Spaces:
Sleeping
Sleeping
File size: 13,185 Bytes
0d0a4e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import requests
from bs4 import BeautifulSoup
import pandas as pd
import pysbd
import re
#####################
# Utility functions #
#####################
def html_to_plaintext(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
for tag in soup.find_all(['p', 'li', 'dd', 'dl', 'ul']):
tag.insert_before('\n')
tag.insert_after('\n')
for br in soup.find_all('br'):
br.replace_with('\n')
text = soup.get_text(separator=' ', strip=True)
text = '\n'.join([line.strip() for line in text.splitlines() if line.strip() != ''])
return text
def split_text_into_sentences(text):
seg = pysbd.Segmenter(language="en", clean=False)
sentences = seg.segment(text)
return ' '.join(sentences)
def process_html_to_plaintext(df):
if df.empty:
return df
if 'discussion' in df.columns:
df['discussion_cleaned'] = df['discussion'].apply(html_to_plaintext)
return df
def process_split_text_into_sentences(df):
if df.empty:
return df
if 'discussion_cleaned' in df.columns:
df['discussion_cleaned'] = df['discussion_cleaned'].apply(split_text_into_sentences)
return df
###########################
# Year-based extraction #
###########################
def extract_outcome_from_div(div):
try:
consensus_keywords = ['Deleted', 'Delete', 'delete', 'deleted', 'kept', 'keep', 'Keep', 'Kept', 'merge', 'Merge', 'Not done', 'No consensus', 'no consensus']
dd_tags = div.find_all('dd')
for dd in dd_tags:
b_tag = dd.find('b')
if b_tag and b_tag.text.strip() in consensus_keywords:
return b_tag.text.strip()
img_tag = dd.find('img')
if img_tag and 'X_mark.svg' in img_tag.get('src', ''):
next_b_tag = dd.find_next('b')
if next_b_tag and next_b_tag.text.strip() in consensus_keywords:
return next_b_tag.text.strip()
return 'no consensus'
except Exception as e:
print(f"Error extracting outcome: {e}")
return 'unknown'
def extract_cleaned_discussion(div):
discussion_parts = []
discussion_items = div.find_all(['li', 'dd'])
for item in discussion_items:
for tag in item.find_all(['span', 'img', 'a']):
tag.decompose()
cleaned_text = item.get_text(separator=' ', strip=True)
discussion_parts.append(cleaned_text)
return ' '.join(discussion_parts)
def extract_div_contents_with_additional_columns(url):
response = requests.get(url)
if response.status_code != 200:
return pd.DataFrame(columns=['title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'verdict', 'discussion'])
soup = BeautifulSoup(response.content, 'html.parser')
divs = soup.find_all('div', class_='boilerplate metadata discussion-archived mw-archivedtalk')
if len(divs) == 0:
print(f"No discussions found in {url}. Please check the structure.")
data = []
for i, div in enumerate(divs):
try:
heading_div = div.find_previous('div', class_='mw-heading mw-heading2 ext-discussiontools-init-section')
if heading_div:
h2_tag = heading_div.find('h2')
if h2_tag:
id = h2_tag.get('id', 'Unknown ID')
if id:
text_url = url+'#' + id
title = id.replace('(page does not exist)', '').strip()
else:
title = "Unknown Title"
text_url = "Unknown URL"
else:
title = "Unknown Title"
text_url = "Unknown URL"
else:
# fallback for rare cases
title = "Unknown Title"
text_url = "Unknown URL"
deletion_discussion = div.prettify()
label = extract_outcome_from_div(div)
cleaned_discussion = extract_cleaned_discussion(div)
parts = deletion_discussion.split('<div class="mw-heading mw-heading3">')
discussion = parts[0] if len(parts) > 0 else ''
verdict = '<div class="mw-heading mw-heading3">' + parts[1] if len(parts) > 1 else ''
data.append([title, text_url, deletion_discussion, label, '', cleaned_discussion, verdict])
except Exception as e:
print(f"Error processing div #{i} in {url}: {e}")
continue
df = pd.DataFrame(data, columns=['title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'discussion', 'verdict'])
return df
def scrape_wikidata_deletions(wikidata_url):
months_data = []
month_found = False
for month in range(1, 13):
month_url = f"{wikidata_url}/{month}"
print(f"Processing month: {month}")
response = requests.get(month_url)
if response.status_code == 200:
df = extract_div_contents_with_additional_columns(month_url)
if not df.empty:
df = process_html_to_plaintext(df)
df['discussion_cleaned'] = df['discussion_cleaned'].apply(lambda x: ' '.join(pysbd.Segmenter(language="en", clean=False).segment(x)[1:]) if x else x)
months_data.append(df)
month_found = True
else:
print(f"No month-specific page found for {month_url}.")
