_respacing="",
|
51 |
+
)
|
52 |
+
|
53 |
+
# Others
|
54 |
+
seed = 42
|
55 |
+
outputs = "outputs"
|
56 |
+
wandb = False
|
57 |
+
|
58 |
+
epochs = 1000
|
59 |
+
log_every = 10
|
60 |
+
ckpt_every = 500
|
61 |
+
load = None
|
62 |
+
|
63 |
+
batch_size = 10 # only for logging
|
64 |
+
lr = 2e-5
|
65 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/train/stage1.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=None,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(None, None),
|
8 |
+
transform_name="resize_crop",
|
9 |
+
)
|
10 |
+
# IMG: 1024 (20%) 512 (30%) 256 (50%) drop (50%)
|
11 |
+
bucket_config = { # 1s/it
|
12 |
+
"144p": {1: (0.5, 48), 16: (1.0, 6), 32: (1.0, 3), 96: (1.0, 1)},
|
13 |
+
"256": {1: (0.5, 24), 16: (0.5, 3), 48: (0.5, 1), 64: (0.0, None)},
|
14 |
+
"240p": {16: (0.3, 2), 32: (0.3, 1), 64: (0.0, None)},
|
15 |
+
"512": {1: (0.4, 12)},
|
16 |
+
"1024": {1: (0.3, 3)},
|
17 |
+
}
|
18 |
+
mask_ratios = {
|
19 |
+
"mask_no": 0.75,
|
20 |
+
"mask_quarter_random": 0.025,
|
21 |
+
"mask_quarter_head": 0.025,
|
22 |
+
"mask_quarter_tail": 0.025,
|
23 |
+
"mask_quarter_head_tail": 0.05,
|
24 |
+
"mask_image_random": 0.025,
|
25 |
+
"mask_image_head": 0.025,
|
26 |
+
"mask_image_tail": 0.025,
|
27 |
+
"mask_image_head_tail": 0.05,
|
28 |
+
}
|
29 |
+
|
30 |
+
# Define acceleration
|
31 |
+
num_workers = 8
|
32 |
+
num_bucket_build_workers = 16
|
33 |
+
dtype = "bf16"
|
34 |
+
grad_checkpoint = False
|
35 |
+
plugin = "zero2"
|
36 |
+
sp_size = 1
|
37 |
+
|
38 |
+
# Define model
|
39 |
+
model = dict(
|
40 |
+
type="STDiT2-XL/2",
|
41 |
+
from_pretrained=None,
|
42 |
+
input_sq_size=512, # pretrained model is trained on 512x512
|
43 |
+
qk_norm=True,
|
44 |
+
enable_flashattn=True,
|
45 |
+
enable_layernorm_kernel=True,
|
46 |
+
)
|
47 |
+
vae = dict(
|
48 |
+
type="VideoAutoencoderKL",
|
49 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
50 |
+
micro_batch_size=4,
|
51 |
+
local_files_only=True,
|
52 |
+
)
|
53 |
+
text_encoder = dict(
|
54 |
+
type="t5",
|
55 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
56 |
+
model_max_length=200,
|
57 |
+
shardformer=True,
|
58 |
+
local_files_only=True,
|
59 |
+
)
|
60 |
+
scheduler = dict(
|
61 |
+
type="iddpm",
|
62 |
+
timestep_respacing="",
|
63 |
+
)
|
64 |
+
|
65 |
+
# Others
|
66 |
+
seed = 42
|
67 |
+
outputs = "outputs"
|
68 |
+
wandb = False
|
69 |
+
|
70 |
+
epochs = 1000
|
71 |
+
log_every = 10
|
72 |
+
ckpt_every = 500
|
73 |
+
load = None
|
74 |
+
|
75 |
+
batch_size = None
|
76 |
+
lr = 2e-5
|
77 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/train/stage2.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=None,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(None, None),
|
8 |
+
transform_name="resize_crop",
|
9 |
+
)
|
10 |
+
bucket_config = { # 7s/it
|
11 |
+
"144p": {1: (1.0, 48), 16: (1.0, 17), 32: (1.0, 9), 64: (1.0, 4), 128: (1.0, 1)},
|
12 |
+
"256": {1: (0.8, 254), 16: (0.5, 17), 32: (0.5, 9), 64: (0.5, 4), 128: (0.5, 1)},
