Spaces:
Sleeping
Sleeping
Upload 9 files
Browse files- utils/ImageAndTextEmbedding/index.py +40 -0
- utils/audioEmbedding/index.py +28 -0
- utils/imageEmbedding/index.py +17 -0
- utils/imageToText/index.py +24 -0
- utils/objectDetection/index.py +12 -0
- utils/sample.py +77 -0
- utils/sentanceEmbedding/index.py +32 -0
- utils/similarityScore.py +41 -0
- utils/videoEmbedding/index.py +43 -0
utils/ImageAndTextEmbedding/index.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import io
|
3 |
+
from transformers import AutoTokenizer, CLIPProcessor, CLIPModel
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load CLIP model and processor
|
7 |
+
model_name = "openai/clip-vit-base-patch32"
|
8 |
+
loaded_model = CLIPModel.from_pretrained(model_name)
|
9 |
+
loaded_processor = CLIPProcessor.from_pretrained(model_name)
|
10 |
+
|
11 |
+
def getTextEmbedding(text):
|
12 |
+
# Preprocess the text
|
13 |
+
print("tear")
|
14 |
+
inputs_text = loaded_processor(text=[text], return_tensors="pt", padding=True)
|
15 |
+
print("here")
|
16 |
+
# Forward pass through the model
|
17 |
+
with torch.no_grad():
|
18 |
+
# Get the text features
|
19 |
+
text_features = loaded_model.get_text_features(input_ids=inputs_text.input_ids, attention_mask=inputs_text.attention_mask)
|
20 |
+
print("bear")
|
21 |
+
# Convert tensor to numpy array for better readability
|
22 |
+
text_embedding = text_features.squeeze().numpy()
|
23 |
+
print("done")
|
24 |
+
return text_embedding
|
25 |
+
|
26 |
+
def getImageEmbedding(binary_image_data):
|
27 |
+
# Load and preprocess the image
|
28 |
+
image = Image.open(io.BytesIO(binary_image_data))
|
29 |
+
inputs = loaded_processor(images=image, return_tensors="pt", padding=True)
|
30 |
+
|
31 |
+
# Forward pass through the model
|
32 |
+
with torch.no_grad():
|
33 |
+
# Get the image features
|
34 |
+
image_features = loaded_model.get_image_features(pixel_values=inputs.pixel_values)
|
35 |
+
|
36 |
+
# Convert tensor to numpy array for better readability
|
37 |
+
image_embedding = image_features.squeeze().numpy()
|
38 |
+
|
39 |
+
return image_embedding
|
40 |
+
|
utils/audioEmbedding/index.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import numpy as np
|
3 |
+
import librosa
|
4 |
+
import pickle
|
5 |
+
import io
|
6 |
+
|
7 |
+
# Load the YAMNet model from the SavedModel format
|
8 |
+
yamnet_model = tf.saved_model.load('yamnet_saved_model')
|
9 |
+
|
10 |
+
# Function to extract embeddings from audio file using YAMNet
|
11 |
+
def extract_audio_embeddings(audio_binary):
|
12 |
+
# Load audio from binary data using librosa
|
13 |
+
audio, sample_rate = librosa.load(io.BytesIO(audio_binary), sr=16000) # YAMNet requires a sample rate of 16kHz
|
14 |
+
# Convert audio to float32 tensor
|
15 |
+
audio_tensor = tf.convert_to_tensor(audio, dtype=tf.float32)
|
16 |
+
# Extract embeddings using YAMNet model
|
17 |
+
scores, embeddings, spectrogram = yamnet_model(audio_tensor)
|
18 |
+
embeddings_list = embeddings.numpy().tolist() # Convert embeddings to a list of lists
|
19 |
+
return embeddings_list
|
20 |
+
|
21 |
+
# Example usage
|
22 |
+
if __name__ == "__main__":
|
23 |
+
image_audio_path = "pictures/users/1a.mp3"
|
24 |
+
# Extract embeddings from image audio file
|
25 |
+
image_audio_embeddings = extract_audio_embeddings(image_audio_path)
|
26 |
+
print("Embeddings for", image_audio_path)
|
27 |
+
print(image_audio_embeddings)
|
28 |
+
print("audio embedding model loaded succesfully")
|
utils/imageEmbedding/index.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
from torchvision import transforms
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import io
|
6 |
+
from utils.ImageAndTextEmbedding.index import getImageEmbedding
|
7 |
+
|
8 |
+
def get_image_embedding(image_bytes):
|
9 |
+
print("comming 1")
|
10 |
+
return getImageEmbedding(image_bytes)
|
11 |
+
|
12 |
+
# Example: Load image data from file and get its embedding
|
13 |
+
# image_data = open("pictures/users/2.jpg", "rb").read()
|
14 |
+
# embedding = get_image_embedding(image_data)
|
15 |
+
# print(embedding)
|
16 |
+
|
17 |
+
print("Image embedding model loaded successfully!")
