frankleeeee commited on
Commit
5b21912
·
1 Parent(s): e6d2ce0
Files changed (1) hide show
  1. app.py +416 -255
app.py CHANGED
@@ -7,151 +7,28 @@ Usage:
7
  """
8
 
9
  import argparse
 
10
  import importlib
11
  import os
12
  import subprocess
13
  import sys
14
- import re
15
- import json
16
- import math
17
 
18
  import spaces
19
  import torch
20
 
21
  import gradio as gr
22
 
23
-
24
- MODEL_TYPES = ["v1.1"]
25
  CONFIG_MAP = {
26
- "v1.1-stage2": "configs/opensora-v1-1/inference/sample-ref.py",
27
- "v1.1-stage3": "configs/opensora-v1-1/inference/sample-ref.py",
28
- }
29
- HF_STDIT_MAP = {
30
- "v1.1-stage2": "hpcai-tech/OpenSora-STDiT-v2-stage2",
31
- "v1.1-stage3": "hpcai-tech/OpenSora-STDiT-v2-stage3",
32
- }
33
- RESOLUTION_MAP = {
34
- "144p": (144, 256),
35
- "240p": (240, 426),
36
- "360p": (360, 480),
37
- "480p": (480, 858),
38
- "720p": (720, 1280),
39
- "1080p": (1080, 1920)
40
  }
 
41
 
42
 
43
  # ============================
44
- # Utils
45
- # ============================
46
- def collect_references_batch(reference_paths, vae, image_size):
47
- from opensora.datasets.utils import read_from_path
48
-
49
- refs_x = []
50
- for reference_path in reference_paths:
51
- if reference_path is None:
52
- refs_x.append([])
53
- continue
54
- ref_path = reference_path.split(";")
55
- ref = []
56
- for r_path in ref_path:
57
- r = read_from_path(r_path, image_size, transform_name="resize_crop")
58
- r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype))
59
- r_x = r_x.squeeze(0)
60
- ref.append(r_x)
61
- refs_x.append(ref)
62
- # refs_x: [batch, ref_num, C, T, H, W]
63
- return refs_x
64
-
65
-
66
- def process_mask_strategy(mask_strategy):
67
- mask_batch = []
68
- mask_strategy = mask_strategy.split(";")
69
- for mask in mask_strategy:
70
- mask_group = mask.split(",")
71
- assert len(mask_group) >= 1 and len(mask_group) <= 6, f"Invalid mask strategy: {mask}"
72
- if len(mask_group) == 1:
73
- mask_group.extend(["0", "0", "0", "1", "0"])
74
- elif len(mask_group) == 2:
75
- mask_group.extend(["0", "0", "1", "0"])
76
- elif len(mask_group) == 3:
77
- mask_group.extend(["0", "1", "0"])
78
- elif len(mask_group) == 4:
79
- mask_group.extend(["1", "0"])
80
- elif len(mask_group) == 5:
81
- mask_group.append("0")
82
- mask_batch.append(mask_group)
83
- return mask_batch
84
-
85
-
86
- def apply_mask_strategy(z, refs_x, mask_strategys, loop_i):
87
- masks = []
88
- for i, mask_strategy in enumerate(mask_strategys):
89
- mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device)
90
- if mask_strategy is None:
91
- masks.append(mask)
92
- continue
93
- mask_strategy = process_mask_strategy(mask_strategy)
94
- for mst in mask_strategy:
95
- loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mst
96
- loop_id = int(loop_id)
97
- if loop_id != loop_i:
98
- continue
99
- m_id = int(m_id)
100
- m_ref_start = int(m_ref_start)
101
- m_length = int(m_length)
102
- m_target_start = int(m_target_start)
103
- edit_ratio = float(edit_ratio)
104
- ref = refs_x[i][m_id] # [C, T, H, W]
105
- if m_ref_start < 0:
106
- m_ref_start = ref.shape[1] + m_ref_start
107
- if m_target_start < 0:
108
- # z: [B, C, T, H, W]
109
- m_target_start = z.shape[2] + m_target_start
110
- z[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length]
111
- mask[m_target_start : m_target_start + m_length] = edit_ratio
112
- masks.append(mask)
113
- masks = torch.stack(masks)
114
- return masks
115
-
116
-
117
- def process_prompts(prompts, num_loop):
118
- from opensora.models.text_encoder.t5 import text_preprocessing
119
-
120
- ret_prompts = []
121
- for prompt in prompts:
122
- if prompt.startswith("|0|"):
123
- prompt_list = prompt.split("|")[1:]
124
- text_list = []
125
- for i in range(0, len(prompt_list), 2):
126
- start_loop = int(prompt_list[i])
127
- text = prompt_list[i + 1]
128
- text = text_preprocessing(text)
129
- end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_loop
130
- text_list.extend([text] * (end_loop - start_loop))
131
- assert len(text_list) == num_loop, f"Prompt loop mismatch: {len(text_list)} != {num_loop}"
132
- ret_prompts.append(text_list)
133
- else:
134
- prompt = text_preprocessing(prompt)
135
- ret_prompts.append([prompt] * num_loop)
136
- return ret_prompts
137
-
138
-
139
- def extract_json_from_prompts(prompts):
140
- additional_infos = []
141
- ret_prompts = []
142
- for prompt in prompts:
143
- parts = re.split(r"(?=[{\[])", prompt)
144
- assert len(parts) <= 2, f"Invalid prompt: {prompt}"
145
- ret_prompts.append(parts[0])
146
- if len(parts) == 1:
147
- additional_infos.append({})
148
- else:
149
- additional_infos.append(json.loads(parts[1]))
150
- return ret_prompts, additional_infos
151
-
152
-
153
- # ============================
154
- # Runtime Environment
155
  # ============================
156
  def install_dependencies(enable_optimization=False):
157
  """
@@ -223,13 +100,10 @@ def build_models(model_type, config, enable_optimization=False):
223
  # build stdit
224
  # we load model from HuggingFace directly so that we don't need to
225
  # handle model download logic in HuggingFace Space
226
- from transformers import AutoModel
227
 