|
13 |
+
"240p": {1: (0.1, 20), 16: (0.9, 17), 32: (0.8, 9), 64: (0.8, 4), 128: (0.8, 2)},
|
14 |
+
"512": {1: (0.5, 86), 16: (0.2, 4), 32: (0.2, 2), 64: (0.2, 1), 128: (0.0, None)},
|
15 |
+
"480p": {1: (0.4, 54), 16: (0.4, 4), 32: (0.0, None)},
|
16 |
+
"720p": {1: (0.1, 20), 16: (0.1, 2), 32: (0.0, None)},
|
17 |
+
"1024": {1: (0.3, 20)},
|
18 |
+
"1080p": {1: (0.4, 8)},
|
19 |
+
}
|
20 |
+
mask_ratios = {
|
21 |
+
"mask_no": 0.75,
|
22 |
+
"mask_quarter_random": 0.025,
|
23 |
+
"mask_quarter_head": 0.025,
|
24 |
+
"mask_quarter_tail": 0.025,
|
25 |
+
"mask_quarter_head_tail": 0.05,
|
26 |
+
"mask_image_random": 0.025,
|
27 |
+
"mask_image_head": 0.025,
|
28 |
+
"mask_image_tail": 0.025,
|
29 |
+
"mask_image_head_tail": 0.05,
|
30 |
+
}
|
31 |
+
|
32 |
+
# Define acceleration
|
33 |
+
num_workers = 8
|
34 |
+
num_bucket_build_workers = 16
|
35 |
+
dtype = "bf16"
|
36 |
+
grad_checkpoint = True
|
37 |
+
plugin = "zero2"
|
38 |
+
sp_size = 1
|
39 |
+
|
40 |
+
# Define model
|
41 |
+
model = dict(
|
42 |
+
type="STDiT2-XL/2",
|
43 |
+
from_pretrained=None,
|
44 |
+
input_sq_size=512, # pretrained model is trained on 512x512
|
45 |
+
qk_norm=True,
|
46 |
+
enable_flashattn=True,
|
47 |
+
enable_layernorm_kernel=True,
|
48 |
+
)
|
49 |
+
vae = dict(
|
50 |
+
type="VideoAutoencoderKL",
|
51 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
52 |
+
micro_batch_size=4,
|
53 |
+
local_files_only=True,
|
54 |
+
)
|
55 |
+
text_encoder = dict(
|
56 |
+
type="t5",
|
57 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
58 |
+
model_max_length=200,
|
59 |
+
shardformer=True,
|
60 |
+
local_files_only=True,
|
61 |
+
)
|
62 |
+
scheduler = dict(
|
63 |
+
type="iddpm",
|
64 |
+
timestep_respacing="",
|
65 |
+
)
|
66 |
+
|
67 |
+
# Others
|
68 |
+
seed = 42
|
69 |
+
outputs = "outputs"
|
70 |
+
wandb = False
|
71 |
+
|
72 |
+
epochs = 1000
|
73 |
+
log_every = 10
|
74 |
+
ckpt_every = 500
|
75 |
+
load = None
|
76 |
+
|
77 |
+
batch_size = None
|
78 |
+
lr = 2e-5
|
79 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/train/stage3.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=None,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(None, None),
|
8 |
+
transform_name="resize_crop",
|
9 |
+
)
|
10 |
+
bucket_config = { # 13s/it
|
11 |
+
"144p": {1: (1.0, 200), 16: (1.0, 36), 32: (1.0, 18), 64: (1.0, 9), 128: (1.0, 4)},
|
12 |
+
"256": {1: (0.8, 200), 16: (0.5, 22), 32: (0.5, 11), 64: (0.5, 6), 128: (0.8, 4)},
|
13 |
+
"240p": {1: (0.8, 200), 16: (0.5, 22), 32: (0.5, 10), 64: (0.5, 6), 128: (0.5, 3)},
|
14 |
+
"360p": {1: (0.5, 120), 16: (0.5, 9), 32: (0.5, 4), 64: (0.5, 2), 128: (0.5, 1)},
|
15 |
+
"512": {1: (0.5, 120), 16: (0.5, 9), 32: (0.5, 4), 64: (0.5, 2), 128: (0.8, 1)},
|
16 |
+
"480p": {1: (0.4, 80), 16: (0.6, 6), 32: (0.6, 3), 64: (0.6, 1), 128: (0.0, None)},
|
17 |
+
"720p": {1: (0.4, 40), 16: (0.6, 3), 32: (0.6, 1), 96: (0.0, None)},
|
18 |
+
"1024": {1: (0.3, 40)},
|
19 |
+
}
|
20 |
+
mask_ratios = {
|
21 |
+