if month_found and months_data:
all_data = pd.concat(months_data, ignore_index=True)
return all_data
print(f"Attempting year-based extraction for base URL: {wikidata_url}")
df = extract_div_contents_with_additional_columns(wikidata_url)
if not df.empty:
df = process_html_to_plaintext(df)
df['discussion_cleaned'] = df['discussion_cleaned'].apply(lambda x: ' '.join(pysbd.Segmenter(language="en", clean=False).segment(x)[1:]) if x else x)
return df
print("No data found using month-specific or year-based extraction.")
return pd.DataFrame()
############################
# Title-based extraction #
############################
def extract_outcome_from_text_elements(elements):
consensus_keywords = [
'Deleted', 'Delete', 'delete', 'deleted',
'kept', 'keep', 'Keep', 'Kept',
'merge', 'Merge', 'Not done', 'No consensus', 'no consensus'
]
for el in elements:
b_tags = el.find_all('b')
for b in b_tags:
if b.text.strip() in consensus_keywords:
return b.text.strip()
return ''
def clean_discussion_tag(tag):
for unwanted in tag.find_all(['span', 'img', 'a', 'div'], recursive=True):
unwanted.decompose()
return tag.get_text(separator=' ', strip=True)
def extract_discussion_section(soup, title):
h2_tag = soup.find('h2', id=title)
if not h2_tag:
print(f"No heading found with id={title}")
return '', '', ''
heading_div = h2_tag.find_parent('div', class_='mw-heading mw-heading2 ext-discussiontools-init-section')
if not heading_div:
print(f"No heading div found for {title}")
return '', '', ''
next_heading_div = heading_div.find_next('div', class_='mw-heading mw-heading2 ext-discussiontools-init-section')
discussion_nodes = []
for sibling in heading_div.next_siblings:
if sibling == next_heading_div:
break
discussion_nodes.append(sibling)
discussion_tags = []
for node in discussion_nodes:
if getattr(node, 'name', None) in ['p', 'ul', 'dl']:
if node.find('span', id=title) or node.get('style', '').lower() == 'visibility:hidden;display:none':
continue
discussion_tags.append(node)
if not discussion_tags:
return '', '', ''
label = extract_outcome_from_text_elements(discussion_tags)
discussion_html_parts = [str(tag) for tag in discussion_tags]
cleaned_parts = []
for tag in discussion_tags:
text = clean_discussion_tag(tag)
if text:
cleaned_parts.append(text)
cleaned_discussion = ' '.join(cleaned_parts)
discussion_html = '\n'.join(discussion_html_parts)
return discussion_html, label, cleaned_discussion
def extract_div_from_title(url, title):
response = requests.get(url)
if response.status_code != 200:
print(f"Could not fetch {url}")
return pd.DataFrame(columns=['title', 'text_url', 'discussion_url', 'discussion_cleaned', 'label'])
soup = BeautifulSoup(response.content, 'html.parser')
discussion_html, label, cleaned_discussion = extract_discussion_section(soup, title)
text_url = 'https://www.wikidata.org/wiki/Wikidata:Properties_for_deletion'
discussion_url = text_url + '#' + title
data = [[title, text_url, discussion_url, cleaned_discussion, label]]
df = pd.DataFrame(data, columns=['title', 'text_url', 'discussion_url', 'discussion_cleaned', 'label'])
return df
############################
# Unified collect function #
############################
def collect_wikidata(mode='year', title='', url='', years=[]):
if mode not in ['title', 'year','url']:
raise ValueError("mode must be either 'title' or 'year' or 'url'.")
