Spaces:
Sleeping
Sleeping
File size: 10,516 Bytes
0d0a4e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import requests
import pandas as pd
from bs4 import BeautifulSoup
import re
#################### Spanish Wikipedia ####################
###############
# Title based #
###############
def extract_result_resultado(sentence):
match = re.search(r"(RESULTADO:|El resultado fue)\s*(\w+)", sentence, flags=re.IGNORECASE)
return match.group(2).strip() if match else None
def extract_result(sentence):
#print(f"Extracting result from sentence: {sentence}")
match = re.search(r"se\s+decidi贸\s+(\w+)", sentence, flags=re.IGNORECASE)
if match:
#print(f"Match found for 'se decidi贸': {match.groups()}")
return match.group(1).strip()
#print("No match found for 'se decidi贸'.")
return None
def clean_comments_with_no_text_after_timestamp(content_div):
for ol in content_div.find_all('ol'):
for li in ol.find_all('li'):
li_text = li.get_text(strip=True)
if "(CEST)" in li_text or "(CET)" in li_text:
match = re.search(r"\(C[ES]T\)\s*(.*)", li_text)
if match:
after_timestamp = match.group(1).strip()
if not after_timestamp:
li.decompose()
else:
li.decompose()
return content_div
def extract_cleaned_spanish_discussion_and_result(url):
response = requests.get(url)
if response.status_code != 200:
print(f"Error: Received status code {response.status_code} for URL: {url}")
return pd.DataFrame(columns=['title', 'discussion_uncleaned', 'discussion', 'result_sentence', 'result', 'text_url', 'discussion_url'])
soup = BeautifulSoup(response.content, 'html.parser')
title = url.split('/')[-1].replace('_', ' ').replace(':', '')
text_url = f"https://es.wikipedia.org/wiki/{url.split('/')[-1]}"
discussion_url = url
content_div = soup.find('div', class_='mw-content-ltr mw-parser-output')
if not content_div:
print("Error: Main discussion container not found")
return pd.DataFrame(columns=['title', 'discussion_uncleaned', 'discussion', 'result_sentence', 'result', 'text_url', 'discussion_url'])
discussion_uncleaned = content_div.prettify()
discussion = ''
result_sentence = ''
result = None
try:
result_p = next(
(p for p in content_div.find_all('p') if "El resultado fue" in p.get_text() or "RESULTADO:" in p.get_text()), None
)
if result_p:
result_sentence = result_p.get_text(strip=True)
bold_tag = result_p.find('b')
if bold_tag:
result = bold_tag.get_text(strip=True)
else:
match = re.search(r"(El resultado fue|RESULTADO:)\s*(.+?)\.", result_sentence, flags=re.IGNORECASE)
result = match.group(2).strip() if match else None
#print(f"Extracted result from sentence: {result}")
content_div = clean_comments_with_no_text_after_timestamp(content_div)
discussion_text_parts = content_div.find_all(recursive=False)
cleaned_text_parts = []
for part in discussion_text_parts:
cleaned_text_parts.append(part.get_text(strip=True))
discussion = "\n".join(cleaned_text_parts)
if not result:
result_div = content_div.find('div', class_='messagebox')
if result_div:
result_dl = result_div.find('dl')
if result_dl:
result_sentence = result_dl.get_text(strip=True)
#print(f"Extracted result sentence from messagebox: {result_sentence}")
result = extract_result(result_sentence)
if not result and not result_sentence:
result_p = next((p for p in content_div.find_all('p') if "RESULTADO:" in p.get_text() or "se decidi贸" in p.get_text()), None)
if result_p:
result_sentence = result_p.get_text(strip=True)
#print(f"Extracted result sentence from paragraph: {result_sentence}")
result = extract_result(result_sentence)
if not result and not result_sentence:
voting_sentence = next((p for p in content_div.find_all('p') if "se decidi贸" in p.get_text()), None)
if voting_sentence:
result_sentence = voting_sentence.get_text(strip=True)
#print(f"Extracted voting sentence: {result_sentence}")
result = extract_result(result_sentence)
# if result:
# print(f"Final extracted result: {result}")
if "Votaci贸n" in discussion:
discussion = discussion.split("Votaci贸n", 1)[1].strip()
except Exception as e:
print(f"Error processing discussion: {e}")
data = [[title, discussion_uncleaned, discussion, result_sentence, result, text_url, discussion_url]]
df = pd.DataFrame(data, columns=['title', 'discussion_uncleaned', 'discussion', 'result_sentence', 'result', 'text_url', 'discussion_url'])
df['result'] = df['result'].apply(lambda x: extract_result_resultado(x) if isinstance(x, str) and len(x.split()) > 1 else x)
return df