"mask_no": 0.75,
|
22 |
+
"mask_quarter_random": 0.025,
|
23 |
+
"mask_quarter_head": 0.025,
|
24 |
+
"mask_quarter_tail": 0.025,
|
25 |
+
"mask_quarter_head_tail": 0.05,
|
26 |
+
"mask_image_random": 0.025,
|
27 |
+
"mask_image_head": 0.025,
|
28 |
+
"mask_image_tail": 0.025,
|
29 |
+
"mask_image_head_tail": 0.05,
|
30 |
+
}
|
31 |
+
|
32 |
+
# Define acceleration
|
33 |
+
num_workers = 8
|
34 |
+
num_bucket_build_workers = 16
|
35 |
+
dtype = "bf16"
|
36 |
+
grad_checkpoint = True
|
37 |
+
plugin = "zero2"
|
38 |
+
sp_size = 1
|
39 |
+
|
40 |
+
# Define model
|
41 |
+
model = dict(
|
42 |
+
type="STDiT2-XL/2",
|
43 |
+
from_pretrained=None,
|
44 |
+
input_sq_size=512, # pretrained model is trained on 512x512
|
45 |
+
qk_norm=True,
|
46 |
+
enable_flashattn=True,
|
47 |
+
enable_layernorm_kernel=True,
|
48 |
+
)
|
49 |
+
vae = dict(
|
50 |
+
type="VideoAutoencoderKL",
|
51 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
52 |
+
micro_batch_size=4,
|
53 |
+
local_files_only=True,
|
54 |
+
)
|
55 |
+
text_encoder = dict(
|
56 |
+
type="t5",
|
57 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
58 |
+
model_max_length=200,
|
59 |
+
shardformer=True,
|
60 |
+
local_files_only=True,
|
61 |
+
)
|
62 |
+
scheduler = dict(
|
63 |
+
type="iddpm",
|
64 |
+
timestep_respacing="",
|
65 |
+
)
|
66 |
+
|
67 |
+
# Others
|
68 |
+
seed = 42
|
69 |
+
outputs = "outputs"
|
70 |
+
wandb = False
|
71 |
+
|
72 |
+
epochs = 1000
|
73 |
+
log_every = 10
|
74 |
+
ckpt_every = 500
|
75 |
+
load = None
|
76 |
+
|
77 |
+
batch_size = None
|
78 |
+
lr = 2e-5
|
79 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/train/video.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=None,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(None, None),
|
8 |
+
transform_name="resize_crop",
|
9 |
+
)
|
10 |
+
bucket_config = { # 6s/it
|
11 |
+
"240p": {16: (1.0, 16), 32: (1.0, 8), 64: (1.0, 4), 128: (1.0, 2)},
|
12 |
+
"256": {1: (1.0, 256)},
|
13 |
+
"512": {1: (0.5, 80)},
|
14 |
+
"480p": {1: (0.4, 52), 16: (0.4, 4), 32: (0.0, None)},
|
15 |
+
"720p": {16: (0.1, 2), 32: (0.0, None)}, # No examples now
|
16 |
+
"1024": {1: (0.3, 20)},
|
17 |
+
"1080p": {1: (0.3, 8)},
|
18 |
+
}
|
19 |
+
|
20 |
+
# Define acceleration
|
21 |
+
num_workers = 4
|
22 |
+
num_bucket_build_workers = 16
|
23 |
+
dtype = "bf16"
|
24 |
+
grad_checkpoint = True
|
25 |
+
plugin = "zero2"
|
26 |
+
sp_size = 1
|
27 |
+
|
28 |
+
# Define model
|
29 |
+
model = dict(
|
30 |
+
type="STDiT2-XL/2",
|
31 |
+
from_pretrained=None,
|
32 |
+
input_sq_size=512, # pretrained model is trained on 512x512
|
33 |
+
qk_norm=True,
|
34 |
+
enable_flashattn=True,
|
35 |
+
enable_layernorm_kernel=True,
|
36 |
+
)
|
37 |
+
vae = dict(
|
38 |
+
type="VideoAutoencoderKL",
|
39 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
40 |
+
micro_batch_size=4,
|
41 |
+
local_files_only=True,
|
42 |
+
)
|
43 |
+
text_encoder = dict(
|
44 |
+
type="t5",
|
45 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
