Spaces:
Runtime error
Runtime error
File size: 1,172 Bytes
0e54263 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("microsoft/GODEL-v1_1-base-seq2seq")
model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/GODEL-v1_1-base-seq2seq")
def predict(input, history=[]):
instruction = 'Instruction: given a dialog context, you need to response empathically'
knowledge = ' '
s = list(sum(history, ()))
s.append(input)
#print(s)
dialog = ' EOS ' .join(s)
#print(dialog)
query = f"{instruction} [CONTEXT] {dialog} {knowledge}"
top_p = 0.9
min_length = 8
max_length = 64
# tokenize the new input sentence
new_user_input_ids = tokenizer.encode(f"{query}", return_tensors='pt')
output = model.generate(new_user_input_ids, min_length=int(
min_length), max_length=int(max_length), top_p=top_p, do_sample=True).tolist()
response = tokenizer.decode(output[0], skip_special_tokens=True)
history.append((input, response))
return history, history
import gradio as gr
gr.Interface(fn=predict,
inputs=["text",'state'],
outputs=["chatbot",'state']).launch() |