|
utils/imageToText/index.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import re
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import pipeline
|
5 |
+
import io
|
6 |
+
|
7 |
+
def clean_text(text):
|
8 |
+
clean_text = re.sub(r'<[^>]+>', '', text)
|
9 |
+
clean_text = clean_text.strip()
|
10 |
+
clean_text = re.sub(r'\s+', ' ', clean_text)
|
11 |
+
return clean_text
|
12 |
+
|
13 |
+
pipe = pipeline("image-to-text", model="jinhybr/OCR-Donut-CORD")
|
14 |
+
|
15 |
+
def extract_text(binary_image):
|
16 |
+
image = Image.open(io.BytesIO(binary_image))
|
17 |
+
result = pipe(image)
|
18 |
+
text = result[0]['generated_text']
|
19 |
+
cleaned_text = clean_text(text)
|
20 |
+
return cleaned_text
|
21 |
+
|
22 |
+
# print(extract_text(open("pictures/users/2.jpg", "rb").read()))
|
23 |
+
|
24 |
+
print("OCR pipeline loaded successfully!")
|
utils/objectDetection/index.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from PIL import Image
|
3 |
+
from io import BytesIO
|
4 |
+
|
5 |
+
# Load the object detection pipeline
|
6 |
+
object_detection_pipeline = pipeline("object-detection", model="ciasimbaya/ObjectDetection")
|
7 |
+
def detect_objects(image_bytes):
|
8 |
+
image = Image.open(BytesIO(image_bytes))
|
9 |
+
result = object_detection_pipeline(image)
|
10 |
+
return result
|
11 |
+
|
12 |
+
print("object detection model loaded succesfully")
|
utils/sample.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
|
3 |
+
# Define the image URL
|
4 |
+
image_url = "https://utfs.io/f/47589c6c-6ce0-4baf-b75d-b1ec5d4d9dda-213j1w.jpg"
|
5 |
+
audio_url = "https://utfs.io/f/b84a84a2-b68f-49c5-8b7c-d76d894f6d3a-c5qjj4.wav"
|
6 |
+
video_url = "https://utfs.io/f/ef6c037f-fa61-471a-8956-562bc2d62531-fzxs1i.mp4"
|
7 |
+
family_url = "https://i.pinimg.com/originals/b2/20/14/b22014ca275e94097386aab222469caf.jpg"
|
8 |
+
|
9 |
+
|
10 |
+
# Define the URLs of the three nodes
|
11 |
+
extract_text_url = "http://127.0.0.1:5000/extractText"
|
12 |
+
extract_audio_text_url = "http://127.0.0.1:5000/extractAudioText"
|
13 |
+
get_image_embedding_url = "http://127.0.0.1:5000/getImageEmbedding"
|
14 |
+
get_text_embedding_url = "http://127.0.0.1:5000/getTextEmbedding"
|
15 |
+
get_text_description_embedding_url = "http://127.0.0.1:5000/getTextDescriptionEmbedding"
|
16 |
+
get_audio_embedding_url = "http://127.0.0.1:5000/getAudioEmbedding"
|
17 |
+
get_audio_extracted_text_url = "http://127.0.0.1:5000/getAudioExtractedText"
|
18 |
+
get_video_embedding_url = "http://127.0.0.1:5000/getVideoEmbedding"
|
19 |
+
get_object_detection_url = "http://127.0.0.1:5000/detectObjects"
|
20 |
+
get_similarity_score_url = "http://127.0.0.1:5000/getSimilarityScore"
|
21 |
+
get_face_locations_url = "http://127.0.0.1:5000/getFaceLocations"
|
22 |
+
|
23 |
+
# Make requests to each node with the image URL
|
24 |
+
try:
|
25 |
+
list=[]
|
26 |
+
|
27 |
+
response_text = requests.post(extract_audio_text_url, json={"audio_url": audio_url})
|
28 |
+
extracted_text = response_text.json()["transcription"]
|
29 |
+
list.append({"length of text":len(extracted_text)})
|
30 |
+
|
31 |
+
# # Request to extract text
|
32 |
+
# response_text = requests.post(extract_text_url, json={"imageUrl": image_url})
|
33 |
+
# extracted_text = response_text.json().get("extracted_text")
|
34 |
+
# list.append({"length of text":len(extracted_text)})
|
35 |
+
|
36 |
+
# # Request to get image embedding
|
37 |
+
# response_image_embedding = requests.post(get_image_embedding_url, json={"imageUrl": image_url})
|
38 |
+
# image_embedding = response_image_embedding.json().get("image_embedding")
|
39 |
+
# list.append({"length of image_embedding":len(image_embedding)})
|
40 |
+
|
41 |
+
# # Request to get text embedding
|
42 |
+