46 |
+
model_max_length=200,
|
47 |
+
shardformer=True,
|
48 |
+
local_files_only=True,
|
49 |
+
)
|
50 |
+
scheduler = dict(
|
51 |
+
type="iddpm",
|
52 |
+
timestep_respacing="",
|
53 |
+
)
|
54 |
+
|
55 |
+
# Others
|
56 |
+
seed = 42
|
57 |
+
outputs = "outputs"
|
58 |
+
wandb = False
|
59 |
+
|
60 |
+
epochs = 1000
|
61 |
+
log_every = 10
|
62 |
+
ckpt_every = 500
|
63 |
+
load = None
|
64 |
+
|
65 |
+
batch_size = 10 # only for logging
|
66 |
+
lr = 2e-5
|
67 |
+
grad_clip = 1.0
|
configs/opensora/inference/16x256x256.py
CHANGED
@@ -25,12 +25,15 @@ scheduler = dict(
|
|
25 |
type="iddpm",
|
26 |
num_sampling_steps=100,
|
27 |
cfg_scale=7.0,
|
28 |
-
cfg_channel=3,
|
29 |
)
|
30 |
-
dtype = "
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# Others
|
33 |
batch_size = 1
|
34 |
seed = 42
|
35 |
-
|
36 |
-
save_dir = "./outputs/samples/"
|
|
|
25 |
type="iddpm",
|
26 |
num_sampling_steps=100,
|
27 |
cfg_scale=7.0,
|
28 |
+
cfg_channel=3, # or None
|
29 |
)
|
30 |
+
dtype = "bf16"
|
31 |
+
|
32 |
+
# Condition
|
33 |
+
prompt_path = "./assets/texts/t2v_samples.txt"
|
34 |
+
prompt = None # prompt has higher priority than prompt_path
|
35 |
|
36 |
# Others
|
37 |
batch_size = 1
|
38 |
seed = 42
|
39 |
+
save_dir = "./samples/samples/"
|
|
configs/opensora/inference/16x512x512.py
CHANGED
@@ -9,7 +9,7 @@ model = dict(
|
|
9 |
time_scale=1.0,
|
10 |
enable_flashattn=True,
|
11 |
enable_layernorm_kernel=True,
|
12 |
-
from_pretrained="PRETRAINED_MODEL"
|
13 |
)
|
14 |
vae = dict(
|
15 |
type="VideoAutoencoderKL",
|
@@ -26,10 +26,10 @@ scheduler = dict(
|
|
26 |
num_sampling_steps=100,
|
27 |
cfg_scale=7.0,
|
28 |
)
|
29 |
-
dtype = "
|
30 |
|
31 |
# Others
|
32 |
batch_size = 2
|
33 |
seed = 42
|
34 |
prompt_path = "./assets/texts/t2v_samples.txt"
|
35 |
-
save_dir = "./
|
|
|
9 |
time_scale=1.0,
|
10 |
enable_flashattn=True,
|
11 |
enable_layernorm_kernel=True,
|
12 |
+
from_pretrained="PRETRAINED_MODEL",
|
13 |
)
|
14 |
vae = dict(
|
15 |
type="VideoAutoencoderKL",
|
|
|
26 |
num_sampling_steps=100,
|
27 |
cfg_scale=7.0,
|
28 |
)
|
29 |
+
dtype = "bf16"
|
30 |
|
31 |
# Others
|
32 |
batch_size = 2
|
33 |
seed = 42
|
34 |
prompt_path = "./assets/texts/t2v_samples.txt"
|
35 |
+
save_dir = "./samples/samples/"
|
configs/opensora/inference/64x512x512.py
CHANGED
@@ -26,10 +26,10 @@ scheduler = dict(
|
|
26 |
num_sampling_steps=100,
|
27 |
cfg_scale=7.0,
|
28 |
)
|
29 |
-
dtype = "
|
30 |
|
31 |
# Others
|
32 |
batch_size = 1
|
33 |
seed = 42
|
34 |
prompt_path = "./assets/texts/t2v_samples.txt"
|
35 |
-
save_dir = "./
|
|
|
26 |
num_sampling_steps=100,
|
27 |
cfg_scale=7.0,
|
28 |
)
|
29 |
+
dtype = "bf16"
|
30 |
|
31 |
# Others
|
32 |
batch_size = 1
|
33 |
seed = 42
|
34 |
prompt_path = "./assets/texts/t2v_samples.txt"
|
35 |
+
save_dir = "./samples/samples/"
|
configs/opensora/train/16x256x256-mask.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="STDiT-XL/2",
|
20 |
+
space_scale=0.5,
|
21 |
+
time_scale=1.0,
|
22 |
+