# url = 'https://es.wikipedia.org/wiki/Wikipedia:Consultas_de_borrado/!Hispahack' #'https://es.wikipedia.org/wiki/Wikipedia:Consultas_de_borrado/:Country_Club_La_Planicie'
# df = extract_cleaned_spanish_discussion_and_result(url)
# df
###############
# Date based #
###############
def extract_result(sentence):
match = re.search(r"(El resultado fue|RESULTADO:)\s*(\w+)", sentence, flags=re.IGNORECASE)
return match.group(2).strip() if match else None
def extract_multiple_discussions(url):
response = requests.get(url)
if response.status_code != 200:
print(f"Error: Received status code {response.status_code} for URL: {url}")
return pd.DataFrame(columns=['title', 'discussion_uncleaned', 'discussion', 'result_sentence', 'result', 'text_url', 'discussion_url'])
soup = BeautifulSoup(response.content, 'html.parser')
content_div = soup.find('div', class_='mw-content-ltr mw-parser-output')
if not content_div:
print("Error: Main discussion container not found")
return pd.DataFrame(columns=['title', 'discussion_uncleaned', 'discussion', 'result_sentence', 'result', 'text_url', 'discussion_url'])
data = []
headings = content_div.find_all('div', class_='mw-heading mw-heading3')
for idx, heading in enumerate(headings):
try:
title_tag = heading.find('a', class_='new') or heading.find('a')
if title_tag:
title = title_tag.text.strip()
text_url = f"https://es.wikipedia.org{title_tag['href']}"
else:
title = f"{url.split('/')[-1]}_{idx + 1}"
text_url = f"https://es.wikipedia.org/wiki/{title}"
previous_sibling = heading.find_previous_sibling()
result_sentence = None
result = None
while previous_sibling:
if previous_sibling.name == 'p' and "El resultado fue" in previous_sibling.get_text():
normalized_text = previous_sibling.get_text(separator=" ", strip=True)
result_sentence = normalized_text
result = extract_result(result_sentence)
break
previous_sibling = previous_sibling.find_previous_sibling()
if not result_sentence:
result_p = content_div.find('p', string=lambda text: text and "RESULTADO:" in text)
if result_p:
result_sentence = result_p.get_text(strip=True)
result = extract_result(result_sentence)
discussion_html = ""
current = heading.find_next_sibling()
while current and not (current.name == 'div' and 'mw-heading mw-heading3' in current.get('class', [])):
discussion_html += str(current)
current = current.find_next_sibling()
discussion_uncleaned = discussion_html
discussion = BeautifulSoup(discussion_html, 'html.parser').get_text(strip=True)
data.append([title, discussion_uncleaned, discussion, result_sentence, result, text_url, url])
except Exception as e:
print(f"Error processing heading: {e}")
df = pd.DataFrame(data, columns=['title', 'discussion_uncleaned', 'discussion', 'result_sentence', 'result', 'text_url', 'discussion_url'])
return df
# url = 'https://es.wikipedia.org/wiki/Wikipedia:Consultas_de_borrado/Registro/10_de_septiembre_de_2009'
# df = extract_multiple_discussions(url)
# df
###############
# Collect ES #
###############
def collect_es(mode='title', title='', url = '',date=''):
if mode not in ['title', 'year', 'url']:
raise ValueError("mode must be either 'title' or 'year'")
if mode == 'title':
if not title or date:
raise ValueError("For 'title' mode, 'title' must be provided and 'date' must be empty.")
url = f"https://es.wikipedia.org/wiki/Wikipedia:Consultas_de_borrado/{title}"
df = extract_cleaned_spanish_discussion_and_result(url)
if df.empty:
print(f"No data found for url: {url}")
return df
elif mode == 'url':
if title or date:
raise ValueError("For 'url' mode, 'url' must be provided and 'title' must be empty.")
df = extract_cleaned_spanish_discussion_and_result(url)
return df
elif mode == 'year':
if title or not date:
raise ValueError("For 'year' mode, 'date' must be provided and 'title' must be empty.")
month_map = {
'01': 'enero', '02': 'febrero', '03': 'marzo', '04': 'abril', '05': 'mayo', '06': 'junio',
'07': 'julio', '08': 'agosto', '09': 'septiembre', '10': 'octubre', '11': 'noviembre', '12': 'diciembre'
}
match = re.match(r'(\d{2})/(\d{2})/(\d{4})', date)
if not match:
raise ValueError("Date must be in the format dd/mm/yyyy")
day, month, year = match.groups()
if month not in month_map:
raise ValueError("Invalid month in date")
date_str = f"{int(day)}_de_{month_map[month]}_de_{year}"
url = f"https://es.wikipedia.org/wiki/Wikipedia:Consultas_de_borrado/Registro/{date_str}"
df = extract_multiple_discussions(url)
return df
|