228
- stdit = AutoModel.from_pretrained(
229
- HF_STDIT_MAP[model_type],
230
- enable_flash_attn=enable_optimization,
231
- trust_remote_code=True,
232
- ).cuda()
233
 
234
  # build scheduler
235
  from opensora.registry import SCHEDULERS
@@ -253,13 +127,13 @@ def parse_args():
253
  parser = argparse.ArgumentParser()
254
  parser.add_argument(
255
  "--model-type",
256
- default="v1.1-stage3",
257
  choices=MODEL_TYPES,
258
  help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}",
259
  )
260
  parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder")
261
  parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.")
262
- parser.add_argument("--host", default=None, type=str, help="The host to run the Gradio App on.")
263
  parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.")
264
  parser.add_argument(
265
  "--enable-optimization",
@@ -279,6 +153,8 @@ def parse_args():
279
  # read config
280
  args = parse_args()
281
  config = read_config(CONFIG_MAP[args.model_type])
 
 
282
 
283
  # make outputs dir
284
  os.makedirs(args.output, exist_ok=True)
@@ -292,6 +168,24 @@ install_dependencies(enable_optimization=args.enable_optimization)
292
 
293
  # import after installation
294
  from opensora.datasets import IMG_FPS, save_sample
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295
  from opensora.utils.misc import to_torch_dtype
296
 
297
  # some global variables
@@ -299,120 +193,297 @@ dtype = to_torch_dtype(config.dtype)
299
  device = torch.device("cuda")
300
 
