""" A light wrapper around a bunch of chat LLMs. The class should define a method that takes text input and returns a response from the model. """ from abc import ABC, abstractmethod from typing import Generator, Optional, AsyncGenerator import os import random import openai import google.generativeai as genai from llama_cpp import Llama class ChatModel(ABC): def __init__(self, name): self.name = name def __str__(self): return self.name def __repr__(self): return self.name @abstractmethod def get_response(self, prompt) -> Generator[str, None, None]: pass class DummyModel(ChatModel): def __init__(self): super().__init__("dummy") def get_response(self, prompt: str) -> Generator[str, None, None]: response = f"Dummy response to: {prompt}" for idx in range(len(response)): yield response[:idx+1] class OpenAIModel(ChatModel): def __init__(self, model: str, client: openai.OpenAI): super().__init__(model) self.model = model self.client = client def get_response(self, prompt: str) -> Generator[str, None, None]: stream = self.client.chat.completions.create( model=self.model, messages=[ {"role": "system", "content": "You are PerfGuru, a helpful assistant for assisting developers in identifying performance bottlenecks in their code and optimizing them."}, {"role": "user", "content": prompt} ], stream=True, max_tokens=4096, ) response = "" for chunk in stream: response += chunk.choices[0].delta.content or "" yield response class GeminiModel(ChatModel): def __init__(self, model: str, api_key: Optional[str] = None): super().__init__(model) if api_key: genai.configure(api_key=api_key) self.model = genai.GenerativeModel(model) self.config = genai.types.GenerationConfig( candidate_count=1, max_output_tokens=4096, ) def get_response(self, prompt: str) -> Generator[str, None, None]: stream = self.model.generate_content(prompt, stream=True, generation_config=self.config) response = "" for chunk in stream: response += chunk.text or "" yield response class LocalModel(ChatModel): def __init__(self, model: str, model_path: str): super().__init__(model) self.llm = Llama( model_path=model_path, n_ctx=8000, ) def get_response(self, prompt) -> Generator[str, None, None]: output = self.llm.create_chat_completion( messages = [ {"role": "system", "content": "You are PerfGuru, a helpful assistant for assisting developers in identifying performance bottlenecks in their code and optimizing them."}, { "role": "user", "content": prompt, } ], max_tokens=4000, ) result = output["choices"][0]["message"]["content"] for idx in range(len(result)): yield result[:idx+1] LOCAL_MODELS = [ "Meta-Llama-3-8B-Instruct.Q4_K_S", ] AVAILABLE_MODELS = [ LocalModel(model_name, f"local_models/{model_name}.gguf") for model_name in LOCAL_MODELS if os.path.exists(f"local_models/{model_name}.gguf") ] # AVAILABLE_MODELS.append( DummyModel() ) if os.environ.get("OPENAI_API_KEY"): openai_client = openai.OpenAI() AVAILABLE_MODELS.append( OpenAIModel("gpt-4o-mini", openai_client) ) AVAILABLE_MODELS.append( OpenAIModel("gpt-3.5-turbo", openai_client) ) if os.environ.get("GOOGLE_API_KEY"): AVAILABLE_MODELS.append( GeminiModel("gemini-1.5-flash") ) AVAILABLE_MODELS.append( GeminiModel("gemini-1.5-pro") ) if not AVAILABLE_MODELS: raise ValueError("No models available. Please set OPENAI_API_KEY or GOOGLE_API_KEY environment variables.") def select_random_model() -> ChatModel: return random.choice(AVAILABLE_MODELS)