# response_text_embedding = requests.post(get_text_embedding_url, json={"text": extracted_text})
|
43 |
+
# text_embedding = response_text_embedding.json().get("text_embedding")
|
44 |
+
# list.append({"length of text_embedding":len(text_embedding)})
|
45 |
+
|
46 |
+
# # Request to get text description embedding
|
47 |
+
# response_text_description_embedding = requests.post(get_text_description_embedding_url, json={"text": "a image of mobile phone"})
|
48 |
+
# text_description_embedding = response_text_description_embedding.json().get("text_description_embedding")
|
49 |
+
# list.append({"length of text_description_embedding":len(text_description_embedding)})
|
50 |
+
|
51 |
+
# # Request to get audio embedding
|
52 |
+
# response_audio_embedding = requests.post(get_audio_embedding_url, json={"audioUrl": audio_url})
|
53 |
+
# audio_embedding = response_audio_embedding.json().get("audio_embedding")
|
54 |
+
# list.append({"length of audio_embedding":len(audio_embedding)})
|
55 |
+
|
56 |
+
# Request to get video embedding
|
57 |
+
response_video_embedding = requests.post(get_video_embedding_url, json={"videoUrl": video_url})
|
58 |
+
video_embedding = response_video_embedding.json().get("video_embedding")
|
59 |
+
list.append({"length of video_embedding":(video_embedding)})
|
60 |
+
|
61 |
+
# # Request to get object detection
|
62 |
+
# response_object_detection = requests.post(get_object_detection_url, json={"imageUrl": image_url})
|
63 |
+
# object_detection = response_object_detection.json().get("object_detection_results")
|
64 |
+
# list.append({"length of object_detection":len(object_detection)})
|
65 |
+
|
66 |
+
# # Request to get similarity score
|
67 |
+
# response_similarity_score = requests.post(get_similarity_score_url, json={"embedding1": text_description_embedding, "embedding2": image_embedding})
|
68 |
+
# similarity_score = response_similarity_score.json().get("similarity_score")
|
69 |
+
# list.append({"similarity_score":similarity_score})
|
70 |
+
|
71 |
+
# # Request to get face locations
|
72 |
+
# response_face_locations = requests.post(get_face_locations_url, json={"imageUrl": family_url})
|
73 |
+
# face_locations = response_face_locations.json().get("face_locations")
|
74 |
+
# list.append({"face_locations":face_locations})
|
75 |
+
print(list)
|
76 |
+
except Exception as e:
|
77 |
+
print("Error:", e)
|
utils/sentanceEmbedding/index.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
from utils.ImageAndTextEmbedding.index import getTextEmbedding
|
3 |
+
|
4 |
+
with open("word2vec_model.pkl", "rb") as f:
|
5 |
+
textEmbedding_model = pickle.load(f)
|
6 |
+
|
7 |
+
def get_text_vector(example_text):
|
8 |
+
# Tokenize the text into words
|
9 |
+
words = example_text.lower().split()
|
10 |
+
|
11 |
+
# Filter out words that are not in the vocabulary of the Word2Vec model
|
12 |
+
words_in_vocab = [word for word in words if word in textEmbedding_model]
|
13 |
+
|
14 |
+
# Calculate the average vector representation of the words
|
15 |
+
if words_in_vocab:
|
16 |
+
text_vector = sum(textEmbedding_model[word] for word in words_in_vocab) / len(words_in_vocab)
|
17 |
+
return text_vector.tolist()
|
18 |
+
else:
|
19 |
+
return None
|
20 |
+
|
21 |
+
def get_text_discription_vector(text):
|
22 |
+
return getTextEmbedding(text)
|
23 |
+
|
24 |
+
# Example usage:
|
25 |
+
# example_text = "This is an example sentence."
|
26 |
+
# text_vector = get_text_vector(example_text)
|
27 |
+
# if text_vector:
|
28 |
+
# print("Vector representation of the example text:", text_vector)
|
29 |
+
# else:
|
30 |
+
# print("None of the words in the example text are in the vocabulary of the Word2Vec model.")
|
31 |
+
|
32 |
+
print("Text embedding model loaded successfully!")