301
  # build model
302
- vae, text_encoder, stdit, scheduler = build_models(args.model_type, config, enable_optimization=args.enable_optimization)
303
-
304
-
305
- @spaces.GPU(duration=200)
306
- def run_inference(mode, prompt_text, resolution, length, reference_image):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307
  with torch.inference_mode():
308
  # ======================
309
- # 1. Preparation
310
  # ======================
311
  # parse the inputs
312
- resolution = RESOLUTION_MAP[resolution]
313
-
314
- # compute number of loops
315
- num_seconds = int(length.rstrip('s'))
316
- total_number_of_frames = num_seconds * config.fps / config.frame_interval
317
- num_loop = math.ceil(total_number_of_frames / config.num_frames)
318
-
319
- # prepare model args
320
- model_args = dict()
321
- height = torch.tensor([resolution[0]], device=device, dtype=dtype)
322
- width = torch.tensor([resolution[1]], device=device, dtype=dtype)
323
- num_frames = torch.tensor([config.num_frames], device=device, dtype=dtype)
324
- ar = torch.tensor([resolution[0] / resolution[1]], device=device, dtype=dtype)
325
- if config.num_frames == 1:
326
- config.fps = IMG_FPS
327
- fps = torch.tensor([config.fps], device=device, dtype=dtype)
328
- model_args["height"] = height
329
- model_args["width"] = width
330
- model_args["num_frames"] = num_frames
331
- model_args["ar"] = ar
332
- model_args["fps"] = fps
333
-
334
- # compute latent size
335
- input_size = (config.num_frames, *resolution)
336
- latent_size = vae.get_latent_size(input_size)
337
 
338
- # process prompt
339
- prompt_raw = [prompt_text]
340
- prompt_raw, _ = extract_json_from_prompts(prompt_raw)
341
- prompt_loops = process_prompts(prompt_raw, num_loop)
342
- video_clips = []
 
 
343
 
344
- # prepare mask strategy
345
- if mode == "Text2Video":
 
 
 
 
 
 
 
 
346
  mask_strategy = [None]
347
- elif mode == "Image2Video":
348
- mask_strategy = ['0']
 
 
 
349
  else:
350
  raise ValueError(f"Invalid mode: {mode}")
351
 
352
- # =========================
353
- # 2. Load reference images
354
- # =========================
355
- if mode == "Text2Video":
356
- refs_x = collect_references_batch([None], vae, resolution)
357
- elif mode == "Image2Video":
358
- # save image to disk
359
- from PIL import Image
360
- im = Image.fromarray(reference_image)
361
- im.save("test.jpg")
362
- refs_x = collect_references_batch(["test.jpg"], vae, resolution)
 
 
 
363
  else:
364
  raise ValueError(f"Invalid mode: {mode}")
365
 
366
- # 4.3. long video generation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367
  for loop_i in range(num_loop):
368
  # 4.4 sample in hidden space
369
- batch_prompts = [prompt[loop_i] for prompt in prompt_loops]
370
- z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
371
-
372
- # 4.5. apply mask strategy
373
- masks = None
374
 
375
- # if cfg.reference_path is not None:
376
  if loop_i > 0:
377
- ref_x = vae.encode(video_clips[-1])
378
- for j, refs in enumerate(refs_x):
379
- if refs is None:
380
- refs_x[j] = [ref_x[j]]
381
- else:
382
- refs.append(ref_x[j])
383
- if mask_strategy[j] is None:
384
- mask_strategy[j] = ""
385
- else:
386
- mask_strategy[j] += ";"
387
- mask_strategy[
388
- j
389
- ] += f"{loop_i},{len(refs)-1},-{config.condition_frame_length},0,{config.condition_frame_length}"
390
-
391
- masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i)
392
 
393
  # 4.6. diffusion sampling
 
 
 
 
 
 
 
394
  samples = scheduler.sample(
395
  stdit,
396
  text_encoder,
397
  z=z,
398
- prompts=batch_prompts,
399
  device=device,
400
  additional_args=model_args,
401
- mask=masks, # scheduler must support mask
 
402
  )
403
- samples = vae.decode(samples.to(dtype))
404
  video_clips.append(samples)
405
 
406
- # 4.7. save video
407
- if loop_i == num_loop - 1:
408
- video_clips_list = [
409
- video_clips[0][0]] + [video_clips[i][0][:, config.condition_frame_length :]
410
- for i in range(1, num_loop)
411
- ]
412
- video = torch.cat(video_clips_list, dim=1)
413
- save_path = f"{args.output}/sample"
414
- saved_path = save_sample(video, fps=config.fps // config.frame_interval, save_path=save_path, force_video=True)
 
 
 
 
 
 
 