if mode == 'title':
if not title or years:
raise ValueError("For 'title' mode, 'title' must be provided and 'years' must be empty.")
url = 'https://www.wikidata.org/wiki/Wikidata:Properties_for_deletion#' + title
df = extract_div_from_title(url, title)
if not df.empty and 'label' in df.columns and df['label'].notnull().any():
df['label'] = df['label'].replace({
'Deleted':'delete', 'Delete':'delete', 'delete':'delete', 'deleted':'delete',
'kept':'keep', 'keep':'keep', 'Keep':'keep', 'Kept':'keep',
'merge':'merge', 'Merge':'merge', 'Not done':'no_consensus',
'No consensus':'no_consensus', 'no consensus':'no_consensus'
})
df = df.rename(columns={'discussion_cleaned':'discussion'})
return df
elif mode == 'url':
if title or years:
raise ValueError("For 'url' mode, 'url' must be provided and 'title' must be empty.")
df = extract_div_contents_with_additional_columns(url)
if not df.empty and 'label' in df.columns and df['label'].notnull().any():
df['label'] = df['label'].replace({
'Deleted':'delete', 'Delete':'delete', 'delete':'delete', 'deleted':'delete',
'kept':'keep', 'keep':'keep', 'Keep':'keep', 'Kept':'keep',
'merge':'merge', 'Merge':'merge', 'Not done':'no_consensus',
'No consensus':'no_consensus', 'no consensus':'no_consensus'
})
else:
return ValueError("No data found for the provided URL.")
df = df.rename(columns={'discussion_cleaned':'discussion'})
return df
elif mode == 'year':
if title or not years:
raise ValueError("For 'year' mode, 'years' must be provided and 'title' must be empty.")
if isinstance(years, list) and len(years) == 2:
start_year, end_year = years
years = list(range(start_year, end_year + 1))
elif isinstance(years, int):
years = [years]
df = pd.DataFrame()
for year in years:
wikidata_url = f'https://www.wikidata.org/wiki/Wikidata:Properties_for_deletion/Archive/{year}'
deletions_df = scrape_wikidata_deletions(wikidata_url)
if deletions_df.empty:
continue
columns_to_drop = ['confirmation', 'discussion', 'verdict', 'deletion_discussion']
deletions_df = deletions_df.drop(columns=[col for col in columns_to_drop if col in deletions_df.columns], errors='ignore')
if 'label' in deletions_df.columns:
deletions_df.rename(columns={'label':'label'}, inplace=True)
deletions_df['label'] = deletions_df['label'].replace({
'Deleted':'delete', 'Delete':'delete', 'delete':'delete', 'deleted':'delete',
'kept':'keep', 'keep':'keep', 'Keep':'keep', 'Kept':'keep',
'merge':'merge', 'Merge':'merge', 'Not done':'no_consensus',
'No consensus':'no_consensus', 'no consensus':'no_consensus'
})
if 'text_url' in deletions_df.columns:
deletions_df.rename(columns={'text_url':'discussion_url'}, inplace=True)
deletions_df['text_url'] = wikidata_url
if 'label' not in deletions_df.columns:
deletions_df['label'] = ''
for col in ['title', 'text_url', 'discussion_url', 'discussion_cleaned', 'label']:
if col not in deletions_df.columns:
deletions_df[col] = ''
deletions_df = deletions_df[['title', 'text_url', 'discussion_url', 'discussion_cleaned', 'label']]
deletions_df['year'] = year
df = pd.concat([df, deletions_df], ignore_index=True)
df = df.rename(columns={'discussion_cleaned':'discussion'})
return df
|