|
utils/similarityScore.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
def euclidean_similarity(embedding1, embedding2):
|
4 |
+
embedding1 = np.array(embedding1)
|
5 |
+
embedding2 = np.array(embedding2)
|
6 |
+
euclidean_distance = np.linalg.norm(embedding1 - embedding2)
|
7 |
+
# Convert distance to similarity score
|
8 |
+
similarity_score = 1 / (1 + euclidean_distance) # You can use other transformations as well
|
9 |
+
return similarity_score
|
10 |
+
|
11 |
+
def cosine_similarity(embedding1, embedding2):
|
12 |
+
dot_product = np.dot(embedding1, embedding2)
|
13 |
+
norm1 = np.linalg.norm(embedding1)
|
14 |
+
norm2 = np.linalg.norm(embedding2)
|
15 |
+
cosine_similarity = dot_product / (norm1 * norm2)
|
16 |
+
return cosine_similarity
|
17 |
+
|
18 |
+
def jaccard_similarity(embedding1, embedding2):
|
19 |
+
intersection = len(set(embedding1).intersection(set(embedding2)))
|
20 |
+
union = len(set(embedding1).union(set(embedding2)))
|
21 |
+
return intersection / union
|
22 |
+
|
23 |
+
def hamming_similarity(embedding1, embedding2):
|
24 |
+
distance = np.count_nonzero(embedding1 != embedding2)
|
25 |
+
similarity = 1 - distance / len(embedding1)
|
26 |
+
return similarity
|
27 |
+
|
28 |
+
def get_all_similarities(embedding1, embedding2):
|
29 |
+
euclidean = euclidean_similarity(embedding1, embedding2)
|
30 |
+
cosine = cosine_similarity(embedding1, embedding2)
|
31 |
+
jaccard = jaccard_similarity(embedding1, embedding2)
|
32 |
+
hamming = hamming_similarity(embedding1, embedding2)
|
33 |
+
return {"euclidean": euclidean, "cosine": cosine, "jaccard": jaccard, "hamming": hamming}
|
34 |
+
|
35 |
+
# Example usage:
|
36 |
+
# embedding1 = [1, 2, 3]
|
37 |
+
# embedding2 = [4, 5, 6]
|
38 |
+
# similarities = get_all_similarities(embedding1, embedding2)
|
39 |
+
# print(similarities)
|
40 |
+
|
41 |
+
print("Similarity score is working")
|
utils/videoEmbedding/index.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from utils.imageEmbedding.index import get_image_embedding
|
4 |
+
from utils.imageToText.index import extract_text
|
5 |
+
|
6 |
+
def get_video_embedding(video_url):
|
7 |
+
try:
|
8 |
+
cap = cv2.VideoCapture(video_url)
|
9 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
10 |
+
interval = int(fps) # Capture a frame every second
|
11 |
+
|
12 |
+
frame_count = 0
|
13 |
+
video_embeddings = []
|
14 |
+
|
15 |
+
while(cap.isOpened()):
|
16 |
+
ret, frame = cap.read()
|
17 |
+
if ret:
|
18 |
+
if frame_count % interval == 0:
|
19 |
+
# Convert frame to binary format
|
20 |
+
ret, buffer = cv2.imencode('.jpg', frame)
|
21 |
+
if not ret:
|
22 |
+
continue
|
23 |
+
# Convert frame binary data to bytes
|
24 |
+
frame_bytes = buffer.tobytes()
|
25 |
+
# Get image embedding for the frame
|
26 |
+
extracted_text = extract_text(frame_bytes)
|
27 |
+
image_embedding = get_image_embedding(frame_bytes)
|
28 |
+
image_embedding_list = image_embedding.tolist()
|
29 |
+
video_embeddings.append({"image_embedding": image_embedding_list ,"extracted_text":extracted_text})
|
30 |
+
frame_count += 1
|
31 |
+
else:
|
32 |
+
break
|
33 |
+
|
34 |
+
cap.release()
|
35 |
+
return video_embeddings
|
36 |
+
|
37 |
+
except Exception as e:
|
38 |
+
print(e)
|
39 |
+
|
40 |
+
# Example usage:
|
41 |
+
# video_url = "https://utfs.io/f/ef6c037f-fa61-471a-8956-562bc2d62531-fzxs1i.mp4"
|
42 |
+
# video_embeddings = get_video_embedding(video_url)
|
43 |
+
# print("Video Embeddings:", video_embeddings)
|