 
 
 
 
 
415
  return saved_path
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
416
 
417
 
418
  def main():
@@ -442,48 +513,138 @@ def main():
442
 
443
  with gr.Row():
444
  with gr.Column():
445
- mode = gr.Radio(
446
- choices=["Text2Video", "Image2Video"],
447
- value="Text2Video",
448
- label="Usage",
449
- info="Choose your usage scenario",
450
- )
451
- prompt_text = gr.Textbox(
452
- label="Prompt",
453
- placeholder="Describe your video here",
454
- lines=4,
455
- )
456
  resolution = gr.Radio(
457
- choices=["144p", "240p", "360p", "480p", "720p", "1080p"],
458
- value="144p",
459
- label="Resolution",
 
 
 
 
 
460
  )
461
  length = gr.Radio(
462
- choices=["2s", "4s", "8s"],
463
  value="2s",
464
- label="Video Length",
465
- info="8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time."
466
  )
467
 
468
- reference_image = gr.Image(
469
- label="Reference Image (only used for Image2Video)",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470
  )
471
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472
  with gr.Column():
473
- output_video = gr.Video(
474
- label="Output Video",
475
- height="100%"
476
- )
477
 
478
  with gr.Row():
479
- submit_button = gr.Button("Generate video")
480
-
481
-
482
- submit_button.click(
483
- fn=run_inference,
484
- inputs=[mode, prompt_text, resolution, length, reference_image],
485
- outputs=output_video
486
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487
 
488
  # launch
489
  demo.launch(server_port=args.port, server_name=args.host, share=args.share)
 
7
  """
8
 
9
  import argparse
10
+ import datetime
11
  import importlib
12
  import os
13
  import subprocess
14
  import sys
15
+ from tempfile import NamedTemporaryFile
 
 
16
 
17
  import spaces
18
  import torch
19
 
20
  import gradio as gr
21
 
22
+ MODEL_TYPES = ["v1.2-stage3"]
23
+ WATERMARK_PATH = "./assets/images/watermark/watermark.png"
24
  CONFIG_MAP = {
25
+ "v1.2-stage3": "configs/opensora-v1-2/inference/sample.py",
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  }
27
+ HF_STDIT_MAP = {"v1.2-stage3": "hpcai-tech/OpenSora-STDiT-v3"}
28
 
29
 
30
  # ============================
31
+ # Prepare Runtime Environment
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  # ============================
33
  def install_dependencies(enable_optimization=False):
34
  """
 
100
  # build stdit
101
  # we load model from HuggingFace directly so that we don't need to
102
  # handle model download logic in HuggingFace Space
103
+ from opensora.models.stdit.stdit3 import STDiT3
104
 
105
+ stdit = STDiT3.from_pretrained(HF_STDIT_MAP[model_type])
106
+ stdit = stdit.cuda()
 
 
 
107
 
108
  # build scheduler
109
  from opensora.registry import SCHEDULERS
 
127
  parser = argparse.ArgumentParser()
128
  parser.add_argument(
129
  "--model-type",
130
+ default="v1.2-stage3",
131
  choices=MODEL_TYPES,
132
  help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}",
133
  )
134
  parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder")
135
  parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.")
136
+ parser.add_argument("--host", default="0.0.0.0", type=str, help="The host to run the Gradio App on.")
137
  parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.")
138
  parser.add_argument(
139
  "--enable-optimization",
 
153
  # read config
154
  args = parse_args()
155
  config = read_config(CONFIG_MAP[args.model_type])
156
+ torch.backends.cuda.matmul.allow_tf32 = True
157
+ torch.backends.cudnn.allow_tf32 = True
158
 
159
  # make outputs dir
160
  os.makedirs(args.output, exist_ok=True)
 
