import streamlit as st from docx import Document import PyPDF2 import google.generativeai as genai # Correct package for Gemini # Title of the app st.title("JD-Resume Fit Check App") # Retrieve the API key from Streamlit secrets GOOGLE_API_KEY = st.secrets["GEMINI_API_KEY"] # Configure the Google Generative AI API with your API key genai.configure(api_key=GOOGLE_API_KEY) # Create two columns col1, col2 = st.columns(2) # Left column: Resume upload with col1: st.subheader('Upload your Resume') uploaded_file = st.file_uploader('Upload your Resume (PDF or DOCX)', type=['pdf', 'docx']) resume_text = "" try: if uploaded_file: if uploaded_file.type == 'application/pdf': pdf_reader = PyPDF2.PdfReader(uploaded_file) for page in pdf_reader.pages: text = page.extract_text() if text: resume_text += text st.success("Resume uploaded and processed!") elif uploaded_file.type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document': doc = Document(uploaded_file) resume_text = '\n'.join([paragraph.text for paragraph in doc.paragraphs if paragraph.text]) st.success("Resume uploaded and processed!") except Exception as e: st.error(f"Error processing file: {e}") # Right column: JD input with col2: st.subheader('Paste your Job Description') job_description = st.text_area('Enter Job Description', '', height=150) if job_description: st.success("Job Description received!") # Bottom section: Output st.subheader("Fit Check Results") # Ensure both resume and JD are provided before proceeding if resume_text and job_description: # Check for minimum content length if len(resume_text.strip()) < 100 or len(job_description.strip()) < 100: st.error("Please provide more detailed Resume and Job Description.") st.stop() # Truncate input if too large max_input_tokens = 4000 # Example limit combined_input = f"{resume_text}\n{job_description}" words = combined_input.split() if len(words) > max_input_tokens: combined_input = ' '.join(words[:max_input_tokens]) st.warning("Input text truncated to fit the model's token limit.") # Display a "Generate" button if st.button("Generate Match Score"): st.write("Your resume and job description are being processed...") # Construct the prompt for analysis prompt = f""" You are an expert recruiter and hiring manager assistant. Analyze the following details and provide a structured response in the specified format: 1. Resume: {resume_text} 2. Job Description: {job_description} ### Tasks: 1. Identify the key skills, experiences, and qualifications mentioned in the Job Description. 2. Compare the above with the details provided in the Resume. 3. Provide a match score (out of 10) based on how well the Resume aligns with the Job Description. 4. Offer a detailed justification for the match score. 5. Suggest changes to improve the Resume so that it matches the Job Description better. 6. Recommend relevant topics for interview preparation based on the Job Description. ### Response Format: 1. Match Score: [Provide a score out of 10] 2. Justification: [Provide a detailed analysis of how well the resume matches the job description] 3. Resume Suggestions: [List actionable changes to align the resume with the job description] 4. Interview Preparation Topics: [List relevant topics for interview preparation] """ try: # Initialize the generative model model = genai.GenerativeModel("gemini-pro") # Generate content using the Gemini API response = model.generate_content( prompt, generation_config=genai.types.GenerationConfig( temperature=0.0, # Ensures deterministic output max_output_tokens=500, # Limits the response length to 500 tokens candidate_count=1 # Generates only one candidate ) ) # Ensure response contains text if response and hasattr(response, "text"): st.write(response.text) # Display the generated response else: st.error("No response received from the API.") except Exception as e: st.error(f"API Error: {str(e)}") else: st.write("Please upload both a resume and a job description.") # Add space or content at the bottom st.write("\n" * 20) # Adds space to push the content down # Footer st.markdown("Built with 🧠 by Hruday & Google Gemini")