Spaces:
Sleeping
Sleeping
File size: 6,143 Bytes
3c77d98 cb58c8d 9a3ff71 cb58c8d 3c77d98 cb58c8d 7ba3a06 9a3ff71 7ba3a06 9a3ff71 3c77d98 9a3ff71 cb58c8d 9a3ff71 3c77d98 9a3ff71 cb58c8d 3c77d98 cb58c8d 9a3ff71 cb58c8d 9a3ff71 cb58c8d 9a3ff71 cb58c8d 9a3ff71 cb58c8d 9a3ff71 cb58c8d 9a3ff71 cb58c8d 7ba3a06 cb58c8d 7ba3a06 cb58c8d 7ba3a06 cb58c8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
#using pipeline to predict the input text
import pandas as pd
from transformers import pipeline, AutoTokenizer
import pysbd
#-----------------Outcome Prediction-----------------
def outcome(text):
label_mapping = {
'delete': [0, 'LABEL_0'],
'keep': [1, 'LABEL_1'],
'merge': [2, 'LABEL_2'],
'no consensus': [3, 'LABEL_3'],
'speedy keep': [4, 'LABEL_4'],
'speedy delete': [5, 'LABEL_5'],
'redirect': [6, 'LABEL_6'],
'withdrawn': [7, 'LABEL_7']
}
model_name = "research-dump/roberta-large_deletion_multiclass_complete_final"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = pipeline("text-classification", model=model_name, return_all_scores=True)
# Tokenize and truncate the text
tokens = tokenizer(text, truncation=True, max_length=512)
truncated_text = tokenizer.decode(tokens['input_ids'], skip_special_tokens=True)
results = model(truncated_text)
res_list = []
for result in results[0]:
for key, value in label_mapping.items():
if result['label'] == value[1]:
res_list.append({'sentence': truncated_text, 'outcome': key, 'score': result['score']})
break
return res_list
#-----------------Stance Prediction-----------------
def extract_response(text, model_name, label_mapping):
tokenizer = AutoTokenizer.from_pretrained(model_name)
pipe = pipeline("text-classification", model=model_name, tokenizer=tokenizer, top_k=None)
tokens = tokenizer(text, truncation=True, max_length=512)
truncated_text = tokenizer.decode(tokens['input_ids'], skip_special_tokens=True)
results = pipe(truncated_text)
final_scores = {key: 0.0 for key in label_mapping}
for result in results[0]:
for key, value in label_mapping.items():
if result['label'] == f'LABEL_{value}':
final_scores[key] = result['score']
break
return final_scores
def get_stance(text):
label_mapping = {
'delete': 0,
'keep': 1,
'merge': 2,
'comment': 3
}
seg = pysbd.Segmenter(language="en", clean=False)
text_list = seg.segment(text)
model = 'research-dump/bert-large-uncased_wikistance_v1'
res_list = []
for t in text_list:
res = extract_response(t, model,label_mapping) #, access_token)
highest_key = max(res, key=res.get)
highest_score = res[highest_key]
result = {'sentence':t,'stance': highest_key, 'score': highest_score}
res_list.append(result)
return res_list
#-----------------Policy Prediction-----------------
def get_policy(text):
label_mapping = {'Wikipedia:Notability': 0,
'Wikipedia:What Wikipedia is not': 1,
'Wikipedia:Neutral point of view': 2,
'Wikipedia:Verifiability': 3,
'Wikipedia:Wikipedia is not a dictionary': 4,
'Wikipedia:Wikipedia is not for things made up one day': 5,
'Wikipedia:Criteria for speedy deletion': 6,
'Wikipedia:Deletion policy': 7,
'Wikipedia:No original research': 8,
'Wikipedia:Biographies of living persons': 9,
'Wikipedia:Arguments to avoid in deletion discussions': 10,
'Wikipedia:Conflict of interest': 11,
'Wikipedia:Articles for deletion': 12
}
seg = pysbd.Segmenter(language="en", clean=False)
text_list = seg.segment(text)
model = 'research-dump/bert-large-uncased_wikistance_policy_v1'
res_list = []
for t in text_list:
res = extract_response(t, model,label_mapping)
highest_key = max(res, key=res.get)
highest_score = res[highest_key]
result = {'sentence': t, 'policy': highest_key, 'score': highest_score}
res_list.append(result)
return res_list
#-----------------Sentiment Analysis-----------------
def extract_highest_score_label(res):
flat_res = [item for sublist in res for item in sublist]
highest_score_item = max(flat_res, key=lambda x: x['score'])
highest_score_label = highest_score_item['label']
highest_score_value = highest_score_item['score']
return highest_score_label, highest_score_value
def get_sentiment(text):
#sentiment analysis
model_name = "cardiffnlp/twitter-roberta-base-sentiment-latest"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = pipeline("text-classification", model=model_name, top_k= None)
#sentence tokenize the text using pysbd
seg = pysbd.Segmenter(language="en", clean=False)
text_list = seg.segment(text)
res = []
for t in text_list:
results = model(t)
highest_label, highest_score = extract_highest_score_label(results)
result = {'sentence': t,'sentiment': highest_label, 'score': highest_score}
res.append(result)
return res
#-----------------Toxicity Prediction-----------------
def get_offensive_label(text):
#offensive language detection model
model_name = "cardiffnlp/twitter-roberta-base-offensive"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = pipeline("text-classification", model=model_name, top_k= None)
#sentence tokenize the text using pysbd
seg = pysbd.Segmenter(language="en", clean=False)
text_list = seg.segment(text)
res = []
for t in text_list:
results = model(t)
highest_label, highest_score = extract_highest_score_label(results)
result = {'sentence': t,'offensive_label': highest_label, 'score': highest_score}
res.append(result)
return res
#create the anchor function
def predict_text(text, model_name):
if model_name == 'outcome':
return outcome(text)
elif model_name == 'stance':
return get_stance(text)
elif model_name == 'policy':
return get_policy(text)
elif model_name == 'sentiment':
return get_sentiment(text)
elif model_name == 'offensive':
return get_offensive_label(text)
else:
return "Invalid Task name" |