168
 
169
  # import after installation
170
  from opensora.datasets import IMG_FPS, save_sample
171
+ from opensora.datasets.aspect import get_image_size, get_num_frames
172
+ from opensora.models.text_encoder.t5 import text_preprocessing
173
+ from opensora.utils.inference_utils import (
174
+ add_watermark,
175
+ append_generated,
176
+ append_score_to_prompts,
177
+ apply_mask_strategy,
178
+ collect_references_batch,
179
+ dframe_to_frame,
180
+ extract_json_from_prompts,
181
+ extract_prompts_loop,
182
+ get_random_prompt_by_openai,
183
+ has_openai_key,
184
+ merge_prompt,
185
+ prepare_multi_resolution_info,
186
+ refine_prompts_by_openai,
187
+ split_prompt,
188
+ )
189
  from opensora.utils.misc import to_torch_dtype
190
 
191
  # some global variables
 
193
  device = torch.device("cuda")
194
 
195
  # build model
196
+ vae, text_encoder, stdit, scheduler = build_models(
197
+ args.model_type, config, enable_optimization=args.enable_optimization
198
+ )
199
+
200
+
201
+ def run_inference(
202
+ mode,
203
+ prompt_text,
204
+ resolution,
205
+ aspect_ratio,
206
+ length,
207
+ motion_strength,
208
+ aesthetic_score,
209
+ use_motion_strength,
210
+ use_aesthetic_score,
211
+ camera_motion,
212
+ reference_image,
213
+ refine_prompt,
214
+ fps,
215
+ num_loop,
216
+ seed,
217
+ sampling_steps,
218
+ cfg_scale,
219
+ ):
220
+ if prompt_text is None or prompt_text == "":
221
+ gr.Warning("Your prompt is empty, please enter a valid prompt")
222
+ return None
223
+
224
+ torch.manual_seed(seed)
225
  with torch.inference_mode():
226
  # ======================
227
+ # 1. Preparation arguments
228
  # ======================
229
  # parse the inputs
230
+ # frame_interval must be 1 so we ignore it here
231
+ image_size = get_image_size(resolution, aspect_ratio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232
 
233
+ # compute generation parameters
234
+ if mode == "Text2Image":
235
+ num_frames = 1
236
+ fps = IMG_FPS
237
+ else:
238
+ num_frames = config.num_frames
239
+ num_frames = get_num_frames(length)
240
 
241
+ condition_frame_length = int(num_frames / 17 * 5 / 3)
242
+ condition_frame_edit = 0.0
243
+
244
+ input_size = (num_frames, *image_size)
245
+ latent_size = vae.get_latent_size(input_size)
246
+ multi_resolution = "OpenSora"
247
+ align = 5
248
+
249
+ # == prepare mask strategy ==
250
+ if mode == "Text2Image":
251
  mask_strategy = [None]
252
+ elif mode == "Text2Video":
253
+ if reference_image is not None:
254
+ mask_strategy = ["0"]
255
+ else:
256
+ mask_strategy = [None]
257
  else:
258
  raise ValueError(f"Invalid mode: {mode}")
259
 
260
+ # == prepare reference ==
261
+ if mode == "Text2Image":
262
+ refs = [""]
263
+ elif mode == "Text2Video":
264
+ if reference_image is not None:
265
+ # save image to disk
266
+ from PIL import Image
267
+
268
+ im = Image.fromarray(reference_image)
269
+ temp_file = NamedTemporaryFile(suffix=".png")
270
+ im.save(temp_file.name)
271
+ refs = [temp_file.name]
272
+ else:
273
+ refs = [""]
274
  else:
275
  raise ValueError(f"Invalid mode: {mode}")
276
 