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flashattn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
)
|
26 |
+
mask_ratios = {
|
27 |
+
"mask_no": 0.7,
|
28 |
+
"mask_random": 0.15,
|
29 |
+
"mask_head": 0.05,
|
30 |
+
"mask_tail": 0.05,
|
31 |
+
"mask_head_tail": 0.05,
|
32 |
+
}
|
33 |
+
vae = dict(
|
34 |
+
type="VideoAutoencoderKL",
|
35 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
36 |
+
)
|
37 |
+
text_encoder = dict(
|
38 |
+
type="t5",
|
39 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
40 |
+
model_max_length=120,
|
41 |
+
shardformer=True,
|
42 |
+
)
|
43 |
+
scheduler = dict(
|
44 |
+
type="iddpm",
|
45 |
+
timestep_respacing="",
|
46 |
+
)
|
47 |
+
|
48 |
+
# Others
|
49 |
+
seed = 42
|
50 |
+
outputs = "outputs"
|
51 |
+
wandb = False
|
52 |
+
|
53 |
+
epochs = 1000
|
54 |
+
log_every = 10
|
55 |
+
ckpt_every = 1000
|
56 |
+
load = None
|
57 |
+
|
58 |
+
batch_size = 8
|
59 |
+
lr = 2e-5
|
60 |
+
grad_clip = 1.0
|
configs/opensora/train/16x256x256-spee.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="STDiT-XL/2",
|
20 |
+
space_scale=0.5,
|
21 |
+
time_scale=1.0,
|
22 |
+
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flashattn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
)
|
26 |
+
mask_ratios = {
|
27 |
+
"mask_no": 0.5,
|
28 |
+
"mask_random": 0.29,
|
29 |
+
"mask_head": 0.07,
|
30 |
+
"mask_tail": 0.07,
|
31 |
+
"mask_head_tail": 0.07,
|
32 |
+
}
|
33 |
+
vae = dict(
|
34 |
+
type="VideoAutoencoderKL",
|
35 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
36 |
+
)
|
37 |
+
text_encoder = dict(
|
38 |
+
type="t5",
|
39 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
40 |
+
model_max_length=120,
|
41 |
+
shardformer=True,
|
42 |
+
)
|
43 |
+
scheduler = dict(
|
44 |
+
type="iddpm-speed",
|
45 |
+
timestep_respacing="",
|
46 |
+
)
|
47 |
+
|
48 |
+
# Others
|
49 |
+
seed = 42
|
50 |
+
outputs = "outputs"
|
51 |
+
wandb = False
|
52 |
+
|
53 |
+
epochs = 1000
|
54 |
+
log_every = 10
|
55 |
+
ckpt_every = 1000
|
56 |
+
load = None
|
57 |
+
|
58 |
+
batch_size = 8
|
59 |
+
lr = 2e-5
|
60 |
+
grad_clip = 1.0
|
configs/opensora/train/16x256x256.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
-
num_frames = 16
|
2 |
-
frame_interval = 3
|
3 |
-
image_size = (256, 256)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
|
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
|
10 |
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
configs/opensora/train/16x512x512.py
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
-
num_frames = 16
|
2 |
-
frame_interval = 3
|
3 |
-
image_size = (512, 512)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
|
|
12 |
dtype = "bf16"
|
13 |
-
grad_checkpoint =
|
14 |
plugin = "zero2"
|
15 |
sp_size = 1
|
16 |
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(512, 512),
|
8 |
+
)
|
9 |
|
10 |
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
15 |
sp_size = 1
|
16 |
|
configs/opensora/train/360x512x512.py
CHANGED
@@ -1,12 +1,18 @@
