Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,19 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
# App header
|
5 |
st.header("Know Your Medicine - Multiplication Table Generator")
|
6 |
|
7 |
# Load the model and tokenizer
|
8 |
@st.cache_resource
|
9 |
-
def
|
10 |
-
model_name = "
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
13 |
return model, tokenizer
|
14 |
|
15 |
# Load the model
|
16 |
-
model, tokenizer =
|
17 |
|
18 |
# Input for the number to generate the multiplication table
|
19 |
number = st.number_input("Enter a number:", min_value=1, max_value=100, value=5)
|
@@ -25,8 +25,8 @@ prompt = f"Give me the multiplication table of {number} up to 12."
|
|
25 |
if st.button("Generate Multiplication Table"):
|
26 |
# Tokenize the input prompt
|
27 |
tokenized_input = tokenizer(prompt, return_tensors="pt")
|
28 |
-
input_ids = tokenized_input["input_ids"]
|
29 |
-
attention_mask = tokenized_input["attention_mask"]
|
30 |
|
31 |
# Generate the response from the model
|
32 |
response_token_ids = model.generate(
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
# App header
|
5 |
st.header("Know Your Medicine - Multiplication Table Generator")
|
6 |
|
7 |
# Load the model and tokenizer
|
8 |
@st.cache_resource
|
9 |
+
def load_model():
|
10 |
+
model_name = "gpt2" # Using GPT-2 for faster builds
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
13 |
return model, tokenizer
|
14 |
|
15 |
# Load the model
|
16 |
+
model, tokenizer = load_model()
|
17 |
|
18 |
# Input for the number to generate the multiplication table
|
19 |
number = st.number_input("Enter a number:", min_value=1, max_value=100, value=5)
|
|
|
25 |
if st.button("Generate Multiplication Table"):
|
26 |
# Tokenize the input prompt
|
27 |
tokenized_input = tokenizer(prompt, return_tensors="pt")
|
28 |
+
input_ids = tokenized_input["input_ids"] # Using CPU for simplicity
|
29 |
+
attention_mask = tokenized_input["attention_mask"] # Using CPU for simplicity
|
30 |
|
31 |
# Generate the response from the model
|
32 |
response_token_ids = model.generate(
|