277
+ # == get json from prompts ==
278
+ batch_prompts = [prompt_text]
279
+ batch_prompts, refs, mask_strategy = extract_json_from_prompts(batch_prompts, refs, mask_strategy)
280
+
281
+ # == get reference for condition ==
282
+ refs = collect_references_batch(refs, vae, image_size)
283
+
284
+ # == multi-resolution info ==
285
+ model_args = prepare_multi_resolution_info(
286
+ multi_resolution, len(batch_prompts), image_size, num_frames, fps, device, dtype
287
+ )
288
+
289
+ # == process prompts step by step ==
290
+ # 0. split prompt
291
+ # each element in the list is [prompt_segment_list, loop_idx_list]
292
+ batched_prompt_segment_list = []
293
+ batched_loop_idx_list = []
294
+ for prompt in batch_prompts:
295
+ prompt_segment_list, loop_idx_list = split_prompt(prompt)
296
+ batched_prompt_segment_list.append(prompt_segment_list)
297
+ batched_loop_idx_list.append(loop_idx_list)
298
+
299
+ # 1. refine prompt by openai
300
+ if refine_prompt:
301
+ # check if openai key is provided
302
+ if not has_openai_key():
303
+ gr.Warning("OpenAI API key is not provided, the prompt will not be enhanced.")
304
+ else:
305
+ for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
306
+ batched_prompt_segment_list[idx] = refine_prompts_by_openai(prompt_segment_list)
307
+
308
+ # process scores
309
+ aesthetic_score = aesthetic_score if use_aesthetic_score else None
310
+ motion_strength = motion_strength if use_motion_strength and mode != "Text2Image" else None
311
+ camera_motion = None if camera_motion == "none" or mode == "Text2Image" else camera_motion
312
+ # 2. append score
313
+ for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
314
+ batched_prompt_segment_list[idx] = append_score_to_prompts(
315
+ prompt_segment_list,
316
+ aes=aesthetic_score,
317
+ flow=motion_strength,
318
+ camera_motion=camera_motion,
319
+ )
320
+
321
+ # 3. clean prompt with T5
322
+ for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
323
+ batched_prompt_segment_list[idx] = [text_preprocessing(prompt) for prompt in prompt_segment_list]
324
+
325
+ # 4. merge to obtain the final prompt
326
+ batch_prompts = []
327
+ for prompt_segment_list, loop_idx_list in zip(batched_prompt_segment_list, batched_loop_idx_list):
328
+ batch_prompts.append(merge_prompt(prompt_segment_list, loop_idx_list))
329
+
330
+ # =========================
331
+ # Generate image/video
332
+ # =========================
333
+ video_clips = []
334
+
335
  for loop_i in range(num_loop):
336
  # 4.4 sample in hidden space
337
+ batch_prompts_loop = extract_prompts_loop(batch_prompts, loop_i)
 
 
 
 
338
 
339
+ # == loop ==
340
  if loop_i > 0:
341
+ refs, mask_strategy = append_generated(
342
+ vae, video_clips[-1], refs, mask_strategy, loop_i, condition_frame_length, condition_frame_edit
343
+ )
344
+
345
+ # == sampling ==
346
+ z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
347
+ masks = apply_mask_strategy(z, refs, mask_strategy, loop_i, align=align)
 
 
 
 
 
 
 
 
348
 
349
  # 4.6. diffusion sampling
350
+ # hack to update num_sampling_steps and cfg_scale
351
+ scheduler_kwargs = config.scheduler.copy()
352
+ scheduler_kwargs.pop("type")
353
+ scheduler_kwargs["num_sampling_steps"] = sampling_steps
354
+ scheduler_kwargs["cfg_scale"] = cfg_scale
355
+
356
+ scheduler.__init__(**scheduler_kwargs)
357
  samples = scheduler.sample(
358
  stdit,
359
  text_encoder,
360
  z=z,
361
+ prompts=batch_prompts_loop,
362
  device=device,
363
  additional_args=model_args,
364
+ progress=True,
365
+ mask=masks,
366
  )
367
+ samples = vae.decode(samples.to(dtype), num_frames=num_frames)
368
  video_clips.append(samples)
369
 