|
|
1 |
-
num_frames = 360
|
2 |
-
frame_interval = 1
|
3 |
-
image_size = (512, 512)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
num_workers = 4
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
12 |
dtype = "bf16"
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=360,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(512, 512),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
|
17 |
# Define acceleration
|
18 |
dtype = "bf16"
|
configs/opensora/train/64x512x512-sp.py
CHANGED
@@ -1,17 +1,17 @@
|
|
1 |
-
num_frames = 64
|
2 |
-
frame_interval = 2
|
3 |
-
image_size = (512, 512)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
|
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
-
plugin = "zero2
|
15 |
sp_size = 2
|
16 |
|
17 |
# Define model
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(512, 512),
|
8 |
+
)
|
9 |
|
10 |
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
sp_size = 2
|
16 |
|
17 |
# Define model
|
configs/opensora/train/64x512x512.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
-
num_frames = 64
|
2 |
-
frame_interval = 2
|
3 |
-
image_size = (512, 512)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
|
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=64,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(512, 512),
|
8 |
+
)
|
9 |
|
10 |
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
configs/pixart/inference/16x256x256.py
CHANGED
@@ -23,10 +23,10 @@ scheduler = dict(
|
|
23 |
num_sampling_steps=20,
|
24 |
cfg_scale=7.0,
|
25 |
)
|
26 |
-
dtype = "
|
27 |
|
28 |
# Others
|
29 |
batch_size = 2
|
30 |
seed = 42
|
31 |
prompt_path = "./assets/texts/t2v_samples.txt"
|
32 |
-
save_dir = "./
|
|
|
23 |
num_sampling_steps=20,
|
24 |
cfg_scale=7.0,
|
25 |
)
|
26 |
+
dtype = "bf16"
|
27 |
|
28 |
# Others
|
29 |
batch_size = 2
|
30 |
seed = 42
|
31 |
prompt_path = "./assets/texts/t2v_samples.txt"
|
32 |
+
save_dir = "./samples/samples/"
|
configs/pixart/inference/1x1024MS.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
num_frames = 1
|
2 |
fps = 1
|
3 |
image_size = (1920, 512)
|
4 |
-
multi_resolution =
|
5 |
|
6 |
# Define model
|
7 |
model = dict(
|
@@ -25,10 +25,10 @@ scheduler = dict(
|
|
25 |
num_sampling_steps=20,
|
26 |
cfg_scale=7.0,
|
27 |
)
|
28 |
-
dtype = "
|
29 |
|
30 |
# Others
|
31 |
batch_size = 2
|
32 |
seed = 42
|
33 |
prompt_path = "./assets/texts/t2i_samples.txt"
|
34 |
-
save_dir = "./
|
|
|
1 |
num_frames = 1
|
2 |
fps = 1
|
3 |
image_size = (1920, 512)
|
4 |
+
multi_resolution = "PixArtMS"
|
5 |
|
6 |
# Define model
|
7 |
model = dict(
|
|
|
25 |
num_sampling_steps=20,
|
26 |
cfg_scale=7.0,
|
27 |
)
|
28 |
+
dtype = "bf16"
|
29 |
|
30 |
# Others
|
31 |
batch_size = 2
|
32 |
seed = 42
|
33 |
prompt_path = "./assets/texts/t2i_samples.txt"
|
34 |
+
save_dir = "./samples/samples/"
|
configs/pixart/inference/1x256x256.py
CHANGED
@@ -24,10 +24,10 @@ scheduler = dict(
|
|
24 |
num_sampling_steps=20,
|
25 |
cfg_scale=7.0,
|
26 |
)
|