370
+ # =========================
371
+ # Save output
372
+ # =========================
373
+ video_clips = [val[0] for val in video_clips]
374
+ for i in range(1, num_loop):
375
+ video_clips[i] = video_clips[i][:, dframe_to_frame(condition_frame_length) :]
376
+ video = torch.cat(video_clips, dim=1)
377
+ current_datetime = datetime.datetime.now()
378
+ timestamp = current_datetime.timestamp()
379
+ save_path = os.path.join(args.output, f"output_{timestamp}")
380
+ saved_path = save_sample(video, save_path=save_path, fps=24)
381
+ torch.cuda.empty_cache()
382
+
383
+ # add watermark
384
+ # all watermarked videos should have a _watermarked suffix
385
+ if mode != "Text2Image" and os.path.exists(WATERMARK_PATH):
386
+ watermarked_path = saved_path.replace(".mp4", "_watermarked.mp4")
387
+ success = add_watermark(saved_path, WATERMARK_PATH, watermarked_path)
388
+ if success:
389
+ return watermarked_path
390
+ else:
391
  return saved_path
392
+ else:
393
+ return saved_path
394
+
395
+
396
+ @spaces.GPU(duration=200)
397
+ def run_image_inference(
398
+ prompt_text,
399
+ resolution,
400
+ aspect_ratio,
401
+ length,
402
+ motion_strength,
403
+ aesthetic_score,
404
+ use_motion_strength,
405
+ use_aesthetic_score,
406
+ camera_motion,
407
+ reference_image,
408
+ refine_prompt,
409
+ fps,
410
+ num_loop,
411
+ seed,
412
+ sampling_steps,
413
+ cfg_scale,
414
+ ):
415
+ return run_inference(
416
+ "Text2Image",
417
+ prompt_text,
418
+ resolution,
419
+ aspect_ratio,
420
+ length,
421
+ motion_strength,
422
+ aesthetic_score,
423
+ use_motion_strength,
424
+ use_aesthetic_score,
425
+ camera_motion,
426
+ reference_image,
427
+ refine_prompt,
428
+ fps,
429
+ num_loop,
430
+ seed,
431
+ sampling_steps,
432
+ cfg_scale,
433
+ )
434
+
435
+
436
+ @spaces.GPU(duration=200)
437
+ def run_video_inference(
438
+ prompt_text,
439
+ resolution,
440
+ aspect_ratio,
441
+ length,
442
+ motion_strength,
443
+ aesthetic_score,
444
+ use_motion_strength,
445
+ use_aesthetic_score,
446
+ camera_motion,
447
+ reference_image,
448
+ refine_prompt,
449
+ fps,
450
+ num_loop,
451
+ seed,
452
+ sampling_steps,
453
+ cfg_scale,
454
+ ):
455
+ # if (resolution == "480p" and length == "16s") or \
456
+ # (resolution == "720p" and length in ["8s", "16s"]):
457
+ # gr.Warning("Generation is interrupted as the combination of 480p and 16s will lead to CUDA out of memory")
458
+ # else:
459
+ return run_inference(
460
+ "Text2Video",
461
+ prompt_text,
462
+ resolution,
463
+ aspect_ratio,
464
+ length,
465
+ motion_strength,
466
+ aesthetic_score,
467
+ use_motion_strength,
468
+ use_aesthetic_score,
469
+ camera_motion,
470
+ reference_image,
471
+ refine_prompt,
472
+ fps,
473
+ num_loop,
474
+ seed,
475
+ sampling_steps,
476
+ cfg_scale,
477
+ )
478
+
479
+
480
+ def generate_random_prompt():
481
+ if "OPENAI_API_KEY" not in os.environ:
482
+ gr.Warning("Your prompt is empty and the OpenAI API key is not provided, please enter a valid prompt")
483
+ return None
484
+ else:
485
+ prompt_text = get_random_prompt_by_openai()
486
+ return prompt_text
487
 
488
 
489
  def main():
 
513
 
514
  with gr.Row():
515
  with gr.Column():
516
+ prompt_text = gr.Textbox(label="Prompt", placeholder="Describe your video here", lines=4)
517
+ refine_prompt = gr.Checkbox(value=True, label="Refine prompt with GPT4o")
518
+ random_prompt_btn = gr.Button("Random Prompt By GPT4o")
519
+
520
+ gr.Markdown("## Basic Settings")
 
 
 
 
 
 
521
  resolution = gr.Radio(
522
+ choices=["144p", "240p", "360p", "480p", "720p"],
523
+ value="480p",
524
+ label="Resolution",
525
+ )
526
+ aspect_ratio = gr.Radio(
527
+ choices=["9:16", "16:9", "3:4", "4:3", "1:1"],
528
+ value="9:16",
529
+ label="Aspect Ratio (H:W)",
530
  )
531
  length = gr.Radio(
532
+ choices=["2s", "4s", "8s", "16s"],
533
  value="2s",
534
+ label="Video Length",
535
+ info="only effective for video generation, 8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time.",
536
  )
537
 
538
+ with gr.Row():
539
+ seed = gr.Slider(value=1024, minimum=1, maximum=2048, step=1, label="Seed")
540
+
541
+ sampling_steps = gr.Slider(value=30, minimum=1, maximum=200, step=1, label="Sampling steps")
542
+ cfg_scale = gr.Slider(value=7.0, minimum=0.0, maximum=10.0, step=0.1, label="CFG Scale")
543
+
544
+ with gr.Row():
545
+ with gr.Column():
546
+ motion_strength = gr.Slider(
547
+ value=5,
548
+ minimum=0,
549
+ maximum=100,
550
+ step=1,
551
+ label="Motion Strength",
552
+ info="only effective for video generation",
553
+ )
554
+ use_motion_strength = gr.Checkbox(value=False, label="Enable")
555
+
556
+ with gr.Column():
557
+ aesthetic_score = gr.Slider(
558
+ value=6.5,
559
+ minimum=4,
560
+ maximum=7,
561
+ step=0.1,
562
+ label="Aesthetic",
563
+ info="effective for text & video generation",
564
+ )
565
+ use_aesthetic_score = gr.Checkbox(value=True, label="Enable")
566
+
567
+ camera_motion = gr.Radio(
568
+ value="none",
569
+ label="Camera Motion",
570
+ choices=["none", "pan right", "pan left", "tilt up", "tilt down", "zoom in", "zoom out", "static"],
571
+ interactive=True,
572
  )
573
+
574
+ gr.Markdown("## Advanced Settings")
575
+ with gr.Row():
576
+ fps = gr.Slider(
577
+ value=24,
578
+ minimum=1,
579
+ maximum=60,
580
+ step=1,
581
+ label="FPS",
582
+ info="This is the frames per seconds for video generation, keep it to 24 if you are not sure",
583
+ )
584
+ num_loop = gr.Slider(
585
+ value=1,
586
+ minimum=1,
587
+ maximum=20,
588
+ step=1,
589
+ label="Number of Loops",
590
+ info="This will change the length of the generated video, keep it to 1 if you are not sure",
591
+ )
592
+
593
+ gr.Markdown("## Reference Image")
594
+ reference_image = gr.Image(label="Image (optional)", show_download_button=True)
595
+
596
  with gr.Column():
597
+ output_video = gr.Video(label="Output Video", height="100%")
 
 
 
598
 
599
  with gr.Row():
600
+ image_gen_button = gr.Button("Generate image")
601
+ video_gen_button = gr.Button("Generate video")
602
+
603
+ image_gen_button.click(
604
+ fn=run_image_inference,
605
+ inputs=[
606
+ prompt_text,
607
+ resolution,
608
+ aspect_ratio,
609
+ length,
610
+ motion_strength,
611
+ aesthetic_score,
612
+ use_motion_strength,
613
+ use_aesthetic_score,
614
+ camera_motion,
615
+ reference_image,
616
+ refine_prompt,
617
+ fps,
618
+ num_loop,
619
+ seed,
620
+ sampling_steps,
621
+ cfg_scale,
622
+ ],
623
+ outputs=reference_image,
624
+ )
625
+ video_gen_button.click(
626
+ fn=run_video_inference,
627
+ inputs=[
628
+ prompt_text,
629
+ resolution,
630
+ aspect_ratio,
631
+ length,
632
+ motion_strength,
633
+ aesthetic_score,
634
+ use_motion_strength,
635
+ use_aesthetic_score,
636
+ camera_motion,
637
+ reference_image,
638
+ refine_prompt,
639
+ fps,
640
+ num_loop,
641
+ seed,
642
+ sampling_steps,
643
+ cfg_scale,
644
+ ],
645
+ outputs=output_video,
646
+ )
647
+ random_prompt_btn.click(fn=generate_random_prompt, outputs=prompt_text)
648
 
649
  # launch
650
  demo.launch(server_port=args.port, server_name=args.host, share=args.share)