27 |
-
dtype = "
|
28 |
|
29 |
# Others
|
30 |
batch_size = 2
|
31 |
seed = 42
|
32 |
prompt_path = "./assets/texts/t2i_samples.txt"
|
33 |
-
save_dir = "./
|
|
|
24 |
num_sampling_steps=20,
|
25 |
cfg_scale=7.0,
|
26 |
)
|
27 |
+
dtype = "bf16"
|
28 |
|
29 |
# Others
|
30 |
batch_size = 2
|
31 |
seed = 42
|
32 |
prompt_path = "./assets/texts/t2i_samples.txt"
|
33 |
+
save_dir = "./samples/samples/"
|
configs/pixart/inference/1x512x512.py
CHANGED
@@ -24,10 +24,16 @@ scheduler = dict(
|
|
24 |
num_sampling_steps=20,
|
25 |
cfg_scale=7.0,
|
26 |
)
|
27 |
-
dtype = "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Others
|
30 |
batch_size = 2
|
31 |
seed = 42
|
32 |
-
|
33 |
-
save_dir = "./outputs/samples/"
|
|
|
24 |
num_sampling_steps=20,
|
25 |
cfg_scale=7.0,
|
26 |
)
|
27 |
+
dtype = "bf16"
|
28 |
+
|
29 |
+
# prompt_path = "./assets/texts/t2i_samples.txt"
|
30 |
+
prompt = [
|
31 |
+
"Pirate ship trapped in a cosmic maelstrom nebula.",
|
32 |
+
"A small cactus with a happy face in the Sahara desert.",
|
33 |
+
"A small cactus with a sad face in the Sahara desert.",
|
34 |
+
]
|
35 |
|
36 |
# Others
|
37 |
batch_size = 2
|
38 |
seed = 42
|
39 |
+
save_dir = "./samples/samples/"
|
|
configs/pixart/train/16x256x256.py
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
-
num_frames = 16
|
2 |
-
frame_interval = 3
|
3 |
-
image_size = (256, 256)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
|
|
12 |
dtype = "bf16"
|
13 |
-
grad_checkpoint =
|
14 |
plugin = "zero2"
|
15 |
sp_size = 1
|
16 |
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
|
10 |
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
15 |
sp_size = 1
|
16 |
|
configs/pixart/train/1x512x512.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
-
num_frames = 1
|
2 |
-
frame_interval = 1
|
3 |
-
image_size = (512, 512)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
|
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=1,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(512, 512),
|
8 |
+
)
|
9 |
|
10 |
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
configs/pixart/train/64x512x512.py
CHANGED
@@ -1,19 +1,20 @@
|
|
1 |
-
num_frames = 64
|
2 |
-
frame_interval = 2
|
3 |
-
image_size = (512, 512)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
|
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
15 |
sp_size = 1
|
16 |
|
|
|
17 |
# Define model
|
18 |
model = dict(
|
19 |
type="PixArt-XL/2",
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=64,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
|
10 |
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
15 |
sp_size = 1
|
16 |
|
17 |
+
|
18 |
# Define model
|
19 |
model = dict(
|
20 |
type="PixArt-XL/2",
|
requirements.txt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
xformers
|
2 |
-
git+https://github.com/hpcaitech/Open-Sora.git#egg=opensora
|
3 |
transformers
|
|
|
|
1 |
xformers
|
|
|
2 |
transformers
|
3 |
+
git+https://github.com/hpcaitech/Open-Sora.git#egg=opensora
|